
Versioned-PROV: A PROV extension
to support mutable data entities

João Felipe N. Pimentel1[0000−0001−6680−7470], Paolo Missier2[0000−0002−0978−2446],
Leonardo Murta1[0000−0002−5173−1247], and
Vanessa Braganholo1[0000−0002−1184−8192]

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil,
{jpimentel, leomurta, vanessa}@ic.uff.br

2 School of Computing, Newcastle University, Newcastle upon Tyne, UK,
paolo.missier@newcastle.ac.uk

Abstract. The PROV data model assumes that entities are immutable and all
changes to an entity e are represented by the creation of a new entity e′. This
is reasonable for many provenance applications but may produce verbose results
once we move towards fine-grained provenance due to the possibility of multiple
binds (i.e., variables, elements of data structures) referring to the same mutable
data objects (e.g., lists or dictionaries in Python). Changing a data object that is
referenced by multiple immutable entities requires duplicating those immutable
entities to keep consistency. This imposes an overhead on the provenance storage
and makes it hard to represent data-changing operations and their effect on the
provenance graph. In this paper, we propose a PROV extension to represent mu-
table data structures. We do this by adding reference derivations and checkpoints.
We evaluate our approach by comparing it to plain PROV and PROV-Dictionary.
Results indicate a reduction in the storage overhead for assignments and changes
in data structures fromO(N) andΩ(R×N), respectively, toO(1) in both cases
when compared to plain PROV (N is the number of members in the data structure
and R is the number of references to the data structure).

Keywords: Provenance · Specification · Interoperability.

1 Introduction

The PROV data model [6] is an extensible domain-agnostic model that describes the
provenance of entities through their relationships with activities, agents, and other en-
tities. An entity is a term used to represent any data, physical object, or concept whose
provenance may be obtained. The activity term describes actions or processes that use
entities and generate other entities. Finally, the agent term describes roles in activities.

PROV (and its predecessor, OPM [10]) has been applied to describe the provenance
gathered from operating systems [11], workflow systems [2], and scripts [1]. Tools that
collect operating system provenance map users as agents, file objects and program argu-
ments as entities, and program executions and system calls as activities [11]. Workflow
systems map data as entities and processing steps as activities [2]. Finally, tools that col-
lect coarse-grained provenance from scripts map data in function arguments and data
values obtained from return statements as entities, and function calls as activities [1].



2 Pimentel et al.

1 m = 10000 # max value
2 result = dist = [
3 [0, 1, 4],
4 [m, 0, 2],
5 [2, m, 0]]
6 nodes = len(dist)
7 indexes = range(nodes)
8 for k in indexes:
9 distk = dist[k]
10 for i in indexes:
11 if i == k: continue
12 disti = dist[i]
13 for j in indexes:
14 if j == i or j == k: continue
15 ikj = disti[k] + distk[j]
16 if disti[j] > ikj:
17 disti[j] = ikj
18 print(result[0][2])

(A)

0

1

1

2

4

2

2

(B)

Fig. 1. Floyd-Warshall implementation (A) and encoded input graph (B).

In the aforementioned approaches, entities are immutable data that go through pro-
cessing steps (modeled as activities) to produce new immutable data (modeled as enti-
ties). The assumption of immutable entities also exists in the PROV data model, where
changes to an entity e are explicitly represented by the creation of a new entity e′ gen-
erated by the activities that use the original e.

No known approaches use PROV to describe fine-grained provenance from scripts,
with support for variables and mutable data structures. Our goal is to extend the well-
known concepts of coarse-grained provenance for scripts, which is limited to function
arguments and function calls, to (1) script variables, (2) expressions with operators, and
(3) assignments, thus realizing fine-grained provenance for scripts. Specifically, we note
that we can map script variables to entities, expressions with operators to activities that
generate new entities, and assignments to activities that produce derivations, i.e., from
expression results to variables. For example, a = b + c can be mapped as an activity
+ that uses the entities b and c to generate the derived entity sum, and an assignment
activity that uses sum to generate the derived entity a.

