
Approximation of min-max and min-max regret

versions of some combinatorial optimization

problems.

Hassene Aissi Cristina Bazgan Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France

{aissi,bazgan,vdp}@lamsade.dauphine.fr

Abstract

This paper investigates, for the first time in the literature, the approximation of min-

max (regret) versions of classical problems like shortest path, minimum spanning tree,

and knapsack. For a constant number of scenarios, we establish fully polynomial-time

approximation schemes for the min-max versions of these problems, using relationships

between multi-objective and min-max optimization. Using dynamic programming and

classical trimming techniques, we construct a fully polynomial-time approximation scheme

for min-max regret shortest path. We also establish a fully polynomial-time approximation

scheme for min-max regret spanning tree and prove that min-max regret knapsack is

not at all approximable. For a non constant number of scenarios, in which case min-

max and min-max regret versions of polynomial-time solvable problems usually become

strongly NP -hard, non-approximability results are provided for min-max (regret) versions

of shortest path and spanning tree.

Keywords: Min-max, min-max regret, approximation, fptas, shortest path, minimum span-

ning tree, knapsack.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires to specify

parameters, in particular coefficients of the objective function, which may be uncertain or

imprecise. Uncertainty/imprecision can be structured through the concept of scenario which

corresponds to an assignment of plausible values to model parameters. There exist two natural

ways of describing the set of all possible scenarios. In the interval data case, each numerical

parameter can take any value between a lower and an upper bound. In the discrete scenario

case, the scenario set is described explicitly. In this case, that we address in this paper, we

distinguish situations where the number of scenarios is constant from those where the number

1

of scenarios is non constant. Kouvelis and Yu [8] proposed the min-max and min-max regret

criteria, stemming from decision theory, to construct solutions hedging against parameters

variations. The min-max criterion aims at constructing solutions having a good performance

in the worst case. The min-max regret criterion, less conservative, aims at obtaining a solution

minimizing the maximum deviation, over all possible scenarios, of the value of the solution

from the optimal value of the corresponding scenario.

Complexity of the min-max and min-max regret versions has been studied extensively dur-

ing the last decade. Kouvelis and Yu [8] established the complexity of min-max and min-max

regret versions, for the discrete scenario case, of several combinatorial optimization problems,

including shortest path, minimum spanning tree, assignment, and knapsack problems. In

general, these versions are shown to be harder than the classical versions. Min-max (regret)

versions of polynomial problems usually become weakly NP -hard for a constant number of

scenarios, and strongly NP -hard for a non constant number of scenarios.

In this paper we consider, for the first time in the literature, the approximation of min-

max (regret) versions of classical problems like shortest path, minimum spanning tree, and

knapsack. For a constant number of scenarios, we establish fully polynomial-time approxima-

tion schemes (fptas) for the min-max versions of these problems, using relationships between

multi-objective and min-max optimization. The interest of studying these relationships is

that fptas, which determine an approximation of the non-dominated set (or Pareto set), have

been proposed for the multi-objective version (see, e.g., Erlebach, Kellerer and Pferschy [3],

Papadimitriou and Yannakakis [11], Safer and Orlin [12]). This allows us to derive the ex-

istence of fptas for min-max versions of our reference problems. Concerning min-max regret

versions, relationships with multiobjective versions still apply but cannot be used to derive

the existence of fptas. Using dynamic programming and classical trimming techniques, we

construct an fptas for min-max regret shortest path. We also give an fptas for min-max regret

spanning tree and prove that min-max regret knapsack is not at all approximable. For a non

constant number of scenarios, non-approximability results are provided for min-max (regret)

versions of shortest path and spanning tree. All the results are summarized in Table 1.

constant non constant

min-max min-max regret min-max min-max regret

shortest path fptas fptas not (2 − ε) approx. not (2 − ε) approx.

min spanning tree fptas fptas not (3
2 − ε) approx. not (3

2 − ε) approx.

knapsack fptas not at all approx. not at all approx. not at all approx.

Table 1: Approximation results for min-max and min-max regret versions

After presenting preliminary concepts in Section 2, we investigate the existence of ap-

proximation algorithms for our reference problems when the number of scenarios is constant

2

(Section 3), and when it is non constant (Section 4).

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective function defined

as:

{

min
∑n

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}n

This class encompasses a large variety of classical combinatorial problems, some of which

are polynomial-time solvable (shortest path problem, minimum spanning tree, . . .) and others

are NP -hard (knapsack, set covering, . . .). The size of a solution x ∈ X is the number of

variables xi which are set to 1.

2.1 Min-max, min-max regret versions

Given a problem P ∈ C, the min-max (regret) version associated to P has as input a finite set

of scenarios S where each scenario s ∈ S is represented by a vector (cs
1, . . . , c

s
n). We denote

by val(x, s) =
∑n

i=1 cs
ixi the value of solution x ∈ X under scenario s ∈ S and by val∗s the

optimal value in scenario s.

The min-max optimization problem corresponding to P, denoted by Min-Max P, consists

of finding a solution x having the best worst case value across all scenarios, which can be

stated as:

min
x∈X

max
s∈S

val(x, s)

Given a solution x ∈ X, its regret, R(x, s), under scenario s ∈ S is defined as R(x, s) =

val(x, s) − val∗s . The maximum regret Rmax(x) of solution x is then defined as Rmax(x) =

maxs∈S R(x, s).

