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Abstract

It is known that large fragments of the class of dense Minimum Constraint Sat-

isfaction (MIN-CSP) problems do not have polynomial time approximation schemes

(PTASs) contrary to their Maximum Constraint Satisfaction analogs. In this paper

we prove, somewhat surprisingly, that the minimum satisfaction of dense instances of

kSAT-formulas, and linear equations mod 2, Ek-LIN2, do have PTASs for any k. The

MIN-Ek-LIN2 problems are equivalent to the k-ary versions of the Nearest Codeword

problem, the problem which is known to be exceedingly hard to approximate on general

instances. The method of solution of the above problems depends on the developement

of a new density sampling technique for k-uniform hypergraphs which could be of in-

dependent interest.
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1 Introduction

In this paper we study approximability hardness of dense instances of Minimum Con-

straint Satisfaction Problems (MIN-CSP) connected to the minimum satisfiability of dense

instances of kSat-formulas, and linear equations mod 2 with exactly k variables per equa-

tion, Ek-LIN2. Somewhat surprisingly we prove the existence of polynomial time approxi-

mation schemes (PTASs) for these two classes of problems. This should be contrasted with

approximation hardness of a dual MIN-CSP problem of minimum satisfiability of dense
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2DNF-formulas, the problem which is easily seen to be at least as hard to approximate

as the dense Vertex Cover problem, the problem proven to be MAX-SNP-hard in [CT96],

[KZ97]. It was also noticed by Luca Trevisan (personal communication) that one can easily

densify arbitrary 2DNF-formulas by adding disjoint copies of original variables, and then

adding all clauses having exactly one original and one copied variable, without changing the

value of the optimum. In this context it is an interesting artifact that the dense and every-

where dense Maximum Constraint Satisfaction (MAX-CSP) analogs of the above problems

are known to have PTASs (cf. [AKK95]). It is also not difficult to see that average-dense

instances of MIN-CSP are approximation hard for the general instances.

The MIN-kSat problems are known to be MAX-SNP-hard for all k ≥ 2 [KKM94], and

approximable within 2(1 − 1/2k) [BTV96]. Unlike the MIN-kSAT problems, MIN-Ek-

LIN2 problems are exceedingly hard to approximate for all k ≥ 3, they are known to be

NP-hard to within a factor nΩ(1)/ log log n [ABSS93], [KST97], [DKS98], [DKRS00]. They

are also easy to be seen equivalent to the k-ary versions of the Nearest Codeword problem

(cf. [KST97], [BFK00]).

The special case of MIN-E2-LIN2 problem with all underlying equations being equal

to 0, is equivalent to the MIN-Uncut problem (cf. [KST97]) and known to be MAX-

SNP-hard. The general MIN-E2-LIN2 is approximable to within a factor O(log n), cf.

[GVY96]. It is also easily seen to be approximation (and density) preserving reducible to

MIN-E3-LIN2, whereas obviously an opposite approximate reduction does not exist unless

NP=P.

As mentioned before it is not difficult to see that the results of [AKK95], [F96], [FK96],

[FK00], and [GGR96] on existence of PTASs for dense and average dense MAX-CSP prob-

lems cannot be applied for a large class of dense MIN-CSP problems. There were however

some dense minimization problems, namely, dense BISECTION and MIN-k-Cut, identified

in [AKK95] as having PTASs. Recently, the first boolean dense MIN-CSP problem, namely

the problem of MIN Equivalence, was identified to have a PTAS [BF99]. This problem

is also known as the MIN Equivalence Deletion problem, and was proven in [GVY96]

to be MAX-SNP-hard, and approximable within a factor O(log n) on general instances.

This problem is also clearly equivalent to the MIN-E2-LIN2 problem mentioned before.

It has turned however out that the proof of the main result of [BF99] to the effect that the

dense MIN-2Sat has a PTAS, based on the existence of a PTAS for dense MIN-E2-LIN2,

contained an error. This was one of the starting points of this paper and the aim was to

shed some light on approximation hardness of dense MIN-kSAT and dense MIN-Ek-LIN2

problems for arbitrary k.

In this paper (following [BFK00]) we design, somewhat surprisingly, the PTASs for both

classes of Minimum Constraint Satisfaction, dense MIN-kSat, and dense MIN-Ek-LIN2

problems for all k′s.

The problems MIN-Ek-LIN2 are known to be hard to approximate for all k ≥ 3 within
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a factor nΩ(1)/ log log n (cf. [KST97], [DKS98], [DKRS00]), and this hardness ratio is in fact

also valid for average dense instances. Only recently a polynomial time algorithm with

the first sublinear approximation ratio O(n/logn) was designed for the general problem in

[BK01]. Thus, the improvement in approximation ratio for the dense instances given by

this paper seems to be the largest known for any NP-hard constraint satisfaction problem.

This paper extends the density sampler technique for graphs developed in [BFK00] to

k-uniform hypergraphs for k ≥ 3, as the main tool to attack the dense MIN-Ek-LIN2

problems, or equivalently, k-ary versions of the Nearest Codeword problems, and the dense

MIN-EkSat problems. The paper is organized as follows. In Section 2 we give the pre-

liminaries and prove NP-hardness in exact setting of all the dense minimum satisfaction

problems considered in this paper. Section 3 contains our main result on sampling k-uniform

hypergraphs crucial for the rest of the paper. In Section 4, we design a PTAS for dense

MIN-Ek-LIN2 and in Section 5 a PTAS for dense MIN-EkSAT for any k.

