
Provenance Annotation and Analysis to Support
Process Re-Computation

Jacek Ca la[0000−0002−8322−4370] and Paolo Missier[0000−0002−0978−2446]

School of Computing, Newcastle University, Newcastle upon Tyne, UK,
{Jacek.Cala, Paolo.Missier}@ncl.ac.uk

Abstract. Many resource-intensive analytics processes evolve over time
following new versions of the reference datasets and software dependen-
cies they use. We focus on scenarios in which any version change has
the potential to affect many outcomes, as is the case for instance in high
throughput genomics where the same process is used to analyse large
cohorts of patient genomes, or cases. As any version change is unlikely
to affect the entire population, an efficient strategy for restoring the cur-
rency of the outcomes requires first to identify the scope of a change, i.e.,
the subset of affected data products. In this paper we describe a generic
and reusable provenance-based approach to address this scope discovery
problem. It applies to a scenario where the process consists of complex
hierarchical components, where different input cases are processed using
different version configurations of each component, and where separate
provenance traces are collected for the executions of each of the com-
ponents. We show how a new data structure, called a restart tree, is
computed and exploited to manage the change scope discovery problem.

Keywords: provenance annotations, process re-computation

1 Introduction

Consider data analytics processes that exhibit the following characteristics. C1:
are resource-intensive and thus expensive when repeatedly executed over time,
i.e., on a cloud or HPC cluster; C2: require sophisticated implementations to run
efficiently, such as workflows with a nested structure; C3: depend on multiple
reference datasets and software libraries and tools, some of which are versioned
and evolve over time; C4: apply to a possibly large population of input instances.

This is not an uncommon set of characteristics. A prime example is data pro-
cessing for high throughput genomics, where the genomes (or exomes) of a cohort
of patient cases are processed, individually or in batches, to produce lists of vari-
ants (genetic mutations) that form the basis for a number of diagnostic purposes.
These variant calling and interpretation pipelines take batches of 20–40 patient
exomes and require hundreds of CPU-hours to complete (C1). Initiatives like
the 100K Genome project in the UK (www.genomicsengland.co.uk) provide a
perspective on the scale of the problem (C4).

Figure 1, taken from our prior work [5], shows the nested workflow structure
(C2) of a typical variant calling pipeline based on the GATK (Genomics Analysis

www.genomicsengland.co.uk

Fig. 1: A typical variant discovery pipeline processing a pool of input samples.
Each step is usually implemented as a workflow or script that combines a number
of tools run in parallel.

Toolkit) best practices from the Broad Institute.1 Each task in the pipeline relies
on some GATK (or other open source) tool, which in turn requires lookups in
public reference datasets. For most of these processes and reference datasets new
versions are issued periodically or on an as-needed basis (C3). The entire pipeline
may be variously implemented as a HPC cluster script or workflow. Each single
run of the pipeline creates a hierarchy of executions which are distributed across
worker nodes and coordinated by the orchestrating top-level workflow or script
(cf. the “Germline Variant Discovery” workflow depicted in the figure).

Upgrading one or more of the versioned elements risks invalidating previ-
ously computed knowledge outcomes, e.g. the sets of variants associated with
patient cases. Thus, a natural reaction to a version change in a dependency is to
upgrade the pipeline and then re-process all the cases. However, as we show in
the example at the end of this section, not all version changes affect each case
equally, or in a way that completely invalidates prior outcomes. Also, within each
pipeline execution only some of the steps may be affected. We therefore need a
system that can perform more selective re-processing in reaction to a change. In
[6] we have described our initial results in developing such a system for selective
re-computation over a population of cases in reaction to changes, called ReComp.
ReComp is a meta-process designed to detect the scope of a single change or of
a combination of changes, estimate the impact of those changes on the popula-
tion in scope, prioritise the cases for re-processing, and determine the minimal
amount of re-processing required for each of those cases. Note that, while ide-
ally the process of upgrading P is controlled by ReComp, in reality we must also
account for upgrades of P that are performed “out-of-band” by developers, as
we have assumed in our problem formulation.