The min-max regret optimization problem corresponding to P, denoted by Min-Max

Regret P, consists of finding a solution x minimizing the maximum regret Rmax(x) which

can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

{val(x, s) − val∗s}

When P is a maximization problem, the max-min and min-max regret versions associated

to P are defined similarly.

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a solution x of

I. We denote by opt(I) the optimum value of instance I. The performance ratio of x is

r(x) = max
{

val(x)
opt(I) ,

opt(I)
val(x)

}

, and its error is ε(x) = r(x) − 1.

3

For a function f , an algorithm is an f(n)-approximation algorithm if, for any instance

I of the problem, it returns a solution x such that r(x) ≤ f(|I|). An optimization problem

has a fully polynomial-time approximation scheme (an fptas, for short) if, for every constant

ε > 0, it admits an (1 + ε)-approximation algorithm which is polynomial both in the size of

the input and in 1/ε. The set of problems having an fptas is denoted by FPTAS.

We recall the notion of gap-introducing reduction (see, e.g., Ausiello et al. [1], Hochbaum

[5], Vazirani [14]). Let P be a decision problem and Q a minimization problem. P is gap-

introducing reducible to Q if there exist a polynomial-time computable function f and a

constant α > 0 such that, given an instance I of P, it is possible to construct in polynomial

time an instance I ′ of Q, such that

• if I is a positive instance then opt(I ′) ≤ f(I ′),

• if I is a negative instance then opt(I ′) > αf(I ′).

If P is an NP -hard problem, and P is gap-introducing reducible to Q, then Q is not α-

approximable if P 6= NP.

2.3 Multi-objective optimization

It is natural to consider scenarios as criteria (or objective functions) and to investigate re-

lationships between min-max (regret) and multi-objective optimization, when it is usually

assumed that the number of criteria is a constant.

The multi-objective version associated to P ∈ C, denoted by Multi-objective P, has

for input k objective functions (or criteria) where the hth objective function has coefficients

ch
1 , . . . , ch

n. We denote by val(x, h) =
∑n

i=1 ch
i xi the value of solution x ∈ X on criterion h,

and assume w.l.o.g. that all criteria are to be minimized. Given two feasible solutions x

and y, we say that y dominates x if val(y, h) ≤ val(x, h) for h = 1, . . . , k with at least one

strict inequality. The problem consists of finding the set E of efficient solutions. A feasible

solution x is efficient if there is no other feasible solution y that dominates x. In general

Multi-objective P is intractable in the sense that it admits instances for which the size

of E is exponential in the size of the input. A set F of feasible solutions is called an f(n)-

approximation of the set of efficient solutions if, for every efficient solution x, F contains

a feasible solution y such that val(y, h) ≤ f(n)val(x, h) for each criterion h = 1, . . . , k.

An algorithm is an f(n)-approximation algorithm for a multi-objective problem, if for any

instance I of the problem it returns an f(n)-approximation of the set of efficient solutions.

A multi-objective problem has an fptas if, for every constant ε > 0, there exists an (1 + ε)-

approximation algorithm for the set of efficient solutions which is polynomial both in the size

of the input and in 1/ε.

4

3 Constant number of scenarios

3.1 Min-max problems

Consider a minimization problem P. It is easy to see that at least one optimal solution

for Min-Max P is necessarily an efficient solution. Indeed, if x ∈ X dominates y ∈ X

then maxs∈S val(x, s) ≤ maxs∈S val(y, s). Therefore, we obtain an optimal solution for Min-

Max P by taking, among the efficient solutions, one that has a minimum maxs∈S val(x, s).

Observe, however, that if Min-Max P admits several optimal solutions, some of them may

not be efficient, but at least one is efficient.

Theorem 1 For any function f : IN → (1,∞), if Multi-objective P has a polynomial-time

f(n)-approximation algorithm, then Min-Max P has a polynomial-time f(n)-approximation

algorithm.

Proof : Let F be an f(n)-approximation of the set of efficient solutions. Since at least

one optimal solution x∗ for Min-Max P is efficient, there exists a solution y ∈ F such that

val(y, s) ≤ f(n)val(x∗, s), for s ∈ S. Consider among the set F a solution z that has a mini-

mum maxs∈S val(z, s). Thus, maxs∈S val(z, s) ≤ maxs∈S val(y, s) ≤ maxs∈S f(n)val(x∗, s) =

f(n)opt(I). 2

Corollary 1 For a constant number of scenarios, Min-Max Shortest Path, Min-Max

Spanning Tree, and Max-Min Knapsack are in FPTAS.