2 Preliminaries

We start with defining the minimum constraint satisfaction problems MIN-kSat and MIN-

Ek-LIN2 and give some other basic definitions.

MIN-kSat

Input: A set of m clauses C1, . . . , Cm in boolean variables x1, . . . , xn with each Cj

depending on at most k variables.

Output: An assignment that minimizes the number of clauses satisfied.

MIN-EkSat is the version of MIN-kSat when each clause contains exactly k literals.

MIN-Ek-LIN2

Input: A set of m equations in n variables x1, x2, ..., xn over GF[2] where each equation

has exactly k variables.

Output: An assignment to the variables that minimizes the number of satisfied equations.

Approximability. A minimization problem has a polynomial time approximation scheme

(PTAS) if for every ǫ > 0 there exists a polynomial time approximation algorithm comput-

ing for every instance x a solution y of value m(x, y) such that m(x, y) ≤ (1 + ǫ)opt(x) for

opt(x) the value of an optimum solution.

Density. A family of instances of MIN-kSat is δ-dense if for each variable, the total

number of occurrences of the variable and its negation is at least δnk−1 in each instance. A

family of instances of MIN-kSat is dense, if there is a constant δ > 0 such that this family

is δ-dense.

An instance of MIN-kSat is average δ-dense if the number of clauses is at least δnk. An

instance of MIN-kSat is average-dense if there is a constant δ > 0 such that the instance

is average δ-dense.
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A family of instances of MIN-Ek-LIN2 is δ-dense if for each variable x, the total

number of occurrences of x is at least δnk−1 in each instance. A family of instances of

MIN-Ek-LIN2 is dense, if there is a constant δ > 0 such that the family is δ-dense.

DL-reductions. We call an L-reduction (cf. [PY91]) between problems P and Q density

preserving (DL-) if it maps each dense instance of P into a dense instance of Q.

MIN-EkSat for any k ≥ 2 does not have PTAS on general instances [KKM94] under

usual complexity theoretic assumptions but can be approximated in polynomial time within

some constant factor [BTV96].

The following reduction from MIN-E2Sat can be used to prove that Dense MIN-E2Sat

is NP-hard in exact setting. Given an instance F of MIN 2Sat with n variables x1, . . . , xn

and m clauses C1, . . . , Cm, we define an instance F ′ of Dense MIN-2Sat as follows.

We add n new variables y1, . . . , yn. F ′ will contain the clauses of F and the clauses xi ∨

yj , x̄i ∨ yj , 1 ≤ j ≤ n, 1 ≤ i ≤ n. The total number of occurrences of xi is at least 2n and

the total number of occurrences of yj is also at least 2n. So, F ′ is a dense instance. Also, it

is easy to see that opt(F ′) = opt(F )+n2. A similar reduction shows that dense MIN-kSat

problems are NP-hard in exact setting for every k ≥ 2.

We prove now NP-hardness (in exact setting) of Dense MIN-E2-LIN2, and in conse-

quence also Dense MIN-Ek-LIN2 for every k. The reduction is from the general MIN-

E2-LIN2 problem which is known to be MAX-SNP-hard [GVY96]. Given an instance I of

MIN-E2-LIN2 on a set of variables X = {x1, ..., xn} with m equations xi ⊕ xi = b with

b ∈ {0, 1}, we construct an instance I ′ of Dense MIN-E2-LIN2 as follows. We extend the

set of variables by a disjoint set Y = {y1, ..., yn}. I ′ contains all equations of I, and all

equations of the form xi⊕yj = 0 and xi⊕yj = 1 for all 1 ≤ i, j ≤ n. Note that the instance

I ′ is dense. Note also that exactly n2 of the new added equations are satisfied independently

of the values of the variables in X and Y. Thus, we have opt(I ′) = opt(I) + n2. The similar

construction can be used to prove that Dense MIN-Ek-LIN2 problems are NP-hard in

exact setting for any k.

It is also not difficult to see that for the special case k = 2, MIN-E2-LIN2 (MIN

Equivalence) is DL-reducible to MIN-E3-LIN2 (Nearest Codeword). For suppose

that an instance I of dense MIN-E2-LIN2 on a set of n variables X = {x1, ..., xn} with

m equations xi ⊕ xj = b is given. We construct an instance I ′ of Dense MIN-E2-LIN2

by extending the set of variables X by a disjoint set Y = {y1, ..., yn}, and extending the

original set of m equations xi⊕xj = b by mn+
(n
3

)

new equations of the form xi⊕xj ⊕yk =

b, yl1 ⊕yl2 ⊕yl3 = 1. An optimum assignment for I ′ does have all y′s set to zero and defines

an optimum assignment (for x′s) for I. We have opt(I) = opt(I ′).

Interestingly, it is also easy to show that both average-dense MIN-EkSat and average-

dense MIN-Ek-LIN2 problems are approximation hard for general instances. To see that

it is enough to extend the set of variables by a new disjoint set Y = {y1, ..., yn}, and then

add the set of all clauses yi1 ∨yi2 ∨ ...∨yik , (respectively, equations yi1 ⊕yi2 ⊕ ...⊕yik = 1.)
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The resulting instances are clearly average dense, and the optima are preserved in both

cases (for all variables yi assigned to 0).

3 Sampling k-uniform hypergraphs with bounded weights

As mentioned in Introduction, there are no approximation preserving reductions from MIN-

Ek-LIN2 to MIN-E2-LIN2 for all k ≥ 3, under usual complexity theoretic assumptions.