This is a challenging goal because using PROV to represent fine-grained prove-
nance suffers from two main problems: (P1) when an entity that represents a collection
is changed (e.g., a list is updated to add an element), a new entity should be created,
together with multiple new relationships, connecting the new entity to each of the ex-
isting or new entities that represent the elements of the collection; and (P2) when more
than one variable is assigned to the same collection, and one of the variables changes,
all other variables should also change, as they refer to the same memory area. This
means that a new entity should be created for each variable that contains the collection,
together with edges for all entities that represent the elements of the collection. As we
show in Section 4, these problems lead to O(N) and Ω(R × N) extra elements in the
provenance graph, respectively, for collections with N elements and R references.

PROV-Dictionary [8] improves the support for data structures in PROV by adding
derivation statements that indicate that a new collection shares most elements of the
old one, but with the insertion or removal of specific elements. This solves P1 since it
reduces the number of edges to 1. However, it still suffers from P2, since it requires



Versioned-PROV: A PROV extension to support mutable data entities 3

updating all entities that refer to the same collection when it changes, which leads to
Ω(R) extra elements.

We propose Versioned-PROV, an extension that adds reference sharing and check-
points to PROV. Checkpoints solve problem P1 in O(1) by allowing the representation
of multiple versions of collections with a single entity. Reference sharing solves prob-
lem P2 in O(1) by allowing collections to be represented only once and referred to by
other entities through reference derivations plus checkpoints to indicate states.

This paper is organized as follows. Section 2 presents a running example, which is
based on the Floyd-Warshall algorithm [3]. Section 3 introduces Versioned-PROV. Sec-
tion 4 evaluates the approach by comparing it to PROV and PROV-Dictionary. Section 5
discusses related work, and Section 6 concludes the paper.

2 Running Example

While Versioned-PROV intends to be generic enough for any situation that requires
sharing references to mutable collections in PROV, we use fine-grained script prove-
nance as a case study for presenting our extension. More specifically, we use the Floyd-
Warshall algorithm [3] as a base to describe and evaluate the mapping of fine-grained
provenance from scripts using Versioned-PROV. This algorithm has relevant applica-
tions, such as finding the shortest path between two addresses in a navigation system.

The algorithm calculates the length of the shortest path between all pairs of nodes
in a weighted graph. It achieves this by updating the distance of the path from node i
to node j if there is a node k for which the distance of the path from i to k plus the
distance of the path from k to j is shorter than the distance from i to j. The result of
Floyd-Warshall is the set of shortest distances among all pairs of nodes, but it does not
produce the actual shortest paths. However, observing that the path between two nodes
is defined by the sum of two other paths, here we show that we can use the fine-grained
provenance of a given output distance to obtain the actual paths that have that distance.

Fig. 1 presents a Python implementation of Floyd-Warshall with a predefined input
graph. Line 18 prints the distance of the shortest path from 0 to 2. While there is a
direct edge with cost 4, the actual result is 3, because the shortest path goes from 0 to
1, with cost 1, and then from 1 to 2, with cost 2. After the algorithm changes the result
matrix, querying the provenance of result[0][2] in line 18 should indicate that it
derives from result[0][1] and result[1][2].

3 Versioned-PROV

Versioned-PROV adds the concepts of checkpoints, reference sharing, and accesses to
PROV. Different from plain PROV, which assumes immutable entities, a Versioned-
PROV entity may represent multiple versions of a data object. We present Versioned-
PROV concepts in Section 3.1. In Section 3.2, we detail Versioned-PROV by presenting
a mapping of a part assignment in the Floyd-Warshall algorithm, and contrasting it to
PROV and PROV-Dictionary.



4 Pimentel et al.

Table 1. Versioned-PROV types.

Type Statement Meaning

Reference wasDerivedFrom
The generated entity derived from the used entity by reference, in-
dicating that both have the same numbers.

Put hadMember
Put a member into a collection key position at a given checkpoint.
Using a placeholder as member indicates a deletion.

Table 2. Versioned-PROV attributes.