Briefly, ReComp consists of the macro-steps shown in Fig. 2. The work pre-
sented in this paper is instrumental to the ReComp design, as it addresses the

1 https://software.broadinstitute.org/gatk/best-practices

https://software.broadinstitute.org/gatk/best-practices

very first step (S1) indicated in the figure, in a way that is generic and agnostic
to the type of process and data.

Fig. 2: Schematic of the ReComp meta-process.

1.1 Version Changes and Their Scope

To frame the problem addressed in the rest of the paper, we introduce a simple
model for version changes as triggers for re-computation. Consider an abstract
process P and a population X = {x1 . . . xN} of inputs to P , referred to as cases.
Let D = [D1 . . . Dm] be an ordered list of versioned dependencies. These are
components, typically software libraries or reference data sets, which are used
by P to process a case. Each D has a version, denoted D.v, with a total order
on the sequence of versions D.v < D.v′ < D.v′′ < . . . for each D.

An execution configuration for P is the vector V = [v1 . . . vm] of version
numbers for [D1 . . . Dm]. Typically, these are the latest versions for each D, but
configurations where some D is “rolled back” to an older version are possible.
The set of total orders on the versions of each D ∈ D induce a partial order on
the set of configurations:

[v1 . . . vm] ≺ [v′1 . . . v
′
m] iff {vi ≤ v′i}i:1...m and vi < v′i for at least one vi.

We denote an execution of P on input xi ∈ X using configuration V by
E = P (x, V), where P may consist of multiple components {P1 . . . Pk}, such
as those in our example pipeline. When this is the case, we assume for gen-
erality that one execution P (x, V) given x and V is realised as a collection
{Ei = Pi(x, V)}i:1...k of separate executions, one for each Pi. We use the W3C
PROV [13] and ProvONE [7] abstract vocabularies to capture this model in
which: P, P1 . . . Pk are all instances of provone:Program, their relationships is
expressed as

{provone:hasSubProgram(P, Pi)}i:1...k

and each execution Ei is associated with its program Pi using:

{wasAssociatedWith(Ei, , Pi)}i:1...k

Version change events. We use PROV derivation statements prov:wasDerived-
From to denote a version change event C for some Di, from vi to v′i : C =

{D.v′i
wDF−−−→ D.vi}. Given V = [v1 . . . vi . . . vm], C enables the new configuration

V ′ = [v1 . . . v
′
i . . . vm], meaning that V ′ can be applied to P , so that its future

executions are of form E = P (x, V ′).
We model sequences of changes by assuming that an unbound stream of

change events C1, C2, . . . can be observed over time, either for different or the
same Di. A re-processing system may react to each change individually. However,
we assume the more general model where a set of changes accumulates into a
window (according to some criteria, for instance fixed-time) and is processed as a
batch. Thus, by extension, we define a composite change to be a set of elementary
changes that are part of the same window. Given V = [v1 . . . vi . . . vj . . . vm], we

say that C = {D.v′i
wDF−−−→ D.vi, D.v′j

wDF−−−→ D.vj , . . . } enables configuration
V ′ = [v1 . . . v

′
i . . . v

′
j . . . vm]. Importantly, all change events, whether individual

or accumulated into windows, are merged together into the single change front
CF which is the configuration of the latest versions of all changed artefacts.

Applying CF to E = P (x, V) involves re-processing x using P to bring the
outcomes up-to-date with respect to all versions in the change front. For instance,
given V = [v1, v2, v3] and the change front CF = {v′1, v′2}, the re-execution of
E = P (x, [v1, v2, v3]) is E′ = P (x, [v′1, v

′
2, v3]). It is important to keep track of

how elements of the change front are updated as it may be possible to avoid
rerunning some of P ’s components for which the configuration has not changed.
Without this fine-grained derivation information, each new execution may use
the latest versions but cannot be easily optimised using partial re-processing.