Also, there are no known approximation and density preserving reductions from MIN-

EkSat problems to MIN-E2Sat. Therefore we prove our results by a generic method

for arbitrary constant k. The straightforward generalization of our method for MIN-E3-

LIN2 ([BFK00]) to higher k’s does not work without leaving the structures of graphs. We

need therefore a new sampling technique for k-uniform hypergraphs. This is due to the

following observation. Let us consider MIN-EkSat and let us denote by LS the set of

literals corresponding to the set of variables S. For the instances of MIN-EkSat with

“small” value of the optimum, a basic step in our method consists, for each assignment of

truth values to the variables in a random sample S, in trying to set the truth value of each

of the other variables so as to minimize the number of satisfied clauses within the clauses

which contain this variable and k − 1 literals from LS .

For this scheme to be efficient, we need roughly the size of S to be O(log n) and also the

number of clauses in the instance containing only literals from LS and any fixed literal to

be Ω(log n/ǫ2δ) for an accuracy requirement ǫ. This is achieved by the sampling procedures

described below. Note that if we had only to sample a (k − 1)-uniform hypergraph H =

(X, E), we could use a much simpler procedure: namely pick uniformly at random elements

from Xk−1 and ask for each picked element whether or not it belongs to E .

We need first the following inequality due to Hoeffding [H64].

Lemma 1 Let X1, ..., Xm be independent random variables and each distributed as X1. Let

µ = E(X1) and assume that X1 satisfies 0 ≤ X1 ≤ ∆. Let Sm =
∑m

i=1 Xi. Then, for every

fixed γ > 0,

Pr(|Sm − µm| ≥ γ∆m) ≤ 2 exp(−2γ2m). (1)

2

Let k ≥ 2 be fixed. Hk will denote a k-uniform hypergraph with vertex set V , |V | = n,

obtained from the complete hypergraph on V by assigning to each hyperedge E = {x1, .., xk}

a non-negative weight w(x1, ...xk).

Suppose that S0, S1, .., Sk−1 are disjoint random samples picked from V all with the same

size m = Ω(log n/ǫ2). Let S = S0 × S1... × Sk−1. We denote by H(S) the sub-hypergraph

of Hk which contains the edges of Hk with precisely one vertex in each of S0, S1, ...Sk−1.

We denote by w(H), (resp. w(H(S))), the sum of the weights of the edges of H, (resp. of
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H(S)). Our PTAS for the instances of MIN-Ek-LIN2 with “small” value is based on the

following sampling theorem.

Theorem 1. Let m = Ω(log n/ǫ2) and let Hk have 0,1 weights. For any fixed ǫ > 0,

we have

Pr

[ ∣

∣

∣

∣

∣

w(Hk(S)) −
mkw(Hk)

(n
k

)

∣

∣

∣

∣

∣

≤ ǫmk

]

≥ 1 − o(1/n).

Proof of Theorem 1. We need the following lemma.

Lemma 2. Let a (k + 1)-uniform hypergraph Hk+1 have weights bounded above by h

and suppose that S0 is a random sample of size m picked from V = V (Hk+1) and define

Σo =
∑

y∈So

∑

A∈(V \So
k )

w(A ∪ {y}).

Then, for each fixed ǫ > 0, sufficiently large n and m = o(n1/2), we have that

Pr

[

∣

∣

∣

∣

Σo −
m(k + 1)

n
w(Hk+1)

∣

∣

∣

∣

≤ ǫh

(

n

k

)]

≥ 1 − 3e−2mǫ2 .

Proof. Clearly,

Σo =
∑

y∈So

∑

A∈(V \{y}
k )

w(A ∪ {y}) −
∑

y∈So

∑

A∈(V \{y}
k ):A∩So 6=∅

w(A ∪ {y})

=
∑

y∈So

Wy − O

(

m2

(

n

k − 1

))

where,

Wy =
∑

A∈(V \{y}
k )

w(A ∪ {y}).

Let us write

Σ′
o =

∑

y∈So

Wy.

Thus Σo = Σ′
o − O(m2hnk−1). We have that

max
y∈V

Wy ≤ h

(

n − 1

k

)

and

E(Σ′
o) =

m(k + 1)

n
w(Hk+1).

Now Σ′
o is the sum of m terms randomly chosen within the Wy, y ∈ V . Lemma 3 gives

Pr

[

∣

∣

∣

∣

Σ′
o −

m(k + 1)

n
w(Hk+1)

∣

∣

∣

∣

≤ ǫh

(

n − 1

k

)]

≥ 1 − 2e−2mǫ2 .
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Lemma 2 follows.

2

For simplicity, we put now Tk = w(Hk(S)). The hypergraph Hk will be defined in the

context.

Lemma 3. Let ℓ and h denote natural integers. Let m = Ω(log n/ǫ2). Assume that

Pr

[ ∣

∣

∣

∣

∣

Tℓ

(n
ℓ

)

mℓ
− w(Hℓ)

∣

∣

∣

∣

∣

≤ ǫ

(

n

ℓ

)

mh

]

≥ 1 − o(1/n),

for any ℓ-uniform hypergraph Hℓ on n vertices with maximum weight at most mh. We have

then,

Pr

[
∣

∣

∣

∣

∣

Tℓ+1

( n
ℓ+1

)

mℓ+1
− w(Hℓ + 1)

∣

∣

∣

∣

∣

≤ ǫ′
(

n

ℓ

)

mh−1

]

≥ 1 − o(1/n),

for any (ℓ+1)-uniform hypergraph Hℓ+1 on n vertices with maximum weight at most mh−1

and where ǫ′ is any constant greater than ǫ.

