PGP-mc: Towards a Multicore Parallel
Approach for Mining Gradual Patterns

Anne Laurent!, Benjamin Negrevergne?, Nicolas Sicard?, and Alexandre
Termier?

L LIRMM - UM2- CNRS UMR 5506 - 161 rue Ada - 34392 Montpellier Cedex 5
laurent@lirmm.fr
http://www.lirmm.fr
2 LIG - UJF-CNRS UMR 5217 - 681 rue de la Passerelle, B.P. 72, 38402 Saint
Martin d’Heres
Benjamin.Negrevergne@imag.fr, Alexandre.TermierQimag.fr
http://www.liglab.fr
3 LRIE - EFREI - 30-32 av. de la république, 94 800 Villejuif
nicolas.sicard@efrei.fr
http://www.efrei.fr

Abstract. Gradual patterns highlight complex order correlations of the
form “The more/less X, the more/less Y”. Only recently algorithms have
appeared to mine efficiently gradual rules. However, due to the complex-
ity of mining gradual rules, these algorithms cannot yet scale on huge
real world datasets. In this paper, we propose to exploit parallelism in
order to enhance the performances of the fastest existing one (GRITE).
Through a detailed experimental study, we show that our parallel algo-
rithm scales very well with the number of cores available.

1 Introduction

Frequent pattern mining is a major domain of data mining. Its goal is to ef-
ficiently discover in data patterns having more occurrences than a pre-defined
threshold. This domain started with the analysis of transactional data (frequent
itemsets), and quickly expanded to the analysis of data having more complex
structures such as sequences, trees or graphs. Very recently, a new pattern min-
ing problem appeared: mining frequent gradual itemsets (also known as gradual
patterns). This problem considers transactional databases where attributes can
have a numeric value. The goal is then to discover frequent co-variations between
attributes, such as: “The higher the age, the higher the salary”. This problem
has numerous applications, as well for analyzing client databases for marketing
purposes as for analyzing patient databases in medical studies. Di Jorio et al. [1]
recently proposed GRITE, a first efficient algorithm for mining gradual itemsets
and gradual rules capable of handling databases with hundreds of attributes,
whereas previous algorithms where limited to six attributes [2]. However, as
gradual itemset mining is far more complex than traditionnal itemset mining,

GRITE cannot yet scale on large real databases, having millions of lines and
hundreds or thousands of attributes.

One solution currently investigated by pattern mining researchers for re-
ducing the mining time is to design algorithms dedicated for recent multi-core
processors [3,4]. Analyzing their first results shows that the more complex the
patterns to mine (trees, graphs), the better the scale-up results on multiple cores
can be. This suggests that using multicore processors for mining gradual item-
sets with the GRITE algorithm could give interesting results. We show in our
experiments that indeed, there is a quasi-linear scale up with the number of cores
for our multi-threaded algorithm.

The outline of this paper is as follows: In Section 2, we explain the notion of
gradual itemsets. In Section 3, we present the related works on gradual patterns
and parallel pattern mining. In Section 4, we present our parallel algorithm
for mining frequent gradual itemsets, and Section 5 shows the results of our
experimental evaluation. Last, we conclude and give some perspectives in Section
6.

2 Gradual Patterns

Gradual patterns refer to itemsets of the form “The more/less X1, ..., the
more/less X, ”. We assume here that we are given a database DB that consists
of a single table whose tuples are defined on the attribute set Z. In this context,
gradual patterns are defined to be subsets of Z whose elements are associated
with an ordering, meant to take into account increasing or decreasing variations.
Note that ¢[I] hereafter denotes the value of t over attribute I.

For instance, we consider the database given in Table 1 describing fruits and
their characteristics.

Id|Size (S)|Weight (W)|Sugar Rate (SR)
11 6 6 5.3
t2| 10 12 5.1
t3 14 4 4.9
ta| 23 10 4.9
ts 6 8 5.0
te 14 9 4.9
t7| 18 9 5.2

Table 1. Fruit Characteristics

Definition 1 (Gradual Itemset) Given a table DB over the attribute set I, a
gradual item is a pair (I,0) where I is an attribute in T and 6 a comparison
operator in {>,<}.

A gradual itemset g = {(I1,01), ..., (I, 0k)} is a set of gradual items of car-
dinality greater than or equal to 2.

For example, (Size,>) is a gradual item, while {(Size,>), (Weight, <)} is a
gradual itemset.

The support of a gradual itemset in a database DB amounts to the extend
to which a gradual pattern is present in a given database. Several support defi-
nitions have been proposed in the literature (see Section 3 below). In this paper,
we consider the support as being defined as the number of tuples that can be
ordered to support all item comparison operators:

Definition 2 (Support of a Gradual Itemset) Let DB be a database and g =
{(I1,61), ..., (I, 0k)} be a gradual itemset. The cardinality of g in DB, denoted
by Mg, DB), is the length of the longest list | = (t1,...,t,) of tuples in DB
such that, for every p = 1,...,n—1 and every j = 1,...,k, the comparison
tp[Ij] 0j thrl[Ij] holds.