Attribute Range Statement Meaning

checkpoint
Sortable

Value
hadMember

Checkpoint of the collection update.
Required for hadMember with type Put.

checkpoint
Sortable

Value
Events (e.g., used,
wasDerivedFrom)

Checkpoint of the event. Required for
wasDerivedFrom with type Reference.

key String hadMember The position of Put.
key String wasDerivedFrom The position of the accessed collection entity.
collection Entity Id wasDerivedFrom Collection entity that was accessed or changed.

access ‘r’ or ‘w’ wasDerivedFrom
Indicates whether an access reads (‘r’) an element
from a collection or writes (‘w’) into it.

3.1 Concepts

The PROV data model is based on the idea of instantaneous transition events that de-
scribe usage, generation, and invalidation of entities [6]. These events are important to
describe the provenance timeline without explicit time and ordering. Versioned-PROV
builds on top of PROV events and determines that a version of a data object changes
on a generation event, and is accessed on a usage event. Instead of relying on the im-
plicit ordering of events from PROV, Versioned-PROV uses checkpoint attributes to tag
events and changes on entities. Then, it uses the explicit ordering of checkpoints to ob-
tain a version of a data object. Hence, we require a total order to be defined on the set of
checkpoints. Our implementation of Floyd-Warshall uses timestamps as checkpoints,
but the figures in this paper use sequential numbers. Both can be ordered.

As an extension of PROV, Versioned-PROV follows its semantics. Thus, despite the
goal of representing multiple versions of a data object, an entity in PROV can only be
generated once, according to the unique-generation constraint of PROV [6]. Thus, the
only mutability on the Versioned-PROV entities occurs in the memberships of collec-
tion entities. A collection may have different members at different moments, but the
operations that put and delete members from a collection are incremental. It means that
if a collection c had an entity e1 at checkpoint 1 and an operation put the entity e2 into
a different position of c at checkpoint 2, then c had both e1 and e2 at checkpoint 2.

Different from PROV and PROV-Dictionary that use copy-by-value to represent
data-structure assignments and derivations, Versioned-PROV uses copy-by-reference.
Hence, it defines the data structure once and uses reference sharing to indicate that more
than one entity refers to the same data structure. When generating and using Versioned-
PROV entities, one must indicate a checkpoint to unfold the specific version of the data
structure for any given event. When an entity associated with a data structure changes at



Versioned-PROV: A PROV extension to support mutable data entities 5

B

A

C

disti@j#3

assign11

gen

ikj#2

der

value:3
type: access
label: disti[j]
line: 17

use

j#5

use

disti@j#2

use

disti#2

use

dist#1

use

result#1

use

type:assign

value:3
type: name
label: ikj
line: 15

value:1
type: name
label: j
line: 13

value:10000
type: access
label: disti[j]
line: 16

matrix20matrix21 matrix22

value:[2, 10000, 0]
type: name
label: disti
line: 12

matrix0#1 matrix1#1matrix2#1

disti#3

gen

derder

value:[2, 3, 0]
type: list
label: disti
line: 17

result#2

gen

derder

value:[[...]]
type: name
label: result
line: 17

dist#2

gen

derder

value:[[...]]
type: list
label: dist
line: 17

Fig. 2. Plain PROV mapping of disti[j] = ikj.

a given checkpoint, we can infer that all entities that share reference with it also changes
at the same checkpoint, without any extra explicit statements.

Versioned-PROV uses PROV optional attributes and defines types to extend PROV.
Table 1 presents the Versioned-PROV types, and Table 2 presents the Versioned-PROV
attributes. The attributes key, collection, and access of wasDerivedFrom may only be
used when the derivation is related to an access or collection update. Similarly, the type
Put can only appear in data structures, to define their items. Differently, the attribute
checkpoint and the type Reference can appear anywhere, despite affecting only collec-
tion entities. This keeps the model consistent in all situations that involve using and
generating entities.

3.2 Mapping Example

We use the script example of Section 2 to detail Versioned-PROV in contrast to PROV
and PROV-Dictionary. We map the execution provenance of the Floyd-Warshall algo-
rithm (Fig. 1) to these three approaches. Due to space constraints, we present only the
first execution of the part assignment in line 17 of Fig. 1 (i.e., disti[j] = ikj).
The complete mapping is available at [13].