Proof. We have E(Tℓ+1) = mℓ+1

( n
ℓ+1)

w(Hℓ+1) by simple counting. Thus we have to bound

only from above the fluctuations of Tℓ+1. Clearly

Tℓ+1 =
∑

x1∈S1,...xℓ∈Sℓ

W (x1, ...xℓ)

where

W (x1, ...xℓ) =
∑

y∈So

w(y, x1, ...xℓ).

Thus, we can estimate Tℓ+1 by sampling the ℓ-uniform hypergraph K with vertex set

V (Hℓ+1)\So, and where the edge {x1, x2, ...xℓ} has weight W (x1, x2, ...xℓ). Note that K

has maximum weight at most mh since Hℓ+1 has maximum weight at most mh−1. Thus

the assumption of Lemma 3 reads

Pr

[ ∣

∣

∣

∣

∣

Tℓ+1

(n
ℓ

)

mℓ
− w(K)

∣

∣

∣

∣

∣

≤ ǫ

(

n

ℓ

)

mh

]

≥ 1 − o(1/n).

Using Lemma 1, we have that w(K) = m(ℓ+1)
n w(Hℓ+1)±ǫmh−1

(n
k

)

with probability 1−o(1/n)

and thus, after multiplication by n
m(ℓ+1) ,

Pr

[ ∣

∣

∣

∣

∣

Tℓ+1

( n
ℓ+1

)

mℓ+1
− w(Hℓ+1)

∣

∣

∣

∣

∣

≤ ǫ(mh + mh−1)

(

n

ℓ + 1

)]

≥ 1 − o(1/n),

implying

Pr

[ ∣

∣

∣

∣

∣

Tℓ+1

( n
ℓ+1

)

mℓ+1
− w(Hℓ+1)

∣

∣

∣

∣

∣

≤ ǫ′mh

(

n

ℓ + 1

)]

≥ 1 − o(1/n),

which is the assertion of the lemma in which we can take in fact ǫ′ = (1 + o(1))ǫ.

2
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In order to prove Theorem 1 for any fixed value of k, we just have to apply k − 1 times

Lemma 3, the starting assumption ℓ = 1, h = k − 1 being obtained by applying Lemma 2

to the sum of a sample of size m picked from a list of n terms each bounded above by mk.

We apply Lemma 3 first for ℓ = 1, h = k − 1, then for ℓ = 2, h = k − 2, an so on until

ℓ = k − 1, h = 1. This gives after scaling the assertion of Theorem 1.

2

4 A PTAS for MIN-Ek-LIN2

Our techniques for designing PTASs for MIN-Ek-LIN2 and for MIN-EkSat can be viewed

as the new extensions of the technique of [AKK95]. In both cases, for each δ-dense instance

of size n we run in parallel two distinct algorithms (Algorithm A and Algorithm B for

MIN-Ek-LIN2, Algorithm 1 and Algorithm 2 for MIN-EkSat), and we select the solution

with the smallest value. Algorithm 1 and Algorithm A provide good approximations for

the instances whose minimum value is ”large” (the precise meaning of large will be spec-

ified later). These algorithms use the Smooth Integer Programming method of [AKK95].

Algorithms 2 and B provide good approximations for the instances whose optimum value

is ”small”.

We assume now that the system of equations S = {E1, ..., Em} is a δ-dense instance of

MIN-Ek-LIN2, on a set X of n variables {x1, . . . , xn}.

4.1 Algorithm A

Algorithm A formulates the problem as a Smooth Integer Program to degree k and uses a

method of [AKK95]. This gives a PTAS for the instances whose optimum value is Ω(nk).

We refer to [BFK00] for an explicit construction of a smooth program for the case of MIN-

E3-LIN2 [k = 3].

4.2 Algorithm B

The algorithm B is guaranteed to give in polynomial time, as we will prove, approximation

ratio 1+ǫ for each fixed ǫ, whenever the optimum is at most αnk for some fixed α, depending

on ǫ and on δ.

Algorithm B

Input: Dense system S of linear equations in GF[2] over a set X of n variables with

exactly k variables per equation.

1. Pick k − 1 disjoint random samples S1, ..., Sk−1 ⊆ X each of size m = Θ
(

log n/ǫ2δ
)

.

Let S = ∪1≤i≤k−1Si.
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2. For each possible assignment a, y → ya of {0, 1} values to the variables in S do the

following:

2.1. For each variable x /∈ S do the following:

Let Ha
x,0 and Ha

x,1 be the (k−1)-uniform hypergraphs with common vertex set V (Ha
x,0) =

V (Ha
x,1) = S and edge sets

E(Ha
x,0) = {{x1, ..., xk−1} : xi ∈ Si, 1 ≤ i ≤ k − 1, x ⊕ (⊕1≤i≤k−1xi) = b ∈ S

∧ ⊕1≤i≤k−1x
a
i = b}

and

E(Ha
x,1) = {{x1, ..., xk−1} : xi ∈ Si, 1 ≤ i ≤ k − 1, x ⊕ (⊕1≤i≤k−1xi) = b ∈ S

∧ ⊕1≤i≤k−1x
a
i = b̄}.

Let ma
0 = |E(Ha

x,0)|, ma
1 = |E(Ha

x,1)|.

If ma
0 ≥ 2

3(ma
0 + ma

1), then set x to 1.