Proof : Multi-objective versions of shortest path, minimum spanning tree, and knapsack

problems have an fptas, for a constant number of criteria, as shown in Papadimitriou and

Yannakakis [11] and Erlebach et al. [3]. 2

3.2 Min-max regret problems

3.2.1 General results

As for min-max, at least one optimal solution for Min-Max Regret P is necessarily an

efficient solution for Multi-objective P. Indeed, if x ∈ X dominates y ∈ X then val(x, s) ≤

val(y, s), for each s ∈ S, and thus Rmax(x) ≤ Rmax(y). Therefore, we obtain an optimal

solution for Min-Max Regret P by taking, among the efficient solutions, a solution x that

has a minimum Rmax(x). Unfortunately, given F an f(n)-approximation of the set of efficient

solutions, a solution x ∈ F with a minimum Rmax(x) is not necessarily an f(n)-approximation

for the optimum value since the minimum maximum regret could be very small compared

with the error that was allowed in F .

5

We establish in the following a sufficient condition for recognizing some particular in-

stances of min-max regret optimization problems.

Theorem 2 If an optimization problem P is polynomial-time solvable, then instances I of

Min-Max Regret P with opt(I) = 0 are recognizable and solvable in polynomial time.

Proof : Suppose that P is a minimization problem and consider an instance I of Min-

Max Regret P defined on k scenarios, with a set of scenarios S = {s1, . . . , sk}. Instance

I has opt(I) = 0 if and only if there exists a feasible solution x such that val(x, s) = val∗s ,

for all s ∈ S. This condition is equivalent with the existence of a feasible solution x for

instance I ′ (which is the instance of Multi-objective P corresponding to I), with value

exactly (val∗s1
, . . . , val∗sk

). In order to verify this condition, it is sufficient to construct an

efficient solution x̄ for I ′. If x̄ has value (val∗s1
, . . . , val∗sk

) then opt(I) = 0, otherwise since

x̄ is efficient, a solution with value (val∗s1
, . . . , val∗sk

) does not exist and opt(I) > 0. In order

to construct an efficient solution for instance I ′ of Multi-objective P, we consider any

instance I ′′ of P with ci =
∑

s∈S λscs
i , where λs are arbitrary positive weights. An optimum

solution of I ′′ is necessarily an efficient solution for I ′. 2

The following result deals with problems whose feasible solutions have a fixed size (such

as spanning tree, assignment). In this context, we need to consider instances where some

coefficients are negative but such that any feasible solution has a non-negative value. For an

optimization problem P, we denote by P ′ the extension of P to these instances.

Theorem 3 For any polynomial-time solvable minimization problem P whose feasible solu-

tions have a fixed size and for any function f : IN → (1,∞), if Min-Max P ′ has a polynomial-

time f(n)-approximation algorithm, then Min-Max Regret P has a polynomial-time f(n)-

approximation algorithm.

Proof : Let t be the size of all feasible solutions of any instance of P. Consider an instance

I of Min-Max Regret P where cs
i is the value of coefficient ci in scenario s ∈ S. Compute

for each scenario s the value val∗s of an optimum solution. We construct from I an instance I

of Min-Max P ′ with the same number of scenarios, where cs
i = cs

i −
val∗s

t
. Remark that some

coefficients could be negative but any feasible solution has a non-negative value. Let val(x, s)

denote the value of solution x in scenario s in I . The sets of the feasible solutions of both

instances are the same and moreover, for any feasible solution x, and for any scenario s ∈ S,

we have R(x, s) = val(x, s)−val∗s = val(x, s) since any feasible solution is of size t. Therefore,

an optimum solution for I is also an optimum solution for I with opt(I) = opt(I). 2

6

3.2.2 Min-Max Regret Spanning Tree

In this section, we prove that Min-Max Regret Spanning Tree has an fptas. For this

purpose, we first establish the following preliminary result.

Theorem 4 Multi-objective (Spanning Tree)′ is in FPTAS.

Proof : Papadimitriou and Yannakakis [11] (Theorem 2 and 4) established a general scheme

for constructing fptas for multi-objective versions of several combinatorial optimization prob-

lems, including Spanning Tree. However, these results cannot be extended directly to

(Spanning Tree)′ since non negative coefficients are required. We can follow similar ideas

and obtain an fptas for our problem by making use of a pseudo-polynomial algorithm, based

on the matrix-tree theorem that computes a multivariate polynomial of the form

∑

v1,...,vk∈V T

av1,...,vk

k
∏

h=1

yvh

h (1)

where av1,...,vk
is the number of spanning trees with value vh on criterion h of a given graph

and V T is the set of values reached on all scenarios, for all spanning trees of G (see Barahona

and Pulleyblank [2], Hong et al. [6]).

Consider an instance I of Multi-objective (Spanning Tree)′ described by a connected

graph G = (V,E) with |V | = n and |E| = m. Denote by ch
ij the cost of edge (i, j) on criterion

h. By Theorem 2 in Papadimitriou and Yannakakis [11], an fptas exists for this problem if

and only if there is an fptas for the following gap problem: given an instance and a k-tuple of

bounds (b1, . . . , bk), either decide if there is a spanning tree T with val(T, h) ≤ bh, h = 1, . . . , k

and construct such a spanning tree if the answer is yes, or answer that there is no spanning

tree T ′ with val(T ′, h) ≤ bh

1+ε
, h = 1, . . . , k.