Fig. 2, Fig. 3, and Fig. 4 present the part assignment mapped to plain PROV, PROV-
Dictionary, and Versioned-PROV, respectively. In our mappings, we name entities based
on their textual representations. Since a textual element (e.g., a variable) can be repre-
sented by multiple entities, we enumerate them. Thus, ikj#2 denotes the second en-
tity that represents the variable ikj (as defined in line 15 of Fig. 1). In addition to this
numbering, we change the notation of accesses to avoid using escaping characters to
represent square brackets. Instead, we use the collection name followed by “@” and the
accessed key. For instance, we use disti@j to represent disti[j] (lines 16-17 of
Fig. 1). Note in region A of these figures that we have both disti@j#2 in gray, rep-
resenting disti[j] of line 16, and disti@j#3 in yellow, representing disti[j]
of line 17. The latter is the result of the part assignment.



6 Pimentel et al.

B

A

C

disti@j#3

assign11

gen

ikj#2

der
value:3
type: access
label: disti[j]
line: 17

use

j#5

use

disti@j#2

use

disti#2

use

dist#1

use

result#1

use

type:assign

value:3
type: name
label: ikj
line: 15

value:1
type: name
label: j
line: 13

value:10000
type: access
label: disti[j]
line: 16

value:[2, 10000, 0]
type: Dictionary
label: disti
line: 12

der-ins

matrix20

[0]

matrix21

[1]

matrix22

[2]

empty

der

matrix0#1matrix1#1 matrix2#1

der-ins

der-insder-ins

[0][1] [2]der

[0][1] [2]

der

[0][1] [2]

der

disti#3

gen

der der
value:[2, 3, 0]
type: Dictionary
label: disti
line: 17

der-ins

result#2

gen

der

der

value:[[...]]
type: Dictionary
label: result
line: 17

der-ins

dist#2

gen

der

der

value:[[...]]
type: Dictionary
label: dist
line: 17

der-ins

[1]

der

der

[2]

der

[2]

Fig. 3. PROV-Dictionary mapping of disti[j] = ikj.

We divide these figures into three regions: A represents the base part assignment
that exists in all approaches; B represents a portion of the matrix that existed before this
operation; and C represents the overhead entities (i.e., entities that are specific to an
approach) that were generated as consequence of the part assignment. Note that Fig. 4
has no region C since Versioned-PROV does not have overhead entities. All the entities
that exist in Versioned-PROV also exist in the other approaches.

We also use the color red to denote the overhead. Note that plain PROV has a bigger
overhead than PROV-Dictionary, which has a bigger overhead than Versioned-PROV.
This occurs due to the problems P1 and P2 mentioned in the introduction. Additionally,
we use gray to indicate the portion of the provenance graph that is not related to the part
assignment operation. As expected, all nodes and edges in region B are gray. The only
gray node outside region B is disti@j#2 in region A. This node appears due to the
if condition in line 16 of Fig. 1. Hence, it is specific to this algorithm and not a generic
node that occurs in all part assignments.

The operation disti[j] = ikj is putting the value of ikj into the position j
of disti. In region A of all figures, ikj#2 represents the variable ikj; j#5 repre-
sents j; and disti#2 represents disti. Additionally, disti@j#3 represents the
resulting disti[j]. Note that disti in this execution is the same list as dist[2],
represented by the entity matrix2#1 (i.e., they point to the same memory area). Note
also that dist and result are the same matrix.

Since entities are immutable in PROV and PROV-Dictionary, an update in a col-
lection (disti#2 in region A) requires the creation of a new collection (disti#3
in region C) that contains the updated members. PROV suffers from P1, thus it recon-
structs the membership of the new entity by using N hadMember relationships in a



Versioned-PROV: A PROV extension to support mutable data entities 7

A B

disti@j#3

assign11

gen
ckpt: 36

der ref
ac-write
ckpt: 36

value:3
type: access
label: disti[j]
line: 17

ikj#2

use
ckpt: 36

j#5

use

disti@j#2

use

disti#2

use
ckpt: 35

type:assign

value:3
type: name
label: ikj
line: 15

value:1
type: name
label: j
line: 13

value:10000
type: access
label: disti[j]
line: 16

dist@i#2
der ref

ckpt: 27

value:[2, 10000, 0]
type: name
label: disti
line: 12

[1]

matrix2#1

der ref
ckpt: 26

put [1]
ckpt: 36

m

put [1]
ckpt: 2

0

put [2]
ckpt: 2

2

put [0]
ckpt: 2

value:[2, 10000, 0]
type: list
label: [2, m, 0]
line: 5

Fig. 4. Versioned-PROV mapping of disti[j] = ikj.