If ma
1 ≥ 2

3(ma
0 + ma

1), then set x to 0.

Otherwise, set x to be undefined.

2.2. In this stage, we assign values to the variables which are undefined after the

completion of stage 2.1. Let Da be the set of variables assigned in stage 2.1, Ua = S ∪ Da

and let V a = X \ Ua denote the set of undefined variables. For each undefined variable y,

let Sy denote the set of equations which contain y and whose k − 1 other variables belong

to Ua. Let ka
0 (resp. ka

1) denote the number of equations in Sy satisfied by a and by setting

y to 0 (resp. to 1).

If ka
0 ≤ ka

1 , then set y to 0. Else, set y to 1.

Let Xa denote the overall assignment produced at the end of this stage.

Among all the assignments Xa pick one which satisfies the minimum number of equa-

tions of S.

Output this solution ao.

4.3 Proof of correctness of algorithm B when the value of the instance

is ”small”

We assume, as we can, that a is the restriction to S of an optimal assignment a∗ ∈ {0, 1}n.

For each y ∈ X, we let ya∗
denote the value of y in a∗. Let x ∈ X \ S.

Let Hx,0 and Hx,1 be the hypergraphs with common vertex set V (Gx,0) = V (Gx,1) = X

and edge sets

E(Hx,0) = { {x1, ..., xk−1} : xi ∈ Si, 1 ≤ i ≤ k − 1, x ⊕ (⊕1≤i≤k−1xi) = b ∈ S

∧ ⊕1≤i≤k−1x
a∗

i = b}
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and

E(Hx,1) = { {x1, ..., xk−1} : xi ∈ Si, 1 ≤ i ≤ k − 1, x ⊕ (⊕1≤i≤k−1xi) = b ∈ S

∧ ⊕1≤i≤k−1x
a∗

i = b̄}.

Let na∗

0 = |E(Gx,0)|, n
a∗

1 = |E(Gx,1)|, na∗
= na∗

0 + na∗

1 . Also, let ma = ma
0 + ma

1.

Lemma 4.1. Assume that x is such that we have

na∗

0 ≥
3(na∗

0 + na∗

1 )

4
.

Then, with probability 1− o(1/n), x is assigned (correctly) to 1 in step 2.1 of Algorithm B.

Lemma 4.2. Assume that x is such that we have

na∗

1 ≥
3(na∗

0 + na∗

1 )

4
.

Then, with probability 1− o(1/n), x is assigned (correctly) to 0 in step 2.1 of algorithm B.

Lemma 4.3. With probability 1 − o(1/n), each fixed variable y ∈ Da is assigned to its

correct value ya∗
by the Algorithm B.

REMARK: The property in Lemma 4.1 holds simultaneously for all variables with

probability 1 − o(1). The same is true for Lemmas 4.2 and for 4.3.

Proof of Lemmas 4.1 and 4.2. Let us first observe that ma∗

o (resp. ma∗

1 ) is the

number of equations in S containing x and which are satisfied by setting x to 0 (resp. to

1) and all other variables according to a∗. Thus if ma∗

o < ma∗

1 , then we can assert that x is

set to 0 in a∗. Similarly, if ma∗

o > ma∗

1 , then we can assert that x is set to 1 in a∗.

We prove Lemma 4.1. The proof of Lemma 4.2. is similar to that of Lemma 4.2.

Theorem 2 applied to the hypergraph Gx,0 with d =
na∗

0

( n
k−1)

and the samples S1, ..., Sk−1,

gives

Pr

(

ma
0 ≥ (1 − ǫ)

mk−1

( n
k−1

)na∗
0

)

= 1 − o(1/n).

Let ma = ma
0 + ma

1. We apply now Theorem 2 to the union of the graphs Gx,0 and Gx,1.

This gives

Pr

(

ma ≤ (1 + ǫ)
mk−1

( n
k−1

)na∗

)

= 1 − o(1/n).

Substraction gives

Pr

(

ma
0 −

2ma

3
≥

mk−1

( n
k−1

) ((1 − ǫ)na∗

o − (1 + ǫ)
2(na∗

0 + na∗

1 )

3
)

)

= 1 − o(1/n).

Using the inequality na∗

0 + na∗

1 ≤
4na∗

0

3 , we obtain

Pr

(

ma
0 −

2ma

3
≥

2m2

n(n − 1)

1 − 20ǫ

9
na∗

o

)

= 1 − o(1/n),

10



which implies

Pr

(

ma
0 −

2ma

3
≥ 0

)

= 1 − o(1/n),

if ǫ ≤ 1/20. This concludes the proof.

2

Proof of Lemma 4.3. Suppose that y is assigned to 1 in stage 2.1. The case where

y is assigned to 0 is similar. We have to prove that na∗

0 ≥ na∗

1 with probability 1 − o(1/n)

since if in an optimum solution xi = 1 then na∗

0 ≥ na∗

1 . Thus, Theorem 1 applied to the

hypergraph Hx,0 and the samples S1, ..., Sk−1 gives, with ǫ = 1/7,

Pr

(

ma
0 ≤

8na∗

0 mk−1

7
( n
k−1

)

)

= 1 − o(1/n),

and so,

Pr

(

na∗

0 ≥
7ma

0

( n
k−1

)

8mk−1

)

= 1 − o(1/n). (2)

Theorem 1 applied to the union of the hypergraphs Hx,0 and Hx,1 with the samples

S1, ..., Sk−1 and ǫ = 1/9, gives

Pr

(

ma ≥
8na∗

mk−1

9
( n
k−1

)

)

= 1 − o(1/n),

and so,

Pr

(

na∗
≤

9ma
( n
k−1

)

4m2

)

= 1 − o(1/n). (3)

Since y is assigned to 1 in stage 2.1, we have that ma
0 ≥ 2/3ma, implying with 2 and 3,

Pr

(

na∗

0

na∗ ≥
14

27

)

= 1 − o(1/n).