In the following we try to solve the gap problem. Let r = d(n − 1)(1 + 1
ε
)e. Define a

new instance where for each edge (i, j) ∈ E, ch
ij = d

ch
ijr

bh
e if bh 6= 0, and ch

ij = ch
ij if bh = 0,

h = 1, . . . , k. Let val(T, h) denote the value of a spanning tree T on criterion h using costs

ch
ij . We can easily prove that, for any spanning tree T , if val(T, h) ≤ r then val(T, h) ≤ bh,

and if val(T, h) > r then val(T, h) > bh

1+ε
, for h ∈ {1, . . . , k} such that bh 6= 0. Thus it suffices

to determine if there is a spanning tree T with val(T, h) ≤ r, for h ∈ {1, . . . , k} such that

bh 6= 0 and val(T, h) = 0, for h ∈ {1, . . . , k} such that bh = 0.

In order to solve this decision problem in polynomial time in |I| and 1
ε
, it is important

to use an algorithm which can compute the multivariate polynomial (1) up to a degree r in

each variable yh, h = 1, . . . , k. Such an algorithm has been proposed by Mahajan and Vinay

[9], with a running time O(n4rk log r) = O(nk+4

εk log n
ε
).

When we have a positive answer for this decision problem, we construct such a solution

using self reducibility (see, e.g., Papadimitriou [10]). It consists of testing iteratively, for each

7

edge if the graph obtained by contracting this edge admits a spanning tree with the required

conditions. This requires O(m) calls to the decision problem.

As shown by Papadimitriou and Yannakakis [11], an (1 + ε)-approximation of the set

of efficient solutions can be obtained by partitioning the criterion space into O((log ncmax

ε
)k)

hyperrectangles, where cmax = max(i,j)∈E,h=1,...,k ch
ij . By applying the gap problem to each

corner (b1, . . . , bk) of all hyperrectangles, which can be solved in time O(mnk+4

εk log n
ε
), and

keeping a non-dominated subset of all solutions returned, we obtain an (1+ε)-approximation

of the set of efficient solutions in time O(mnk+4

ε2k (log ncmax)k log n
ε
). 2

Corollary 2 Min-Max Regret Spanning Tree, with a constant number of scenarios, is

in FPTAS.

Proof : Observing that Theorem 1 is also valid for any problem P ′, and using Theorems 3

and 4, the result follows.

Notice that a more efficient fptas can be obtained by recording only the values in all

criteria of an (1 + ε)-approximation of the efficient solutions. The self reducibility, which is

time consuming, is applied only once, for one of the solutions having the minimum maximum

regret. The running time of the fptas is thus O(nk+4

ε2k (log ncmax)k log n
ε
). 2

3.2.3 Min-Max Regret Shortest Path

We construct in the following an fptas for Min-Max Regret Shortest Path considering

the multi-objective problem that consists of enumerating the paths whose regret vectors are

efficient.

Theorem 5 Min-Max Regret Shortest Path, with a constant number of scenarios, is

in FPTAS.

Proof : We consider first the case when the graph is acyclic and we describe briefly at the

end how to adapt this procedure for graphs with cycles.

Consider an instance I described by a directed acyclic graph G = (V,A), where V =

{1, . . . , n} is such that if (i, j) ∈ A then i < j, and a set S of k scenarios describing for each

arc (i, j) ∈ A its cost in scenario s by cs
ij . Denote by cij the vector of size k formed by cs

ij ,

s ∈ S. Let (val∗s)
i, s ∈ S, 1 ≤ i ≤ n be the value of a shortest path in graph G from 1 to i

under scenario s and let (val∗)i be the vector of size k of these values (val∗s)
i, s ∈ S.

In the following, we describe firstly a dynamic programming algorithm that computes at

each stage i, 1 ≤ i ≤ n, the set Ri of efficient vectors of regrets for paths from 1 to i, for

each scenario s ∈ S. Consider arc (i, j) ∈ A and let Pi be a path in G from 1 to i of regret

ri
s = val(Pi, s) − (val∗s)

i, s ∈ S. Denote by Pj the path constructed from Pi by adding arc

8

(i, j). The regret of Pj is rj
s = val(Pi, s) + cs

ij − (val∗s)
j = ri

s + (val∗s)
i + cs

ij − (val∗s)
j, s ∈ S.

The algorithm starts by initializing R1 = {(0, . . . , 0)}, where (0, . . . , 0) is a vector of size k

and for 2 ≤ j ≤ n let

Rj = Mini∈Γ−1(j){r
i + (val∗)i + cij − (val∗)j : ri ∈ Ri}

where the operator ”Min” preserves the efficient vectors.

Observe that, for 2 ≤ j ≤ n, Rj, which contains all efficient regret vectors for paths from

1 to j, necessarily contains one optimal vector corresponding to a min-max regret shortest

path from 1 to j. We also point out that, for this algorithm as well as for the following

approximation algorithm, any path of interest can be obtained using standard bookkeeping

techniques that do not affect the complexity of these algorithms.

Our approximation algorithm is a dynamic programming procedure combined with a

trimming of the states depending on an accepted error ε > 0. In this procedure, define set

T 1 = {(0, . . . , 0)}, and sets U j , T j for 2 ≤ j ≤ n as follows

U j = ∪i∈Γ−1(j){r
i + (val∗)i + cij − (val∗)j : ri ∈ T i},

T j = Red(U j), where Red is an operator satisfying the following property

∀ r ∈ U j,∃ r̄ ∈ T j : r̄ ≤ r(1 + ε)
1

n−1

where, given two vectors r′, r′′ of size |S|, we have r′ ≤ r′′ if and only if r′s ≤ r′′s , ∀s ∈ S.