collection with N members (3 in this case). We represent these relationships by edges
without labels in Fig. 2. PROV-Dictionary, on the other hand, uses a single derived-
ByInsertionFrom (der-ins edges in Fig. 3) to indicate that a collection was updated
by the insertion of a member at a position (disti#3 derived from disti#2 by the
insertion of disti@j#3 from region A at position 1).

As stated before, disti#2 represents the same value as matrix2#1. Thus, we
would have to update matrix2#1 to reflect the change. This does not occur because
matrix2#1 is out of the scope of the execution at this point and cannot be directly
used without an access to dist#1 or result#1. Due to P2, plain PROV and PROV-
Dictionary update dist#1 and result#1 by generating dist#2 and result#2
in region C and replacing matrix2#1, in the second position, by disti#3.

In addition to this overhead in PROV and PROV-Dictionary, we use two extra was-
DerivedFrom edges for every new collection entity to indicate that they derive both from
the collection before the update and from the inserted value (ikj#2). Thus, in PROV,
this operation has an overhead of 3 entities, 6 wasDerivedFrom, and 9 hadMember, and
in PROV-Dictionary, this operation has an overhead of 3 entities, 6 wasDerivedFrom,
and 3 derivedByInsertionFrom. Moreover, these overheads depend on the number of
elements in the collections and the number of references to them.

Versioned-PROV does not suffer from these problems. It uses checkpoints to indi-
cate multiple versions of a collection, and derivations by reference to indicate that two
or more entities represent the same collection. In region C of Fig. 4, matrix2#1 was
defined at checkpoint 2with the entities 2, m, 0 as members. This changed at checkpoint
36 since this part assignment put disti@j#3 in the first position. Thus, matrix2#1
has a version with the members 2, m, 0 between checkpoints 2 and 35, and a version
with the members 2, disti@j#3, 0 after checkpoint 36. Note that in Fig. 4 we show
the first value representation of collections for easy reading, but other Versioned-PROV
implementations are free to decide on having the value attribute or not.

The aforementioned versions are valid for all the entities that derive by reference
from matrix2#1. In Fig. 4, dist@i#2 derived by reference from matrix2#1, and



8 Pimentel et al.

disti#2 derived by reference from dist@i#2. By transitivity, disti#2 derived
by reference from matrix2#1. This derivation avoids the creation of disti#3 and
all the other entities and relationships that exist in the other mappings.

Since an entity can represent multiple versions of a collection in Versioned-PROV,
we also use the checkpoint attribute in the use of disti#2 to indicate the used version.
Note in region A of Fig. 4 that this operation is using disti#2 at checkpoint 35 to
generate disti@j#3 at checkpoint 36.

Every entity can only be derived by a single reference: if the algorithm assigns a new
value to the variable disti (in line 12 of Fig. 1), we must create a new entity (e.g.,
disti#3) as a placeholder for the new value. That is, the checkpoint attribute does not
apply for reusing an entity with different values. A variable entity in Versioned-PROV
represents not just the variable name, but a pair consisting of the variable name and its
value (memory area). Note that we do not need a new entity for disti#2 in the part
assignment as it still references the same memory area after the operation.

Finally, disti@j#3 derived by reference from ikj#2 in region A of Fig. 4. Since
these entities are not collections, the derivation by reference has no impact on them we
use it just for consistency among all derivations. However, this specific derivation has
other attributes in addition to type and checkpoint. We also indicate that it is a write ac-
cess that puts the derived entity in the key position 1 of the collection disti#2. This
information is required to answer the provenance query of Floyd-Warshall without en-
coding matrix positions into entities. Note that the members of matrix2#1 in region
B of Fig. 4 are the actual entities that exist in line 5 of Fig. 1, while the members of
matrix2#1 in Fig. 2 and Fig. 3 are dummy entities that encode the matrix position.