Lemmas 4.3 follows.

2

The following lemma is crucial.

Lemma 5. With probability 1-o(1), the number of variables undefined after the com-

pletion of stage 2.1 satisfies

|V a| ≤
4 opt

δnk−1
.

Proof. Assume that x is undefined. We have thus simultaneously na∗

0 < 3
4(na∗

0 + na∗

1 )

and na∗

1 < 3
4(na∗

0 +na∗

1 ) and so na∗

1 > 1
4(na∗

0 +na∗

1 ) and na∗

0 > 1
4(na∗

0 +na∗

1 ). Since x appears

in at least δnk−1 equations, na∗

0 + na∗

1 ≥ δnk−1. Thus,

opt ≥ min{na∗

0 , na∗

1 } · |V a| ≥
δn2

4
|V a|.

The assertion of the lemma follows. 2

11



We can now complete the correctness proof. Let val denote the value of the solution

given by our algorithm and let opt be the value of an optimum solution.

Theorem 2. Let ǫ be fixed. If opt ≤ αnk where α is sufficiently small, then we have

that val ≤ (1 + ǫ)opt.

Proof. Let us write

val =
∑

0≤i≤k

vali

where vali is the number of satisfied equations with exactly i variables in V a.

With an obvious intended meaning, we write also

opt =
∑

0≤i≤k

opti.

We have clearly val0 = opt0 and val1 ≤ opt1. Thus,

val ≤ opt +
∑

2≤i≤k

(vali − opti)

≤ opt +
∑

2≤i≤k

vali

≤ opt +
∑

2≤i≤k

(

|V a|

i

)(

n

k − i

)

≤ opt +
∑

2≤i≤k

|V a|ink−i

≤ opt + (k − 1)|V a|2nk−2

≤ opt +
16(k − 1)opt2

δ2nk

where we have used Lemma 5 for the last line. Thus,

val ≤ opt

(

1 +
16(k − 1)opt

δ2nk

)

≤ opt(1 + ǫ)

if opt ≤ ǫδ2nk

16(k−1) .

2

It is known that the Algorithm A runs in polynomial time for any fixed ǫ > 0 [AKK95],

and the same is now easy to check for the Algorithm B on ”small” instances. Thus we have,

for any fixed k, a PTAS for MIN-Ek-LIN2.

5 Dense MIN-kSat has a PTAS

In this section, we apply the technique of sampling k-uniform hypergraphs of Section 3 to

obtain a PTAS for Dense MIN-EkSat for each fixed k. As a side effect we give also PTAS

for the general Dense MIN-kSat.

12



Lemma 6. For any k ≥ 2, Dense MIN-kSat is DL-reducible to Dense MIN-EkSat.

Proof. Let F be a δ-dense instance of MIN-kSat with n variables x1, . . . , xn and m

clauses C1, . . . , Cm. We construct an instance F ′ of Dense MIN-EkSat as follows: F ′ is

built over the variables of F and a set Y of n new variables y1, . . . , yn. For each clause of

F , ℓ1 ∨ . . .∨ ℓt, of length t < k, we put in F ′ the clause ℓ1 ∨ . . .∨ ℓt ∨ y1 ∨ . . .∨ yk−t. We also

put in F ′ all the clauses of F of length k and all the clauses of length k with all variables

in Y .

Let us justify that this is a DL-reduction.

It is easy to see that opt(F ′) = opt(F ). Now, given an optimal solution v of F ′, we

can assume that each variable y takes the value zero in v, since otherwise we obtain a

solution with a smaller value by assigning false to y. The assignment v satisfies in F

m(F, v) ≤ m(F ′, v) clauses. Thus we have an L-reduction.

Since F is δ-dense the number of occurrences of the variable xi and its negation for each

i = 1, . . . , n is δnk−1. Each variable y appears Θ(nk−1) times in F ′. Thus F ′ is dense.

5.1 A PTAS for MIN-EkSat

1. Algorithm 1. (Algorithm for the case of “large” instances)

For each fixed k ≥ 2, we can formulate MIN-EkSat as a degree k smooth integer

program. We can then use again the approximation method of [AKK95]. Let us display

such a smooth program for k = 2. For each clause Ci we construct a smooth polynomial

Pi where

Pi ≡ 1 − (1 − x)(1 − y) if Ci = x ∨ y

Pi ≡ 1 − (1 − x)y if Ci = x ∨ ȳ

Pi ≡ 1 − x(1 − y) if Ci = x̄ ∨ y

Pi ≡ 1 − xy if Ci = x̄ ∨ ȳ

An optimum solution of MIN-E2Sat is now given by an optimum solution of the following

degree 2 smooth integer program:

{

min
∑m

j=1 Pj

xi ∈ {0, 1} 1 ≤ i ≤ n.