Clearly, processing change events as a batch is more efficient than pro-
cessing each change separately, cf. E′ = P (x, [v′1, v2, v3]) followed by E′′ =
P (x, [v′1, v

′
2, v3]) with the example above. But a model that manages change

events as a batch is also general in that it accommodates a variety of refresh
strategies. For example, applying changes that are known to have limited im-
pact on the outcomes can be delayed until a sufficient number of other changes
have accumulated into CF , or until a specific high-impact change event has oc-
curred. A discussion of specific strategies that are enabled by our scope discovery
algorithm is out of the scope of this paper.

1.2 Problem Formulation and Contributions

Suppose P has been executed h times for some x ∈ X, each time with a different
configuration V1 . . . Vh. The collection of past executions, for each x ∈ X, is:

{E(Pi, x, Vj)i:1...k,j:1...h,x∈X} (1)

The problem we address in this paper is to identify, for each change front
CF , the smallest set of those executions that are affected by CF . We call this the
re-computation front C relative to CF . We address this problem in a complex
general setting where many types of time-interleaved changes are allowed, where
many configurations are enabled by any of these changes, and where executions

may reflect any of these configurations, and in particular individual cases x may
be processed using any such different configurations. The example from the next
section illustrates how this setting can manifest itself in practice.

Our main contribution is a generic algorithm for discovering re-computation
front that applies to a range of processes, from simple black-box, single compo-
nent programs where P is indivisible, to complex hierarchical workflows where P
consists of subprograms Pi which may itself be defined in terms of subprograms.

Following a tradition from the literature to use provenance as a means to
address re-computation [2,12,6], our approach also involves collecting and ex-
ploiting both execution provenance for each E, as well as elements of process–
subprocess dependencies as mentioned above. To the best of our knowledge this
particular use of provenance and the algorithm have not been proposed before.

1.3 Example: Versioning in Genomics

The problem of version change emerges concretely in Genomics pipelines in which
changes have different scope, both within each process instance and across the
population of cases. For example, an upgrade to the bwa aligner tool directly
affects merely the alignment task but its impact may propagate to most of
the tasks downstream. Conversely, an upgrade in the human reference genome
directly affects the majority of the tasks. In both cases, however, the entire
population of executions is affected because current alignment algorithms are
viewed as “black boxes” that use the entire reference genome.

However, a change in one of the other reference databases that are queried for
specific information only affects those cases where some of the changed records
are part of a query result. One example is ClinVar, a popular variant database
queried to retrieve information about specific diseases (phenotypes). In this case,
changes that affect one phenotype will not impact cases that exhibit a completely
different phenotype. But to detect the impact ReComp uses steps (S2) and (S3),
which is out of scope of this paper.

Additionally, note that version changes in this Genomics example occur with
diverse frequency. For instance, the reference genome is updated twice a years,
alignment libraries every few months, and ClinVar every month.

2 Recomputation fronts and restart trees

2.1 Recomputation fronts

In Sec. 1.1 we have introduced a partial order V ≺ V ′ between process con-
figurations. In particular, given V , if a change C enables V ′ then by definition
V ≺ V ′. Note that this order induces a corresponding partial order between any
two executions that operate on the same x ∈ X.

P (x, V) = E � E′ = P (x, V ′) iff V ≺ V ′ (2)

This order is important, because optimising re-execution, i.e. executing P (x, V ′),
may benefit most from the provenance associated with the latest execution ac-
cording to the sequence of version changes, which is E = P (x, V) (a discussion
on the precise types of such optimisations can be found in [6]). For this reason
in our implementation we keep track of the execution order explicitly using the

wasInformedBy PROV relationship, i.e. we record PROV statement E′
wIB−−→ E

whenever re-executing E such that E � E′.

To see how these chains of ordered executions may evolve consider, for in-
stance, E0 = P (x1, [a1, b1]), E1 = P (x2, [a1, b1]) for inputs x1, x2 respectively,
where the a and b are versions for two dependencies D1, D2. The situation is

depicted in Fig. 3/left. When change C1 = {a2
wDF−−−→ a1} occurs, it is possible

that only x1 is re-processed, but not x2. This may happen, for example, when
D1 is a data dependency and the change affects parts of the data which were not
used by E1 in the processing of input x2. In this case, C would trigger one single
new execution: E2 = P (x1, [a2, b1]) where we record the ordering E0 � E2. The
new state is depicted in Fig. 3/middle.