4 Evaluation

We evaluate the space overhead of Versioned-PROV in comparison to plain PROV and
PROV-Dictionary by measuring the number or PROV-N statements each approach re-
quires in similar situations. We analyze both the running example and the general case.

Space overhead analysis of the running example. For most operations, the storage
requirements are the same in all three approaches. The only differences were observed
in data structures definitions (lines 2-5 of Fig. 1), reference assignments or accesses
(lines 2-5, 7, 9, 12, 18), and data structure updates (line 17).

In [13] we present the complete provenance graph of Floyd-Warshall in these three
mappings, coloring only nodes and edges related to the list definitions, reference deriva-
tions, and part assignments, since these differ in the mappings. All nodes and edges that
are common to all mappings are in light gray. PROV has many colored edges all over
the graph due to the aforementioned problems P1 and P2. PROV-Dictionary has fewer
scattered edges in the graph, but it has a huge concentration of Dictionary entities that
derive from a single EmptyDictionary entity due to problem P2. Finally, Versioned-
PROV has fewer colored nodes and edges since it does not suffer from these issues.

In Fig. 5(A) we count how many nodes are specific to each approach. Note that
PROV and PROV-Dictionary use respectively 7.52 and 4.14 times the number of spe-
cific PROV-N statements used by Versioned-PROV to represent the same data struc-
tures. Additionally, Versioned-PROV does not impose any node overhead. All of its



Versioned-PROV: A PROV extension to support mutable data entities 9

Plain Dict Ver
(Nodes)

Co
un

t
19 20

0
Plain Dict Ver

(Edges)

139

67

21

Nodes Edges

Plain Dict Ver
(Both)

158

87

21

(A)

Plain Dict Ver
(Nodes)

Co
un

t

212 213
193

Plain Dict Ver
(Edges)

335

263
220

Nodes Edges

Plain Dict Ver
(Both)

547
476

413

(B)

Fig. 5. Number of PROV, PROV-Dictionary, and Versioned-PROV PROV-N statements for list
definitions, reference derivations, and part assignments (A) and total number of statements (B).

overhead occurs in edges that specify the membership of collections. On the other hand,
PROV and PROV-Dictionary impose node overhead to indicate the position of elements
in data structures and to derive immutable entities from existing ones. Moreover, by
comparing Fig. 5(A) with Fig. 5(B), which shows the total number of statements, we
can see that 29% of PROV statements, 18% of PROV-Dictionary statements, and 5% of
Versioned-PROV statements are the overhead caused by collection operations.

These results refer to a small Floyd-Warshall execution, with a 3× 3 matrix repre-
senting the input graph. Since the overheads of PROV and PROV-Dictionary grow in
terms of the number of collection elements and the number of shared references, more
complex input graphs and algorithms can cause a much larger overhead.

Space overhead analysis of the general case. In Section 3, we describe the part as-
signment of PROV, PROV-Dictionary, and Versioned-PROV. Fig. 6 presents the growth
of statements in the three approaches for part assignments. Versioned-PROV has an
overhead of 2 PROV-N statements: the hadMember that puts the member in the col-
lection, and the used that indicates the changed collection. Plain PROV has an overhead
of (3 + N) × R statements for collections with N members and R references: it
creates R entities, each of them with 2 wasDerivedFrom and N hadMember. Finally,
PROV-Dictionary has an overhead of 4 × R statements: it creates R entities, each
with 2 wasDerivedFrom and 1 derivedByInsertionFrom. Note that both plain PROV
and PROV-Dictionary also use the changed collection, but this used relationship can
be inferred from one of the additional wasDerivedFrom statements. Hence, we count
it only as an overhead for Versioned-PROV. The number of statements for PROV and
PROV-Dictionary are lower bounds. If we update a collection x that is also a member
of another collection y, we must also update all the references of y and apply this same
rule with respect to references and number of elements. This occurs in our example of
Section 3.2: the update of disti#2 with R = 1 and N = 3 motivates the update of
dist#1 with R = 2 and N = 3.

Besides part assignments, the approaches also differ in list definitions and deriva-
tions by reference. Fig. 7(A) shows the overhead of defining a list in each approach.