In the following, we prove by induction on j the proposition

P (j) : ∀ r ∈ Rj,∃ r̃ ∈ T j such that r̃ ≤ r(1 + ε)
j−1

n−1

Obviously, proposition P (1) is true. Supposing now that P (i) is true for i < j, we show

that P (j) is true. Consider r ∈ Rj. Then there exists i < j such that (i, j) ∈ A and r′ ∈ Ri

such that r = r′ + (val∗)i + cij − (val∗)j . Since (val∗)i + cij ≥ (val∗)j , we have r ≥ r′. Using

the induction hypothesis for i, there exists r̃ ∈ T i such that r̃ ≤ r′(1 + ε)
i−1

n−1 . Since r̃ ∈ T i

and (i, j) ∈ A, we have r̃ + (val∗)i + cij − (val∗)j ∈ U j and, using the property satisfied by

Red, there exists r̄ ∈ T j such that:

r̄ ≤ [r̃ + (val∗)i + cij − (val∗)j](1 + ε)
1

n−1 ≤

≤ [r′(1 + ε)
i−1

n−1 + r − r′](1 + ε)
1

n−1 ≤ r(1 + ε)
i

n−1 ≤ r(1 + ε)
j−1

n−1 .

Thus proposition P (j) is true for j = 1, . . . , n. Obviously, there exists r ∈ Rn such that

opt(I) = maxs∈S rs. Applying P (n) to r ∈ Rn, there exists r̃ ∈ T n such that r̃ ≤ r(1+ ε) and

thus maxs∈S r̃s ≤ (1 + ε)opt(I).

We show in the following how this algorithm can be implemented in polynomial time in |I|

and 1
ε
. Let cmax = max(i,j)∈A,s∈S cs

ij . For any s ∈ S and 2 ≤ j ≤ n, we have rj
s ≤ (n−1)cmax.

9

An operator Red can be implemented in polynomial time using the technique of interval

partitioning described by Sahni [13]. The idea is to partition the domain of values, for each

scenario, into subintervals such that the ratio of the extremities is (1 + ε)
1

n−1 . Thus on

each coordinate (or scenario) we have d (n−1) log(n−1)cmax

log(1+ε) e subintervals. Operator Red can be

implemented by selecting only one vector in each non-empty hyperrectangle of the cartesian

product of subintervals. Thus |T j | ≤ (n log ncmax

log(1+ε))k, 2 ≤ j ≤ n and the time complexity of our

algorithm is O(n(n log ncmax

log(1+ε))k) that is polynomial in |I| = |A|k log cmax and 1
ε
.

Consider now graphs with cycles. We can generalize the previous procedure, by defining

a dynamic programming scheme with stages `, ` = 1, . . . , n − 1, containing sets of states R`
j

which represent the set of efficient vectors of regrets for paths from 1 to j of length at most

`, j = 2, . . . , n. 2

3.2.4 Min-Max Regret Knapsack

In this section, we prove that Min-Max Regret Knapsack is not at all approximable

even for two scenarios. For this, we use a reduction from Partition which is known to be

NP -hard [7].

Partition

Input: A finite set A and an integer size s(a) for each a ∈ A.

Question: Is there a feasible partition, i.e. a partition (A′, A \ A′), A′ ⊆ A such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a).

Theorem 6 For any function f : IN → (1,∞), Min-Max Regret Knapsack is not f(n)-

approximable even for two scenarios, unless P = NP.

Proof : We construct a gap-introducing reduction from Partition. Consider an instance I

of Partition characterized by a set A = {a0, a1, . . . , an−1}, and a size s(a) for each a ∈ A.

We define an instance I ′ of Min-Max Regret Knapsack as follows: the number of items

is n + 1, the knapsack capacity is d = 1
2

∑

a∈A s(a), the items weights are wi = s(ai) for

i = 0, . . . , n − 1 and wn = d. I ′ contains two scenarios and the values of the n items are

defined as follows: v1
0 = n3d, v1

i = 0, for i = 1, . . . , n and v2
i = n2s(ai), for i = 0, . . . , n − 1,

and v2
n = n2d. Clearly, the optimum value for I ′ is n3d in the first scenario and n2d in the

second scenario.

Consider that there exists a feasible partition (A′, A \ A′) in I. Suppose that a0 ∈ A′,

otherwise we exchange A′ with A \A′. In this case, the solution x∗ corresponding to A′ in I ′

has Rmax(x∗) = 0, and thus opt(I ′) = 0.

Consider now the case where there is no feasible partition in I. If a solution x of I ′ does

not contain a0 then Rmax(x) = n3d. If a solution x of I ′ contains a0 then Rmax(x) ≥ n2 and

thus opt(I ′) ≥ n2. 2

10

Remark that in the previous reduction we obtain instances of Min-Max Regret Knap-

sack with an optimum value equal to 0. Thus, we were able to establish a very strong

non-approximability result for this problem. In contrast, all the other min-max regret ver-

sions we studied deal with polynomial problems and admit an fptas. It is interesting to

observe for the latter problems that, unlike for the knapsack, we can recognize in polynomial

time instances with an optimum value equal to 0 as shown in Theorem 2.

