
Parallelization of Spectral Element Methods

S. Airiau1, M. Aza��ez2, F. Ben Belgacem3, and R. Guivarch1

1 LIMA-IRIT, UMR CNRS 5505,
2 rue Charles Camichel, 31071 Toulouse Cedex 7, France

Ronan.Guivarch@enseeiht.fr

http://www.enseeiht.fr/lima
2 IMFT, UMR CNRS 5502,

118, route de Narbonne, 31062 Toulouse Cedex 4, France
3 MIPS, UMR CNRS 5640,

118, route de Narbonne, 31062 Toulouse Cedex 4, France

Abstract. Spectral element methods allow for e�ective implementation
of numerical techniques for partial di�erential equations on parallel ar-
chitectures.

We present two implementations of the parallel algorithm where the com-
munications are performed using MPI. In the �rst implementation, each
processor deals with one element. It leads to a natural parallelization.
In the second implementation certain number of spectral elements are
allocated to each processor.

In this article, we describe how communications are implemented and
present results and performance of the code on two architectures: a PC-
Cluster and an IBM-SP3.

1 Introduction

Spectral element methods [2] allow for e�ective implementation of numerical
techniques for partial di�erential equations on parallel architectures.

The method is based on the assumption that the given computational do-
main, say 
, is partitioned into non overlap subdomains 
i; i 2 f1; : : : ; Ng.
Next, the original problem can be reformulated upon each subdomain 
i yield-
ing a family of subproblems of reduced size which are coupled each others through
the values of the unknown solution at subdomain interfaces. Our approach is to
interpret the domain decomposition as iterative procedures for an interface equa-
tion which is associated with the given di�erential problem, here the Laplacian
one. This interface problem is handled by the Steklov-Poincar�e operator (see [1]
and [3]).

Two steps are considered for our algorithm: in the �rst one a family of local
and independent problems is solved and the second one is to complete the solu-
tion by solving the interface problem. Sections 2 and 3 present the method and
the algorithm to solve the two-dimensional Poisson problem.

We describe in section 4 two implementations of the parallel algorithm where
the communications are performed using MPI. In the �rst implementation, each



2 S. Airiau et al.

processor deals with one element. It leads to a maximal parallelism. The main
disadvantage of this implementation is the ratio between the computations and
the communications. In a second implementation certain number of spectral
elements are allocated to each processor. This implementation permits 
exibility
in the ratio computation/communication ; various granularities and elements
repartitions can be explored.

Section 5 presents results and performance of the code on two architectures:
an IBM-SP34 and a PC Cluster5.

2 Presentation of spectral element methods

This study is limited to 
, a square domain of the plan. The boundary of 
 is
designed by @
. This domain is splitted in n square elements. Each element is
discretized by Np �Np points.

We want to solve the Poisson problem on 
:�
��u = f for x 2 


u = 0 for x 2 @

(1)

Decomposition of 
 into n non overlap elements 
i leads to interior egdes
between elements and we call 
 this interface.

We split the initial problem in two subproblems. The �rst one is the solution
of local Poisson problem on each element; the second one concerns the interface to
join the solution between elements. This second problem exibits a new unknown
function � : 
 7! R. This function is the solution of the Poisson problem on the
interface.

This process leads to decompose the unknown function u in two functions: for
each element i, ui the restriction of u on i is splitted in ui, which only depends
on the element i, and in eui(�), which depends on �, and so on the neighboring
elements. So we have two sets of subproblems (2) and (3) to solve.

The n subproblems on each element:�
��ui = fi for x 2 
i

ui = 0 for x 2 @
i
(2)

Each subproblem i of (2) doesn't depend on others subproblems, so all sub-
problems can be solved in parallel.

The second subproblems are harmonic problems:8<
:
�� eui(�) = 0 for x 2 
ieui(�) = � for x 2 
eui(�) = 0 for x 2 @
i=


(3)

4 We would like to thank IDRIS(Institut du D�eveloppement et de Ressources en In-
formatique Scienti�que) for computation hours allocated to our project

5 and INPT for the credits which allowed the cluster acquisition



Parallelization of Spectral Element Methods 3

To solve these subproblems, we have to know the function � : 
 ! R, con-
tinuous on 
 which veri�es:8<

:
��ui(�) = f for x 2 
i

ui(�) = � for x 2 

ui(�) = 0 for x 2 @
i=


(4)

and on each edge between 
i and 
j ,

@ui(�)

@n
=

@uj(�)

@n
(5)

After a function decomposition, we obtain:

@ eui(�)
@ni

�
@ euj(�)
@nj

=
@uj
@nj

�
@ui
@ni

(6)

A discretization with spectral elements, leads to a linear system

S� = b (7)

where S is the Schur complement matrix. Once � is computed, we have to solve
a Poisson problem on each element. For the same reason than previously, these
problems can be solved in parallel.