Fig. 3: The process of annotating re-execution following a sequence of events;
in bold are executions on the re-computation front; a- and b-axis represent the
artefact derivation; arrows in blue denote the wasInformedBy relation.

Now consider the new change C2 = {a3
wDF−−−→ a2, b2

wDF−−−→ b1}, affecting both
D1 and D2, and suppose both x1 and x2 are going to be re-processed. Then,
for each x we retrieve the latest executions that are affected by the change,
in this case E2, E1, as their provenance may help optimising the re-processing
of x1, x2 using the new change front {a3, b2}. After re-processing we have two
new executions: E3 = P (x1, [a3, b2]), E4 = P (x2, [a3, b2]) which may have been
optimised using E2, E1, respectively, as indicated by their ordering: E3 � E2,
E4 � E1 (see Fig. 3/right).

To continue with the example, let us now assume that the provenance for
a new execution: E5 = P (x1, [a1, b2]) appears in the system. This may have
been triggered by an explicit user action independently from our re-processing
system. Note that the user has disregarded the fact that the latest version of ai
is a3. The corresponding scenario is depicted in Fig. 4/left. We now have two

Fig. 4: Continuation of Fig. 3; in bold are executions on the re-computation
front; a- and b-axis represent the artefact derivation; arrows in blue denote the
wasInformedBy relation.

executions for x1 with two configurations. Note that despite E0 � E5 holds it

is not reflected by a corresponding E5
wIB−−→ E0 in our re-computation system

because E5 was an explicit user action. However, consider another change event:

{b3
wDF−−−→ b2}. For x2, the affected executions is E4, as this is the single latest

execution in the ordering recorded so far for x2. But for x1 there are now two
executions that need to be brought up-to-date, E3 and E5, as these are the
maximal elements in the set of executions for x1 relative according to the order:
E0 � E2 � E3, E0 � E5. We call these executions the recomputation front for
x1 relative to change front {a3, b3}, in this case.

This situation, depicted in Fig. 4/right, illustrates the most general case
where the entire set of previous executions need to be considered when re-
processing an input with a new configuration. Note that the two independent
executions E3 and E5 have merged into the new E6.

Formally, the recomputation front for x ∈ X and for a change front CF =
{w1 . . . wk}, k ≤ m is the set of maximal executions E = P (x, [v1 . . . vm]) where
vi ≤ wi for 1 ≤ i ≤ m.

2.2 Building a Restart Tree

Following our goal to develop a generic re-computation meta-process, the front
finding algorithm needs to support processes of various complexity – from the
simplest black-box processes to complex hierarchical workflows mentioned ear-
lier. This requirement adds another dimension to the problem of the identifica-
tion of the re-computation front.

If process P has a hierarchical structure, e.g. expressed using the provone:

hasSubProgram statement (cf. Sec. 1.1), one run of P will usually result in a col-
lection of executions. These are logically organised into a hierarchy, where the
top-level represents the execution of the program itself, and sub-executions (con-
nected via provone:wasPartOf) represent the executions of the sub-programs.
Following the principle of the separation of concerns, we assume the general case
where the top-level program is not aware of the data and software dependen-

cies of its parts. Thus, discovering which parts of the program used a particular
dependency requires traversing the entire hierarchy of executions.

To illustrate this problem let us focus on a small part of our pipeline – the
alignment step (Align Sample and Align Lane). Fig. 5 shows this step modelled
using ProvONE. P0 denotes the top program – the Align Sample workflow, SP0

is the Align Lane subprogram, SSP0–SSP3 represent the subsub-programs of
bioinformatic tools like bwa and samtools, while SP1–SP3 are the invocations
of the samtools program. Programs have input and output ports (the dotted
grey arrows) and ports p1–p8 are related with default artefacts a0, b0, etc. spec-
ified using the provone:hasDefaultParam statement. The artefacts refer to the
code of the executable file and data dependencies; e.g. e0 represents the code of
samtools. Programs are connected to each other via ports and channels, which
in the figure are identified using reversed double arrows.