2. Algorithm 2. (Algorithm for the case of instances with a ”small” value)

We need first some notation. Let F be a δ-dense instance of MIN-EkSat, with m

clauses over a set X = {x1, . . . , xn} of n variables. Let S = {S1, ..., Sk−1} be a family

of k − 1 disjoint subsets of X. (Actually these sets will be random as defined in the

algorithm below.) Let S = ∪k−1
i=1 Si and denote by Li the set of literals corresponding to

Si, 1 ≤ i ≤ k − 1. We denote by CS the set of clauses of length k − 1 obtained by picking a

13



literal from each of the sets Li. We write also, for a fixed assignment a of truth values to

the variables in S,

CS,0 = {C ∈ CS : C false under a}

and

CS,1 = {C ∈ CS : C true under a}

Finally, we denote by C1 (resp. C0) the set of clauses of length k − 1 which are true (resp.

false) under a fixed optimal assignment a∗.

For each variable x /∈ S, we denote by FS the set of clauses in F of the form C ∨ x or

C ∨ x̄ for some clause C ∈ CS and we define the numbers

• ua
1 = |{C ∈ CS,1 : C ∨ x ∈ FS}|, ua∗

1 = |{C ∈ C1 : C ∨ x ∈ F}|,

• ua
o = |{C ∈ CS,0 : C ∨ x ∈ FS}|, ua∗

0 = |{C ∈ C0 : C ∨ x ∈ F}|,

• va
1 = |{C ∈ CS,1 : C ∨ x̄ ∈ FS}|, va∗

1 = |{C ∈ C1 : C ∨ x̄ ∈ F}|,

• va
0 = |{C ∈ CS,0 : C ∨ x̄ ∈ FS}|, va∗

0 = |{C ∈ C0 : C ∨ x̄ ∈ F}|.

Algorithm 2. (Algorithm for the case of “small” instances)

Input. A dense instance F of MIN-EkSat over a set of variables X.

1. Pick k − 1 random disjoint sets S1, ..., Sk−1 each containing

ℓ = Θ(log n/ǫ2δ) variables. Let S = ∪k−1
i=1 Si.

2. For each possible assignment a : S → {0, 1} of the variables of S do the following:

2.1. For each variable x ∈ X\S do the following with ua
1, u

a
0, ... as defined above:

If ua
1 + ua

0 + va
1 ≤ (ua

1 + ua
0 + va

o + va
1)/8, then set x to 1.

If ua
1 + va

0 + va
1 ≤ (ua

1 + ua
0 + va

o + va
1)/8, then set x to 0.

Otherwise, set x to be undefined.

2.2. In this stage, we assign values to the variables which are undefined after the

completion of stage 2.1. Let Da be the set of variables assigned in stage 2.1, Ua = S ∪ Da

and let V a = X \ Ua denote the set of undefined variables. For each undefined variable y,

let Sy denote the set of clauses which contain y or ȳ and whose k − 1 other literals belong

to Ua. Let ka
0 (resp. ka

1) denote the number of clauses in Sy satisfied by a and by setting

y to 0 (resp. to 1).

If ka
0 ≤ ka

1 , then set y to 0 and bias(y) = ka
1 −ka

0 . Else, set y to 1 and bias(y) = ka
0 −ka

1 .

Let ax denote the overall assignment produced at the end of this stage.

14



Among all the assignments ax pick one which satisfies the minimum number of clauses

in F .

Output this solution a.

We denote by B(F ) the value of the solution given by the Algorithm 2, i.e., the number

of clauses in F satisfied by the assignment a.

5.2 Proof of correctness of Algorithm 2 when the value of the instance

is ”small”

Lemma 7.1. With probability 1 − o(1/n), each variable x with the property that in an

optimum assignment a∗ of X which coincides with a on S we have that

ua∗

1 + ua∗

0 + va∗

1 ≤ (ua∗

1 + ua∗

0 + va∗

1 + va∗

o )/8 (4)

is assigned to 1 (as in a∗) in stage 2.1 of algorithm 2.

Lemma 7.2. With probability 1 − o(1/n), each variable x with the property that in an

optimum assignment a∗ of X which coincides with a on S we have that

va∗

1 + va∗

o + ua∗

1 ≤ (ua∗

1 + ua∗

0 + va∗

1 + va∗

o )/8 (5)

is assigned to 0 (as in a∗) in stage 2.1 of algorithm 2.

Lemma 7.3. With probability 1 − o(1/n), each fixed variable x for which either 4 or 5

holds is assigned in a as in a∗.

Note that the property in Lemma 7.1 holds simultaneously for all variables with prob-

ability 1 − o(1). The same is true for Lemmas 7.2 and 7.3.

Before turning to the proof of these lemmas, let us note that mo = ua∗

1 + ua∗

0 + va∗

1 is

the number of clauses in F containing the variable x and which are satisfied by setting x

to 0 (and the other variables according to a∗). Note also that m1 = ua∗

1 + va∗

1 + va∗

o is the

number of clauses containing x and which are satisfied by setting x to 1. Thus, if m0 < m1,

(that is if ua∗

o < va∗

o ,) then we can assert that x is set to 0 in a∗. Similarly, if m1 < m0,

then we can assert that x is set to 1 in a∗. Finally, note that no = ua
1 + ua

0 + va
1 is the

number of clauses in FS containing the variable x and which are satisfied by setting x to 0

(and the other variables according to a∗) and n1 = ua
1 + va

1 + va
o is the number of clauses in

FS containing x and which are satisfied by setting x to 1.

Proofs. We prove 7.1 and 7.3. The proof of 7.2 is similar to that of 7.1. and is omitted.