3 Algorithm for the solution of problem on the interface

The Schur complement matrix is a symetric matrix and we use Conjugate Gra-
dient method. The parallel algorithm to solve problem (7) is presented in Fig. 1.

� = 0 ; � = 0 ; �0 = (r0; r0) ; Initializations
While the residual is greater than epsilon do

Solve8<
:
��~ui(�) = 0 for x 2 
i

~ui(�) = � for x 2 

~ui(�) = 0 for x 2 @
i=


Local solutions

v = S� ;
Steklov-Poincar�e operator
(we need contributions
of each element)

ps1 = (�; v) ; ps2 = (r0; r0) ; Global computation

� =
ps2
ps1

; � = �+ �� ; r1 = r0 � �v ; Local computation

�1 = (r1; r1) Global computation

� =
�1
�0

; r0 = r1 ; � = r0 + �� Local computation

End do

Fig. 1. Parallel algorithm



4 S. Airiau et al.

4 Parallelization and Implementations

4.1 First implementation: one spectral element by processor

In the spectral element method, we solve a local problem on each element. In the
partitioning phase, a natural way to distribute the work the solver is to give an
element to each processor. As a consequence, all local solutions will be performed
in a single processor. An inherent disadvantage of this approach is that we have
to duplicate values of the interior edges.

Because we place an element on each processor, we use indi�erently the terms
element and processor in this subsection.

Fig. 2. 9-element domain on 9 processors

Looking at the algorithm 1, two di�erent tasks need communications be-
tween processors: the computation of the image of a vector by Steklov-Poincar�e
operator and the computation of three dot products.

In the �rst task, the computation for a point requires values hold on the
neighbor points. For interior points, neighbor points belong to the same element.
For points on the edges, we need the contribution of several elements. This oper-
ation, called gathering, can be separated in two cases: for points of vertices, four
elements are concerned, while for the others points, only two elements interfere.

For the second task, the computation of the dot product needs all the ele-
ments; this operation can be carried using a global operation.

The gathering operation For each edge of the interface, we have to make the
sum of the contribution of each element. A diÆculty arises for interior vertices;
for these points four elements are concerned. We must be careful with the order
of communications between elements: a deadlock could easily occur or we could
not take account of all contributions.

In order to minimize the number of communications, we do not choose to
separate vertices from the others points of the edges. The solution is to decom-



Parallelization of Spectral Element Methods 5

pose the gathering in two steps: the �rst one treats vertical egdes and the second
horizontal ones.

For example, in the �rst step, each processor sends the contribution of its
right edge and receives the contibution for its left edge, then send data of its left
edge and receives data for its right edge.

Using this process, a copy of the intermediate sum in proper vectors between
the two steps, and, at the end, a summation of the contribution of all elements,
the vertices are treated like others points.

To avoid deadlocks, we choose to asynchronous communications o�ered by
MPI: MPI ISEND, MPI IRECEIVE, MPI TEST and MPI WAIT. At the be-
ginning of a step, an element sends contributions on its vertical (or horizontal)
edges and asks for the receipt of contributions of its neighbors.

The dot product operation For the dot product on the complete domain,
communications are di�erent because they involve all the elements. We use the
reduction operations o�ered by MPI which make this operation very easy to
implement.

4.2 Second implementation: several spectral elements by processor

It seemed natural to associate an element to each processor. This choice, although
it permits a maximal parallelism, has some disadvantages: when computing with
a great number of elements, we may not have all the processors we wanted.
Furthermore, if the size of an element is too small, communication will take
more time than computation.

Fig. 3. 36 elements on 4 processeurs

In this second implementation, we choose to associate several elements to a
processor (see Fig. 3). Increasing the granularity permits to improve the com-
putation communication ratio. The code is more 
exible: we can perform some



6 S. Airiau et al.

tests with a great number of elements and for a �xed number of elements we can
choose di�erent repartitions (see Table 1).