We conclude this section giving some precisions about the complexity status of these

problems. Pseudo-polynomial time algorithms were given by Kouvelis and Yu [8], in the case

of a constant number of scenarios, for min-max (max-min) and min-max regret versions of

shortest path, knapsack, and minimum spanning tree on grid graphs. Our fptas for min-

max and min-max regret spanning tree establish the existence of pseudo-polynomial time

algorithms for these problems on general graphs. Thus min-max (max-min) and min-max

regret versions of shortest path, minimum spanning tree and knapsack are weakly NP -hard.

4 Non constant number of scenarios

When the number of scenarios is non constant, Kouvelis and Yu [8] proved that min-max

and min-max regret shortest path as well as min-max spanning tree and max-min knapsack

are strongly NP -hard. We establish the strong NP -hardness of min-max regret knapsack and

min-max regret spanning tree in Theorems 7 and 11 respectively.

Concerning approximability results, reductions used by Kouvelis and Yu [8] for prov-

ing the strong NP -hardness of min-max/min-max regret shortest path, and min-max span-

ning tree, which are based on the 3-partition problem, cannot be used to establish non-

approximability results for these problems. Using alternative reductions, we establish such

results in Theorems 8-11. On the other hand, the reduction used by Kouvelis and Yu [8]

for proving the strong NP -hardness of max-min knapsack is stronger and can be used to

establish non-approximability results. In fact, it is a gap-introducing reduction from the set

covering problem which maps positive instances into instances with optimum value at least

1 and negative instances into instances with optimum value 0. Therefore, we can deduce

from this reduction that Max-Min Knapsack is not f(n)-approximable for any function

f : IN → (1,∞). Finally, regarding Min-Max Regret Knapsack, we know already that it

is not f(n)-approximable for any function f : IN → (1,∞), since even for two scenarios it is

not approximable as shown in Theorem 6.

Now we state and prove the above-mentioned results.

Theorem 7 Min-Max Regret Knapsack, with a non constant number of scenarios, is

strongly NP-hard.

Proof : We construct a gap-introducing reduction from Vertex Cover. Given a graph

G = (V,E) on n vertices and m edges and a positive integer k, we define an instance I of

11

Min-Max Regret Knapsack with n items and a set of m scenarios S = {s1, . . . , sm}. The

weights are wi = 1, for any i = 1, . . . , n, the knapsack capacity is d = k and the value of item

i in scenario sj is v
sj

i = 1 if node i ∈ V is incident to edge j ∈ E, and 0 otherwise.

Observe first that val∗sj
= 2, for all sj ∈ S, which is obtained by taking the two items

corresponding to the extremities of edge j. If G has a vertex cover V ′ of size at most k then

the subset of items x′ corresponding to V ′ has val(x′, sj) ≥ 1, for any sj ∈ S since edge j is

covered by V ′. Thus, Rmax(x′) ≤ 1, which implies opt(I) ≤ 1.

If G has no vertex cover of size at most k then for any V ′ ⊆ V , |V ′| ≤ k, there exists

sj ∈ S, corresponding to an edge j which is not covered by V ′, such that the subset of items

x′ corresponding to V ′ has val(x′, sj) = 0, and thus Rmax(x′) = 2, which implies opt(I) = 2.

The existence of a polynomial-time algorithm would allow us to decide for Vertex Cover

in polynomial time. 2

Observe that the (2− ε) non-approximability result that could be derived from this proof

is weaker than the result stated in Theorem 6.

We show in the following a non-approximability result for min-max and min-max regret

versions of shortest path. For this, we use a reduction from Path With Forbidden Pairs

that is known to be NP -hard (see Garey and Johnson [4]).

Path With Forbidden Pairs

Input: A directed graph G = (V,A), where V = {1, . . . , n}, a collection C = {(a1, b1), . . . ,

(at, bt)} of arcs from A.

Question: Is there a path from 1 to n in G containing at most one vertex from each arc of

C ?

Theorem 8 Min-Max Shortest Path, with a non constant number of scenarios, is not

(2 − ε)-approximable, for any ε > 0, unless P = NP.

Proof : We construct a gap-introducing reduction from Path With Forbidden Pairs.

Let I be an instance of this problem with n vertices and m arcs, and t arcs in collection

C. We construct an instance I ′ of Min-Max Shortest Path as follows: consider the same

graph G = (V,A), a scenario set S = {s1, . . . , st}, and costs of arcs defined for each scenario

as

csh

ij =











2 if arc (i, j) corresponds to (ah, bh)

1 if i = ah or j = bh, (i, j) 6= (ah, bh)

0 otherwise

Suppose that I is a positive instance, that is G contains a path p from 1 to n that has at

most one extremity from each of the t arcs of C. Then for any scenario s, we have val(p, s) ≤ 1.

Then maxs∈S val(p, s) ≤ 1, which implies opt(I ′) ≤ 1.