Fig. 5: A small part of the Genomics pipeline shown in Fig. 1 encoded in
ProvONE. () denotes the hasSubProgram relation; () the hasDefault-
Param statements; () hasInPort/hasOutPort; () the sequence of the
{Pi hasOutPort pm connectsTo Chx, Pj hasInPort pn connectsTo Chx}
statements.

Running this part of the pipeline would generate the runtime provenance
information with the structure resembling the program specification (cf. Fig. 6).
The main difference between the static program model and runtime information
is that during execution all ports transfer some data – either default artefacts
indicated in the program specification, data provided by the user, e.g. input
sample or the output data product. When introducing a change in this context,

e.g. {b1
wDF−−−→ b0, e1

wDF−−−→ e0}, two things are important. Firstly, the usage of
the artefacts is captured at the sub-execution level (SSE 1, SSE 3 and SE 1–SE 3)
while E0 uses these artefacts indirectly. Secondly, to rerun the alignment step
it is useful to consider the sub-executions grouped together under E0, which
determines the end of processing and delivers data y0 and z0 meaningful for the
user. We can capture both these elements using the tree structure that naturally
fits the hierarchy of executions encoded with ProvONE. We call this tree the

restart tree as it indicates the initial set of executions that need to be rerun. The
tree also provides references to the changed artefacts, which is useful to perform
further steps of the ReComp meta-process. Fig. 6 shows in blue the restart tree
generated as a result of change in artefacts b and e.

Fig. 6: An execution trace for the program shown in Fig. 5 with the restart
tree and artefact references highlighted in blue. () – the wasPartOf relation
between executions; () – the used statements; () – the sequence of the
Ej used z wasGeneratedBy Ei statements.

Finding the restart tree involves building paths from the executions that used
changed artefacts, all the way up to the top-level execution following the was-

PartOf relation. The tree is formed by merging all paths with the same top-level
execution.

3 Computing the Re-computation Front

Combining together all three parts discussed above, we present in Listing 1.1 the
pseudocode of our algorithm to identify the re-computation front. The input of
the algorithm is the change front CF that the ReComp framework keeps updat-
ing with every change observed. The output is a list of restart trees, each rooted
with the top-level execution. Every node of the tree is a triple: (E, [changedData],
[children]) that combines an execution with optional lists of changed data arte-
facts it used and sub-executions it coordinated. For executions that represent
a simple black-box process the output of the algorithm reduces to the list of
triples like: [(Ei, [ak, al, . . .], []), (Ej , [am, an, . . .], []), . . .] in which the third el-
ement of each node is always empty. For the example of a hierarchical process
shown above in Fig. 6 the output would be [(E0, [], [(SE 0, [], [(SSE 1, [b0], []),
(SSE 3, [e0], [])]), (SE 1, [e0], []), (SE 2, [e0], []), (SE 3, [e0], [])])]

The algorithm starts by creating the root node, OutTree, of an imaginary
tree that will combine all independent executions affected by the change front.
Then, it iterates over all artefacts in the ChangeFront set and for each artefact

it traverses the chain of versions: Item
wDF−−−→ PredI

wDF−−−→ . . . (line 4). For each

version it looks up all the executions that used particular version of the data (line
5). The core of the algorithm (lines 6–7) is used to build trees out of the affected
executions. In line 6 a path from the affected execution to its top-level parent
execution is built. Then, the path is merged with the OutTree such that two paths
with the same top-level execution are joined into the same subtree, whereas paths
with different root become two different subtrees on the OutTree.children list.

Listing 1.1: An algorithm to find the re-computation front.