10 Pimentel et al.

0 20 40 60 80 100
List Size

Fixed: 1 reference

0

20

40

60

80

100
St

at
em

en
ts

0 20 40 60 80 100
List Size

Fixed: 20 references

0

500

1000

1500

2000

PROV PROV-Dictionary Versioned-PROV

0 20 40 60 80 100
List References

Fixed: 1 element

0

100

200

300

400

St
at

em
en

ts

0 20 40 60 80 100
List References

Fixed: 20 elements

0

500

1000

1500

2000

List Size

0
20

40
60

80
100 List

 References

0
20

40
60

80
100

St
at

em
en

ts

0

2000

4000

6000

8000

10000

Fig. 6. Overhead functions of part assignments.

Versioned-PROV has an overhead of only N hadMember statements to define a list
with N elements since they indicate the members with their positions in the list and
we reference these positions in accesses. Thus, the provenance of Floyd-Warshall in
Versioned-PROV includes the accessed positions, allowing us to use these positions to
reconstruct the paths of the graph.

On the other hand, plain PROV and PROV-Dictionary have overheads of 3×N+2
statements, and 1 (global) +2×N+3 statements, respectively. This occurs because
these approaches do not indicate the access position and the access derivation directly
from the member. Hence, we must encode the position information into entities. This
encoding requires the creation of N dummy entities. Each one of these dummy enti-
ties derives from their respective entities (i.e., N wasDerivedFrom) by the application
of a new definelist activity. The resulting list entity is also generated by this activ-
ity (i.e., 1 wasGeneratedBy and 1 list entity itself), and it has the dummy entities as
members. PROV-Dictionary expresses the membership with a single derivedByInser-
tionFrom statement from a single global EmptyDictionary, while PROV additionally
requires N hadMember statements to define the membership of all elements.

Fig. 7(B) compares the growth of overhead in derivations by reference. Versioned-
PROV imposes no statement overhead since it uses attributes of wasDerivedFrom
to indicate the derivation. On the other hand, PROV and PROV-Dictionary have to
recreate the membership of this new entity. PROV requires N hadMember statements,
and PROV-Dictionary requires a single derivedByInsertionFrom statement. Note that
both PROV-Dictionary and Versioned-PROV do not grow in terms of the number of
elements, but Versioned-PROV still performs better than PROV-Dictionary, since the
former does not require any extra statement.

5 Related Work

Many approaches have been proposed to collect and represent provenance from scripts.
Some tools export provenance from scripts to OPM [1, 16], which is easily convert-
ible to PROV. However, these tools work at coarse-grain and do not take mutable data



Versioned-PROV: A PROV extension to support mutable data entities 11

0 20 40 60 80 100
List Size

(A)

0

100

200

300
St

at
em

en
ts

PROV PROV-Dictionary Versioned-PROV

0 20 40 60 80 100
List Size

(B)

0

20

40

60

80

100

Fig. 7. Overhead functions for list definitions (A) and derivations by reference (B).

structures into account. Other tools work at fine-grain but use non-interoperable mech-
anisms for storage and distribution [5, 14, 15]. Moreover, these approaches work only
at the variable and statement dependency level and do not provide support for tracking
the provenance of changes on data structures referred by multiple variables.

Michaelides et al. [7] collect fine-grained provenance from Blockly variables and
export it to plain PROV. Plain PROV assumes that entities are immutable and uses
hadMember statements to describe structures, but its usage is too verbose and imposes
a high overhead in the storage of mutable data structures, as we present in Section 4.

PROV has been extended in many different ways [2, 4, 9], but most extensions focus
only on representing domain-specific provenance and do not improve the support for
data structures. The PROV-Dictionary extension [8] improves the PROV support for
data structures by adding insertion and removal derivations. Such derivations reduce
the storage overhead in comparison to PROV, but still produces a high overhead in
comparison to Versioned-PROV due to the assumption of immutability.

6 Final Remarks

In this paper, we propose Versioned-PROV, a PROV extension that supports muta-
ble data structures. Tools that collect fine-grained provenance from scripts can use
Versioned-PROV to support the collection of provenance from complex data structures
and variables that are implicitly modified due to the existence of other variables pointing
to the same mutable data. Nevertheless, our extension is not restricted to scripts.