12

If I is a negative instance, then every path p from 1 to n in G contains either an arc

or both extremities of an arc (ah, bh) from C. Then val(p, sh) = 2 in both cases. Thus

maxs∈S val(p, s) = 2, which implies opt(I ′) = 2. 2

Theorem 9 Min-Max Regret Shortest Path, with a non constant number of scenarios,

is not (2 − ε)-approximable, for any ε > 0, unless P = NP.

Proof : As for the previous theorem, we construct a similar gap-introducing reduction from

Path With Forbidden Pairs. Let I be an instance of this problem with n vertices and

m arcs, and t arcs in the collection C. We construct an instance I ′′ of Min-Max Regret

Shortest Path as follows: consider graph G′ = (V ′, A′), where V ′ = V ∪{n+1, . . . , n+ |S|},

A′ = A ∪ {(1, i) : i = n + 1, . . . , n + |S|} ∪ {(i, n) : i = n + 1, . . . , n + |S|}, and a scenario set

S = {s1, . . . , st}. The costs of arcs in A are defined for each scenario s ∈ S as in the previous

theorem, and for any s ∈ S

cs
1,n+i = cs

n+i,n =

{

0 if s = si

1 if s 6= si

Obviously, val∗si
= 0 since the path (1, n + i, n) has value 0 on scenario si. As previously,

we can prove that if I is a positive instance, then opt(I ′′) ≤ 1, otherwise opt(I ′′) = 2. 2

We show in the following non-approximability results for min-max and min-max regret

versions of spanning tree. The first result uses a reduction from Minimum Degree Spanning

Tree that is known to be not (3
2 − ε)-approximable, for any ε > 0 (see Garey and Johnson

[4]).

Minimum Degree Spanning Tree

Input: A graph G = (V,E).

Output: A spanning tree such that its maximum degree is minimum.

Theorem 10 Min-Max Spanning Tree, with a non constant number of scenarios, is not

(3
2 − ε)-approximable, for any ε > 0, unless P = NP.

Proof : We construct an approximation preserving reduction from Minimum Degree Span-

ning Tree. Let G = (V,E) be an instance of this problem on n vertices. We construct an

instance of Min-Max Spanning Tree on the same graph G, with a set of n scenarios

S = {s1, . . . , sn}, and costs of edges in scenario sh defined by csh

ij = 1 if h = i or h = j

and 0, otherwise. Then for any spanning tree T of G, the degree of i ∈ V in T is the

same as val(T, si). Thus, the maximum degree of T , that is maxi∈V dT (i), coincides with the

maximum value of T over all scenarios from S, that is maxs∈S val(T, s). 2

13

Theorem 11 Min-Max Regret Spanning Tree, with a non constant number of scenar-

ios, is strongly NP-hard. Moreover, it is not (3
2 − ε)-approximable, for any ε > 0, unless P =

NP.

Proof : We construct a gap-introducing reduction from 3SAT. Given a set U = {u1, . . . , un}

of boolean variables and a formula φ containing the clauses {C1, . . . , Cm} over U such that

each clause depends on exactly 3 variables, we construct an instance I of Min-Max Regret

Spanning Tree defined on a graph G = (V,E) where V = {1, . . . , n} ∪ {1, . . . , n} ∪ {n +

1, . . . , 3n}. Vertices i, i, correspond to variable ui, i = 1, . . . , n. Edge set is E = {(i, n +

i), (i, 2n + i), (i, n + i), (i, 2n + i), (i, i) : i = 1, . . . , n} ∪ {(i, i + 1) : i = 1, . . . , n− 1}. Scenario

set S = S1∪S2∪S3 where S1 = {s1, . . . , sm} corresponds to clauses and S2 = {s′n+1, . . . , s
′
3n},

S3 = {s′1, . . . , s
′
n, s′

1
, . . . , s′n} correspond to vertices of G. The costs of edges in scenario sj ∈ S1

are defined as follows: c
sj

i,2n+i = 1 if ui ∈ Cj , c
sj

i,2n+i
= 1 if ui ∈ Cj, and 0 otherwise. The values

of edges in scenario s′j ∈ S2 are defined as follows: c
s′n+i

i,n+i = c
s′n+i

i,n+i
= n, c

s′
2n+i

i,2n+i = c
s′
2n+i

i,2n+i
= n,

for every i = 1, . . . , n and 0 otherwise. The values of edges in scenario s′j ∈ S3 are defined

as follows: c
s′i
i,n+i = c

s′i
i,2n+i = c

s′i
ii

= 2, c
s′
i

i,n+i
= c

s′
i

i,2n+i
= c

s′
i

ii
= 2, for every i = 1, . . . , n and 0

otherwise.

1 1

n + 1 2n + 1

2 2

n + 2 2n + 2

n n

2n 3n

Figure 1: Min-Max Regret Spanning Tree instance resulting from 3SAT instance.