1 f unct ion f i n d r e c omp f r o n t (ChangeFront) : T r e e L i s t
2 OutTree := (root , data := [] , c h i l d r e n := [])
3 f o r I tem i n ChangeFront do
4 f o r Pred I i n t r a v e r s e d e r i v a t i o n s (Item) do
5 f o r Exec i n i t e r u s e d (Pred I) do
6 Path := p a t h t o r o o t (PredI , Exec)
7 OutTree . merge path (Path)
8 re tu rn OutTree . c h i l d e r n

Listing 1.2 shows the path to root function that creates the path from the
given execution to its top-level parent execution. First it checks if the given exe-
cution Exec has already been re-executed (lines 4–6). It does so by iterating over
all wasInformedBy statements in which Exec is the informant checking if the
statement is typed as recomp:re-execution. If such statement exists, path to root
returns the empty path to indicate that Exec is not on the front (line 6). Oth-
erwise, if none of the communication statements indicates re-execution by Re-
Comp, Exec is added to the path (line 7) and algorithm moves one level up
to check the parent execution (line 8). This is repeated until Exec is the top-
level parent in which case get parent(Exec) returns null and the loop ends. Note,
get parent(X) returns execution Y for which statement X wasPartOf Y holds.

Listing 1.2: Function to generate the path from the given execution to its top-
level parent.

1 f unct ion p a t h t o r o o t (ChangedItem , Exec) : Path
2 OutPath := [ChangedItem]
3 repeat
4 f o r wIB i n i t e r w a s i n f o rm e d b y (Exec)
5 i f typeof (wIB) i s ” recomp : re−e x e c u t i o n ” then
6 re tu rn []
7 OutPath . append (Exec)
8 Exec := g e t p a r e n t (Exec)
9 u n t i l Exec = n u l l

10 re tu rn OutPath

The discussion on other functions used in the proposed algorithm, such as
traverse derivations and iter used, is omitted from the paper as they are simple to
implement. Interested readers can download the complete algorithm written in
Prolog from our GitHub repository.2 Preliminary performance tests showed us

2 https://github.com/ReComp-team/IPAW2018

https://github.com/ReComp-team/IPAW2018

execution times in the order of milliseconds when run on a 250 MB database of
provenance facts for about 56k composite executions and a set of artefact doc-
uments of which two had 15 and 19 version changes. As expected, the response
time was increasing with the growing length of the derivation chain.

4 Related Work

A recent survey by Herschel et al. [9] lists a number of applications of provenance
like improving collaboration, reproducibility and data quality. It does not high-
light, however, the importance of process re-computation which we believe needs
much more attention nowadays. Large, data-intensive and complex analytics re-
quires effective means to refresh its outcomes while keeping the re-computation
costs under control. This is the goal of the ReComp meta-process [6]. To the best
of our knowledge no prior work addresses this or a similar problem.

Previous research on the use of provenance in re-computation focused on
the final steps of our meta-process: partial or differential re-execution. In [4]
Bavoil et al. optimised re-execution of VisTrails dataflows. Similarly, Altintas et
al. [2] proposed the “smart” rerun of workflows in Kepler. Both consider data
dependencies between workflow tasks such that only the parts of the workflow
affected by a change are rerun. Starflow [3] allowed the structure of a workflow
and subworkflow downstream a change to be discovered using static, dynamic
and user annotations. Ikeda et al. [10] proposed a solution to determine the
fragment of a data-intensive program that needs rerun to refresh stale results.
Also, Lakhani et al. [12] discussed rollback and re-execution of a process.

We note two key differences between the previous and our work. First, we
consider re-computation in the view of a whole population of past executions;
executions that may not even belong to the same data analysis. From the popu-
lation, we select only those which are affected by a change, and for each we find
the restart tree. Second, restart tree is a concise and effective way to represent
the change in the context of a past, possibly complex hierarchical execution. The
tree may be very effectively computed and also used to start partial rerun. And
using the restart tree, partial re-execution does not need to rely on data cache
that may involve high storage costs for data-intensive analyses [15].

Another use of provenance to track changes has been proposed in [8,11] and
recently in [14]. They address the evolution of workflows/scripts, i.e. the changes
in the process structure that affect the outcomes. Their work is complementary
to our view, though. They use provenance to understand what has changed in
the process e.g. to link the execution results together or decide which execution
provides the best results. We, instead, observe changes in the environment and
then react to them by finding the minimal set of executions that require refresh.