The proposed approach has some limitations. First, while our extension reduces the
storage overhead for provenance collection from scripts, it introduces an extra over-
head for querying due to the requirement of unfolding data structure versions based on
checkpoints. Thus, users must consider this tradeoff according to their needs. Second,
by using a dictionary-like structure to represent lists (i.e., indexes mapped to keys, and
elements mapped to values), some operations still produce an overhead in the prove-
nance storage. For instance, inserting an element at the beginning of a list will require
updating all the other members of the list. Third, using an explicit checkpoint ordering
imposes synchronization challenges for parallel provenance collection. Finally, the us-
age of optional attributes to extend PROV imposes a storage overhead in disk due to the
attribute name repetition. However, this overhead may not occur depending on how it
is stored. A normalized storage schema would remove the repetitions.



12 Pimentel et al.

As future work, we intend to develop an efficient querying algorithm for Versioned-
PROV. We also plan to adopt the proposed model in noWorkflow [12] to export its
fine-grained provenance [14] and evaluate it in real scenarios. We foresee the elabora-
tion of unfolding algorithms that converts Versioned-PROV into plain PROV to improve
its interoperability and optimize analyses that require many queries. These algorithms
could also run by demand, populating caches of unfolded data structures. Addition-
ally, we plan to work on an extension of Versioned-PROV to improve the incremental
membership definition of lists.

Finally, our companion website [13] contains all the source code used to generate
images of this paper in addition to detailed descriptions of the mapping we applied in
each approach, as well as a preliminary query implementation.

References

1. Angelino, E., et al.: StarFlow: A script-centric data analysis environment. In: IPAW. pp.
236–250. Springer Berlin Heudelberg, Troy, USA (2010)

2. Costa, F., et al.: Capturing and querying workflow runtime provenance with ProV: a practical
approach. In: Joint EDBT/ICDT Workshops. ACM, Genoa, Italy (2013)

3. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM. 5(6), 345 (1962)
4. Garijo, D., Gil, Y.: Augmenting PROV with Plans in P-PLAN: Scientific Processes as Linked

Data. In: LISC. Boston, USA (2012)
5. Lerner, B., et al.: Using Introspection to Collect Provenance in R. Informatics 5(1), 12 (2018)
6. Luc Moreau, Paolo Missier: PROV-DM: The PROV Data Model (2012),

http://www.w3.org/TR/prov-dm/
7. Michaelides, D.T., et al.: Intermediate Notation for Provenance and Workflow Reproducibil-

ity. In: IPAW. pp. 83–94. Springer Cham, McLean, USA (2016)
8. Missier, P., et al.: PROV-Dictionary: Modeling Provenance for Dictionary Data Structures,

https://www.w3.org/TR/prov-dictionary/
9. Missier, P., et al.: D-PROV: Extending the PROV Provenance Model with Workflow Struc-

ture. In: TaPP. USENIX, Lombard, USA (2013)
10. Moreau, L., et al.: The Open Provenance Model: An Overview. In: IPAW. vol. 5272, pp.

323–326. Springer Berlin Heidelberg, Salt Lake City, USA (2008)
11. Muniswamy-Reddy, K.K., et al.: Provenance-Aware Storage Systems. In: USENIX Annual

Technical Conference. pp. 43–56. USENIX, Boston, USA (2006)
12. Murta, L.G.P., et al.: noWorkflow: Capturing and Analyzing Provenance of Scripts. In:

IPAW. pp. 71–83. Springer Cham, Cologne, Germany (2014)
13. Pimentel, J.F., et al.: Versioned-PROV, https://dew-uff.github.io/versioned-prov/
14. Pimentel, J.F., et al.: Fine-grained Provenance Collection over Scripts Through Program Slic-

ing. In: IPAW. Springer Cham, McLean, USA (2016)
15. Runnalls, A., Silles, C.: Provenance tracking in R. In: IPAW. pp. 237–239. Springer Berlin

Heidelberg, Santa Barbara, USA (2012)
16. Tariq, D., et al.: Towards Automated Collection of Application-level Data Provenance. In:

TaPP. USENIX, Boston, USA (2012)