We compute in the following the optimum costs corresponding to each scenario. For any

scenario sj ∈ S1, consider the spanning tree containing {(i, i + 1) : i = 1, . . . , n − 1} and

{(i, n + i), (i, 2n + i), (i, i)}, for every i such that ui ∈ Cj , or {(i, 2n + i), (i, n + i), (i, i)},

otherwise. Obviously, this tree has value 0 in scenario sj. For any scenario s′n+i ∈ S2,

val∗
s′n+i

= n since any spanning tree contains one of the edges (i, n + i), (i, n + i). Similarly,

val∗
s′
2n+i

= n, for all s′2n+i ∈ S2. For any scenario s′i ∈ S3, val∗
s′i

= 2 since any spanning tree

contains at least one of the edges (i, n+ i), (i, 2n+ i), (i, i). Similarly, val∗
s′
i

= 2, for all s′
i
∈ S3.

A spanning tree in G necessarily contains edges (i, i+1), i = 1, . . . , n−1. We show in the

following that every spanning tree T containing edges (i, i), (i, n + i) and (i, 2n + i) or edges

(i, i), (i, 2n + i) and (i, n + i) for every i = 1, . . . , n, has Rmax(T) ≤ 3. Moreover, any other

spanning tree T ′ in G has Rmax(T ′) ≥ 4. We have val(T, sj) ≤ 3, for any sj ∈ S1, val(T, s′j) =

n, for any s′j ∈ S2, and val(T, s′j) = 4, for any s′j ∈ S3. Thus, Rmax(T) ≤ 3. If T ′ contains

both edges (i, n+ i), (i, n+ i) for some i, then val(T ′, s′n+i) = 2n and thus Rmax(T ′) = n. We

can also see that if a spanning tree T ′ contains both edges (i, 2n + i), (i, 2n + i) for some i,

14

then val(T ′, s′2n+i) = 2n and thus Rmax(T ′) = n. Consider in the following spanning trees T ′

that contain edges (i, i), i = 1, . . . , n. If T ′ contains both edges (i, n + i), (i, 2n + i) for some

i, then val(T ′, s′i) = 6 and thus Rmax(T ′) = 4. We can see also that if T ′ contains both edges

(i, n+ i), (i, 2n+ i) for some i, then val(T ′, s′
i
) = 6 and thus Rmax(T ′) = 4. Thus an optimum

solution in G is a spanning tree T that contains edges (i, i + 1), i = 1, . . . , n − 1, edges (i, i),

i = 1, . . . , n, and, for every i = 1, . . . , n, it contains either edges (i, n + i), (i, 2n + i) or edges

(i, 2n + i), (i, n + i). Such spanning trees are in one-to-one correspondence with assignments

of variables u1, . . . , un. More precisely, T contains for some i edges (i, n + i), (i, 2n + i) if and

only if ui takes value 1, and it contains edges (i, 2n + i), (i, n + i) if and only if ui takes value

0.

If φ is satisfiable, then there exists an assignment x for u1, . . . , un that satisfies each

clause. Then, consider the spanning tree T associated to x. Every clause Cj is satisfied by

x. Therefore, there exists ui ∈ Cj, such that ui has value 1 in x or ui ∈ Cj, such that ui has

value 0 in x. In both cases, val(T, sj) ≤ 2, for any sj ∈ S1. Tree T has also val(T, s) = n,

for any s ∈ S2 and val(T, s) = 4, for any s ∈ S3, and thus, Rmax(T) = 2, which implies

opt(I) = 2.

Suppose now that φ is not satisfiable, that is for any assignment x, there exists a clause Cj

that is not satisfied. Therefore, for any spanning tree T associated to x, we have val(T, sj) = 3,

and thus Rmax(T) = 3, which implies opt(I) = 3. 2

Acknowledgments

The authors are grateful to the anonymous referees for their helpful comments and valu-

able suggestions. This work has been partially funded by grant CNRS/CGRI-FNRS number

18227. The second author was partially supported by the ACI Sécurité Informatique grant-

TADORNE project 2004.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-

tasi. Complexity and approximation. Combinatorial optimization problems and their

approximability properties. Springer-Verlag, 1999.

[2] F. Barahona and R. Pulleyblank. Exact arborescences, matching and cycles. Discrete

Applied Mathematics, 16:91–99, 1987.

[3] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knapsack prob-

lems. Management Science, 48(12):1603–1612, 2002.

15

[4] M. Garey and D. Johnson. Computers and intractability: a guide to the theory of NP-

completeness. Freeman, 1979.

[5] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing Co.,

Boston, MA, USA, 1997.

[6] S. P. Hong, S. J. Chung, and B. H. Park. A fully polynomial bicriteria approxima-

tion scheme for the constrained spanning tree problem. Operations Research Letters,

32(3):233–239, 2004.

[7] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, pages 85–103. Plenum Press, 1972.

[8] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer Aca-

demic Publishers, Boston, 1997.

[9] M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proceedings

of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1997), New

Orleans, USA, pages 730–738, 1997.

[10] C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.

[11] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and

optimal access of web sources. In IEEE Symposium on Foundations of Computer Science

(FOCS 2000), Redondo Beach, California, USA, pages 86–92, 2000.

[12] H.M. Safer and J.B. Orlin. Fast approximation schemes for multi-criteria combinatorial

optimization. Technical Report 3756-95, Sloan School of Management, 1995.

[13] S. Sahni. General techniques for combinatorial approximation. Operations Research,

25(6):920–936, 1977.

[14] V. V. Vazirani. Approximation algorithms. Springer-Verlag, 2001.

16