5 Discussion and Conclusions

In this paper we have presented a generic approach to use provenance annota-
tions to inform a re-computation framework about the selection of past execution

that require refresh upon a change in their data and software dependencies. We
call this selection the re-computation front. We have presented an effective al-
gorithm to compute the front, which relies on the information about changes
and annotations of re-executions. The algorithm can handle composite hierar-
chical structure of processes and help maintain the most up-to-date version of
the dependencies. Overall, it is a lightweight step leading to the identification of
the scope of changes, i.e. computing difference and estimating the impact of the
changes, and then to partial re-execution.

In line with [1], we note that a generic provenance capture facility which
stores basic information about processes and data is often not enough to sup-
port the needs of applications. For our algorithm to work properly, we have to
additionally annotate every re-execution with the wasInformedBy statement, so
the past executions are not executed again multiple times. This indicates that the
ProvONE model defines only a blueprint with minimal set of meta-information
to be captured which needs to be extended within each application domain.

References

1. Alper, P., Belhajjame, K., Curcin, V., Goble, C.: LabelFlow Framework for Annotating Work-
flow Provenance. Informatics 5(1), 11 (2018)

2. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scientific
workflow system. In: Moreau, L., Foster, I. (eds.) Provenance and Annotation of Data. vol.
4145, pp. 118–132. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

3. Angelino, E., Yamins, D., Seltzer, M.: Starflow: A script-centric data analysis environment. In:
McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) Provenance and Annotation of Data and
Processes. pp. 236–250. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

4. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., Vo, H.: VisTrails:
Enabling Interactive Multiple-View Visualizations. In: VIS 05. IEEE Visualization, 2005. pp.
135–142. No. Dx, IEEE (2005)

5. Ca la, J., Marei, E., Xu, Y., Takeda, K., Missier, P.: Scalable and efficient whole-exome data
processing using workflows on the cloud. Future Generation Computer Systems (Jan 2016)

6. Ca la, J., Missier, P.: Selective and recurring re-computation of Big Data analytics tasks: insights
from a Genomics case study. Tech. Rep. October, School of Computing, Newcastle University
(2017)

7. Cuevas-Vicentt́ın, V., Ludäscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., Dey, S.,
Kianmajd, P., Koop, D., Bowers, S., Altintas, I., Jones, C., Jones, M.B., Walker, L., Slaughter,
P., Leinfelder, B., Cao, Y.: ProvONE: A PROV Extension Data Model for Scientific Workflow
Provenance (2016)

8. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing
Rapidly-evolving Scientific Workflows. Proceedings of the 2006 International Conference on
Provenance and Annotation of Data pp. 10–18 (2006)

9. Herschel, M., Diestelkämper, R., Ben Lahmar, H.: A survey on provenance: What for? What
form? What from? The VLDB Journal 26(6), 1–26 (2017)

10. Ikeda, R., Das Sarma, A., Widom, J.: Logical provenance in data-oriented workflows. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE). pp. 877–888. IEEE (2013)

11. Koop, D., Scheidegger, C.E., Freire, J., Silva, C.T.: The provenance of workflow upgrades.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 6378 LNCS, 2–16 (2010)

12. Lakhani, H., Tahir, R., Aqil, A., Zaffar, F., Tariq, D., Gehani, A.: Optimized Rollback and Re-
computation. In: 2013 46th Hawaii International Conference on System Sciences. pp. 4930–4937.
No. I, IEEE (Jan 2013)

13. Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil,
Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers, J., Sahoo, S., Tilmes, C.:
PROV-DM: The PROV Data Model. Tech. rep., World Wide Web Consortium (2012)

14. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: noWorkflow: a Tool for Collecting, Ana-
lyzing, and Managing Provenance from Python Scripts. Proceedings of the VLDB Endowment
10(12), 1841–1844 (Aug 2017)

15. Woodman, S., Hiden, H., Watson, P.: Applications of provenance in performance prediction and
data storage optimisation. Future Generation Computer Systems 75, 299–309 (Oct 2017)

	Provenance Annotation and Analysis to Support Process Re-Computation