Table 1. Repartitions of 64� 64 elements

Number of Number of elements Number of elements
processors on a processor on a processor

in X-direction in Y-direction

1 64 64
2 64 32
4 32 32
4 64 16
8 32 16
8 64 8
16 16 16
16 32 8
16 64 4
32 16 8
32 32 4
32 62 2

Concerning the gathering operation, we do not have to communicate data of
edges inside the domain treated by a processor. Communications only concern
the edges of the boundary. Instead treating communications at the level of an
element, we can gather in an interface, all edges to be sent by a processor to one
of its neighbors (see Fig. 4). We then reduce the number of messages (messages
are bigger) and thus reduce communication time.

Fig. 4. Communications between two processors: a message by edge against a message
by interface

Nothing changes for the dot product operation; we still use reduction oper-
ations.

There is another advantage of this repartition regarding asynchronous com-
munication. A processor can start its communications and overlay them with



Parallelization of Spectral Element Methods 7

the computation of the sum on the interior edges. To sum contributions on the
interface, it waits the end of communications and hopes that computations have
recovered communications. This advantage will be shown in next section with
numerical experiments.

5 Numerical Experiments

Numerical experiments were carried on two architectures: an IBM-SP3 and a
cluster of 8 biprocessors PC. We only show performance of the second imple-
mentation which permits several elements on each processor.

5.1 Speci�cations of the two architectures

IBM-SP3 Brodie of IDRIS Each Node of the SP3 has 16 Power3 processors
at 375 MHz with 2 Gbytes of shared memory. Inter-node communications are
handled with the IP protocol.

PC-Cluster Tarasque of INPT{ENSEEIHT Each node of the cluster has
2 Pentium III processors at 800 MHz with 265 Mbyte of shared memory. The
network is a Commute Ethernet. The operating system is Linux (SuSE 7.2 dis-
tribution) and we use a free implementation of MPI (LAM 6.5.1). The software
has been compiled with GNU compilers.

5.2 Description of the numerical tests

The problem to solve is a Poisson problem. The diÆculty depends on the nature
of the second member. We choose four kinds of functions:

{ sinus product: f : (x; y) 7! 4�2 sin(�x)sin(�y)
{ polynomial: f : (x; y) 7! 4� 2x2 � 2y2

{ rationnal: f : (x; y) 7!
2

(4 + x+ y)2

{ constant: f : (x; y) 7!
1

2

The termination criterion for Conjugate Gradient method is a precision, ep-
silon, of 10�12 on the residual.

The speed-up is de�ned by Sp = T1
Tp

where Tp is the observed elapsed time

on p processor(s) and the eÆciency is de�ned by Ep =
Sp
p
.

5.3 E�ect of the second member

We report the eÆciency for the four considered second members on the two
architectures. The parameters are set to:

{ 64� 64 elements,



8 S. Airiau et al.

Table 2. E�ect of the second member

Second member Number EÆciency EÆciency
of iterations on IBM-SP3 on Cluster

f : (x; y) 7! 4�2 sin(�x)sin(�y) 15 1.14 0.96

f : (x; y) 7! 4� 2x2 � 2y2 516 1.16 0.96

f : (x; y) 7!
2

(4 + x+ y)2
921 1.07 0.96

f : (x; y) 7!
1

2
835 1.05 0.96

{ 15� 15-point discretization on an element,
{ 16 processors
{ 16� 16-element repartition on each processor,

Table 2 shows that the eÆciency does not depend on the nature of the second
member. Whatever the number of iterations is (and so the computation amount),
the eÆciency remains the same for both architectures.

5.4 E�ect of the number of discretization points

5 10 15 20 25 30
1

1.05

1.1

1.15

1.2

1.25

1.3

number of processors

ef
fic

ie
nc

y

4−point discretization
8−point discretization
12−point discretization
16−point discretization
20−point discretization

Fig. 5. EÆciency on the IBM-SP3 Brodie with di�erent numbers of discretization

points on each element

We present in Figures 5 and 6, the eÆciency of our code with di�erent num-
bers of discretization points on each spectral element.



Parallelization of Spectral Element Methods 9

2 4 6 8 10 12 14 16
0.8

0.85

0.9

0.95

1

1.05

number of processors

ef
fic

ie
nc

y

4−point discretization
8−point discretization
12−point discretization
16−point discretization
20−point discretization

Fig. 6. EÆciency on the PC-Cluster Tarasque with di�erent numbers of discretization

points on each element

Table 3. Number of iterations with di�erent discretizations

Number of discretization points Number of iterations

4 239
8 372
12 473
16 555
20 631

The number of elements is 64 � 64, the second member is constant (f :

(x; y) 7!
1

2
) and results are obtained with 2, 4, 8, 16 and 32 processors on

IBM-SP3 and 2, 4, 8 and 16 processors on PC-Cluster.