Proof of Lemma 7.1. Let x be a variable with the property that in the optimum

solution ua∗

1 + ua∗

0 + va∗

1 ≤ (ua∗

1 + ua∗

0 + va∗

1 + ūa∗

0 )/10. Plainly, ua
1, (resp. ua

0, v
a
1 , va

o ), are

obtained by sampling the hypergraphs with edge sets Ua∗
1 , (resp. Ua∗

0 , V a∗
1 , V a∗

o ), where

Ua∗
i = {C ∈ Ci : C ∨x ∈ F}, i = 0, 1, and V a∗

i = {C ∈ Ci : C ∨ x̄ ∈ F}, i = 0, 1, (and vertex
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set the literals) in the sense of Theorems 1 and 2. We can thus apply Theorem 2 to these

quantities. (Actually, for k = 2 we are sampling points rather than edges, but then we can

use Hoeffding’s inequality.) This gives for any fixed γ > 0,

Pr(|ua
1 −

ua∗

1

n
ℓ| ≤ γℓ) ≥ 1 − n−Ω(1). (6)

Similarly we have,

Pr(|ua
o −

ua∗

0

n
ℓ| ≤ γℓ) ≥ 1 − n−Ω(1), (7)

Pr(|va
1 −

va∗

1

n
ℓ| ≤ γℓ) ≥ 1 − n−Ω(1) (8)

and

Pr(|va
o −

va∗

o

n
ℓ| ≤ γℓ) ≥ 1 − n−Ω(1). (9)

These inequalities imply clearly

ua
1 + ua

o + va
1 + va

o ≥
ℓ

n
(ua∗

1 + ua∗

0 + va∗

1 + va∗

o ) − 4γℓ

with probability 1 − n−Ω(1), and also

ua
1 + ua

o + va
1 ≤

ℓ

n
(ua∗

1 + ua∗

0 + va∗

1 ) + 3γℓ.

So, again with probability 1 − n−Ω(1),

ua
1 + ua

o + va
1 −

1

8
(ua

1 + ua
o + va

1 + va
o ) ≤ −

7ℓ

8n
(ua∗

1 + ua∗

0 + va∗

1 + va∗

o ) +
7γℓ

2

≤ −
7δℓ

8
+

7γℓ

2

which is negative for γ ≤ δ
4 .

2

Proof of Lemma 7.3. Let us assume that x is assigned to 0 in a∗ (the other case is

similar). Thus we assume that the inequaliy ua∗

0 ≥ va∗

o holds and we have to prove that the

inequality

ua∗

1 + ua∗

0 + va∗

1 ≤ (ua∗

1 + ua∗

0 + va∗

1 + va∗

o )/8

implies

ua
1 + ua

0 + va
1 > (ua

1 + ua
0 + va

o + va
1)/8.

Using the inequalities (6)-(8), we have that, with probability 1 − n−Ω(1), for a fixed γ,

ua
1 + ua

o + va
1 ≥

ℓ

n
(ua∗

1 + ua∗

0 + va∗

1 ) − 3γℓ

and using the inequality (9),
va
o

8
≤

ℓ

8n
va∗

o +
γℓ

8
.
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By substraction, we get, again with probability 1 − n−Ω(1),

ua
1 + ua

o + va
1 −

va
o

8
≥

ℓ

n
(ua∗

1 + ua∗

0 + va∗

1 −
va∗

o

8
) − 4γℓ.

Since ua∗

0 ≥ va∗

o and ua∗

1 + ua∗

0 + va∗

1 + va∗

0 ≥ δn, we have

ua∗

1 + va∗

1 + ua∗

0 −
1

8
va∗

o > ua∗

1 + va∗

1 +
6

8
ua∗

0 ≥
3

8
δn.

So, the difference
ℓ

n
(ua∗

1 + ua∗

0 + va∗

1 −
va∗

0

8
) − 4γℓ

is positive if γ < 3
28δ. Thus, with high probability if γ < 3

28δ, ua∗

1 + ua∗

o + va∗

1 − va∗
o

8 > 0

which is what we want.

2

Lemma 8. With probability 1 − o(1), the number of undefined variables satisfies

|V a| ≤
8opt(F )

δn
.

Proof. If the variable x is undefined after stage 2.1 of the Algorithm 2, then from

Lemma 4.2 we have that,with high probability

ua∗

1 + ua∗

0 + va∗

1 ≥ (ua∗

1 + ua∗

0 + va∗

1 + va∗

o )/8,

and

va∗

1 + va∗

o + ua∗

1 ≥ (ua∗

1 + ua∗

0 + va∗

1 + va∗

o )/8.

Since ua∗

1 + ua∗

0 + va∗

1 + va∗

o ≥ δn, the optimum value opt(F ) satisfies

opt(F ) ≥ min{ua∗

1 + ua∗

0 + va∗

1 , va∗

1 + va∗

o + ua∗

1 }|V a|

≥ |V a|δn/8.

Theorem 3. If opt(F ) < αnk then with high probability B(F ) ≤ (1 + ε)opt(F ) where

ε = 64α
δ2 .

In other words, if we want to achieve an approximation ratio (1 + ǫ), then we can use

Algorithm 2 on any instance F with opt(F ) ≤ δ2ǫ
64 .

Proof. The proof of Theorem 3 from Lemma 8 is similar to the proof of Theorem 2

from Lemma 5. Therefore it is omitted.

2

In order to assert now that the Algorithms 1 and 2 give a PTAS for MIN-kSat, it only

remains to observe that both algorithms run in polynomial time for each fixed ǫ.
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