These results show that the number of discretization points does not in
uence
the eÆciency very much. When we increase the number of points on each element
(and so the computation amount, see Table 3), the eÆciency decreases on the
IBM-SP3 although it increases on the PC-Cluster. It is therefor diÆcult to draw
conclusions.

We can note than on the IBM-SP3, the eÆciency decreases signi�cantly when
we use 32 processors. This can be explained easily by the fact that when we
use less than 16 processors, we are within a single node of the machine and
the communications are intra-node; using 32 processors means that we use two
nodes and change the nature of the communications.



10 S. Airiau et al.

5.5 Scalability

In this subsection, we present results on the two architectures in order to show
the good scalability of our code. The parameters are:

{ rationnal second member : f : (x; y) 7!
2

(4 + x+ y)2

{ 64� 64 elements,

{ 15� 15-point discretization on an element,

We use the di�erent repartitions of Table 1.

Tables 4 and 5 presents observed elapsed time, speed-up and eÆciency for
di�erent number of processors.

Table 4. EÆciency and speed-up on the IBM-SP3 Brodie

Number of processors Repartition time Speed-up EÆciency

1 64� 64 1040.11 - -
2 64� 32 512.55 2.03 1.02
4 32� 32 243.80 4.26 1.07
4 64� 16 249.33 4.17 1.04
8 32� 16 115.42 9.01 1.13
8 64� 8 115.97 8.97 1.12
16 16� 16 60.73 17.13 1.07
16 32� 8 60.68 17.14 1.07
16 64� 4 62.36 16.68 1.04
32 16� 8 35.45 29.34 0.92
32 32� 4 33.36 31.18 0.97
32 64� 2 33.69 30.87 0.96

Table 5. EÆciency and speed-up on the PC-Cluster Tarasque

Number of processors Repartition time Speed-up EÆciency

1 64� 64 6251.44 - -
2 64� 32 3264.49 1.91 0.96
4 32� 32 1628.61 3.84 0.96
4 64� 16 1628.84 3.84 0.96
8 32� 16 814.18 7.68 0.96
8 64� 8 813.43 7.68 0.96
16 16� 16 408.58 15.30 0.96
16 32� 8 411.00 15.21 0.95
16 64� 4 408.35 15.31 0.96



Parallelization of Spectral Element Methods 11

The results exhibit the good scalability of the code ; eÆciency remains the
same when we increase the number of processors. As we said previously, compu-
tations overlay communications.

A second remark concerns the di�erent repartitions for a �xed number of
processors. The results are quite the same whatever the repartition is (expe-
cially on the cluster) ; repartition only concern the size of the interface between
processors. When we change repartition, some interfaces of a processors are in-
creased and some others reduced; the number of values to communicate remain
the same because our elements are square.

The Figures 7 and 8 synthetize these results with the linear curve of the
speed-up; for number of processors with several repartitions, we only plot the
speed-up of the �rst repartition.

5 10 15 20 25 30

5

10

15

20

25

30

number of processors

sp
ee

d−
up

Fig. 7. Speed-up on the IBM-SP3 Brodie with di�erent numbers of processors

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

number of processors

sp
ee

d−
up

Fig. 8. Speed-up on the PC-Cluster Tarasque with di�erent numbers of processors



12 S. Airiau et al.

6 Conclusion

In this work, we have proposed a parallel implementation of spectral element
methods to solve a 2D Poisson problem. The performance of this implementation
have been studied on two architectures, an IBM-SP3 and a PC-Cluster following
several criteria: di�erent second members, di�erent numbers of discretization
points, di�erent repartitions of the elements on the processors.

It appears that our approach exhibits good parallel performance on both
platforms and our code shows a good scalability.

Future works can study parallel implementation of much complicated prob-
lems: convection di�usion problem, Navier-Stokes problem in two-dimensional
or three-dimensional domains.

References

1. V.I.Agoshkov, Poincar�e-Steklov's operators and domain decomposition methods in

�nite dimensional spaces, First International Symposium on Domain Decompo-
sition Method for Partial Di�erential Equations, R. Glwinski, G.H. Golub, G.A.
Meurant and J. P�eriaux eds., SIAM, Philadelphia, pp. 73-112 (1988).

2. C. Bernardi and Y. Maday, Approximations spectrales de probl�emes aux limites

elliptiques, Paris, Springer Verlag (1992).
3. A.Quarteroni and A.Valli, Domain Decomposition Methods for Partial Di�erential

Equations, Oxford University Press, Ofxord (1999).