The support of g in DB, denoted by supp(g, DB), is the ratio of A(g, DB)

over the cardinality of DB, which we denote by |DB|. That is, supp(g, DB) =
A(g,DB)
[DB[*

In the example database, for the gradual itemset g = {(S,>), (SR g)}
have \(g, DB) = 5, with the list I = (t1,t2, t3, ts,t4). Hence supp(g, DB)

3 Related Works

Gradual patterns and gradual rules have been studied for many years in the
framework of control, command and recommendation. More recently, data min-
ing algorithms have been studied in order to automatically mine such patterns
[1,2,5-8].

The approach in [7] uses statistical analysis and linear regression in order to
extract gradual rules. In [2], the authors formalize four kinds of gradual rules in
the form The more/less X is in A, then the more/less Y is in B, and propose an
Apriori-based algorithm to extract such rules. Despite a good theoretical study,
the algorithm is limited to the extraction of gradual rules of length 3.

In [1] and [5], two methods to mine gradual patterns are proposed. The differ-
ence between these approaches lies in the computation of the support: whereas,
in [5], a heuristic is used and an approximate support value is computed, in [1],
the correct support value is computed.

In [8], the authors propose another way to compute the support, by using
ranking such as the Kendall tau ranking correlation coefficient, which basically
computes, instead of the length of the longest path, the number of pairs of lines
that are correctly ordered (concordant and discordant pairs).

To the best of our knowledge, there are no existing parallel algorithms to mine
gradual itemsets. The most advanced works in parallel pattern mining have been
presented by [3] for parallel graph mining and [4] for parallel tree mining. These
works have showed that one of the main limiting factor for scalable parallel
perfomance was that the memory was shared among all the cores. So if all the
cores request a lot of data simultaneously, the bus will be saturated and the

performance will drop. The favorable case is to have compact data structures
and complex patterns where a lot of computations have to be done for each
chunk of data transfered from memory.

With its complex support computation and simple input data, gradual pat-
tern mining is thus a favorable case for parallelization. The main difficulty will be
to achieve a good load balance. We present our solution in the following section.

4 PGP-mc: Parallel Gradual Pattern Extraction

The sequential GRITE algorithm (see [1] for detailed algorithm) relies on a
tree-based exploration, where every level N 4 1 is built upon the previous level
N. The first level of the tree is initialized with all attributes, which all become
itemset siblings. Then, itemsets from the second level are computed by combining
frequent itemsets siblings from the first level through what we call the Join()
procedure. Candidates which match a pre-defined threshold - they are considered
as frequent - are retained in level N + 1.

In this approach, every level cannot be processed until the previous one has
been completed, at least partially. So, we focused our efforts on the parallelization
of each level construction where individual combinations of itemsets (through the
Join() procedure) are mostly independant tasks. The main problem is that the
number of operations cannot be easily anticipated, at least for levels higher than
2. Moreover, the number of siblings may vary by a large margin depending of
the considered itemsets. A simple parallel loop would lead to an irregular load
distribution on several processing units.

In order to offset this irregularity, our approach dynamically attributes new
tasks to a pool of threads on a “first come, first served” basis. At first, all frequent
itemsets from the given level are marked unprocessed and queued in @;. A new
frequent itemset 7 is dequeued and all its siblings are stored in a temporary queue
Q@s;. Each available thread then extracts the next unprocessed sibling j from Q;
and builds a new candidate k from ¢ and j. The candidate is stored in level N +1
if it is considered frequent. When Q; is empty, the next frequent itemset 7 is
dequeued and Qyg; is filled with its own siblings. The process is repeated until all
itemsets 4 are processed (e.g., @Q; is empty).

5 Experimental Results and Discussion

In this section we report experimental results from the execution of our program
on two different workstations with up to 32 processing cores : COYOTE, with
8 AMD Opteron 852 processors (each with 4 cores), 64GB of RAM with Linux
Centos 5.1, g++ 3.4.6 and IDKONN, with 4 Intel Xeon 7460 processors (each
with 6 cores), 64GB of RAM with Linux Debian 5.0.2, g++ 4.3.2.

Most of the experiments are led on synthetic databases automatically gener-
ated by a tool based on an adapted version of IBM Synthetic Data Generation
Code for Associations and Sequential Patterns®. This tool generates numeric

4 www.almaden.ibm.com /software/projects/hdb/resources.shtml

databases depending on the following parameters: number of lines, number of
attributes/columns and average number of distinct values per attribute.

5.1 Scalability

The following figures illustrate how the proposed solution scales with both the
increasing number of threads and the growing complexity of the problem. The
complexity comes either from the number of lines or from the number of at-
tributes in the database as the number of individual tasks is related to the
number of attributes while the complexity of each individual task - itemsets
joining - depends on the number of lines. In this paper, we report results for two
sets of experiments.

The first experiment set involves databases with relatively few attributes
but a significant number of lines. This kind of databases usually produces few
frequent items with moderate to high thresholds. As a consequence the first two
level computations represent the main part of the global execution time. Figures
1(a) and 1(b) show the evolution of execution time and speed-up respectively
for 10000-line databases - ranging from 10 to 50 attributes - on COYOTE.

covote covote
10k-line databases / 10, 30 and 50 attributes / minsupp = 0.8 10k-line databases / 10, 30 and 50 attributes / minsupp = 0.8

1200 © 10att. # 30attr. 50 attr.
O 10attr. 2 e

30 attr. S
50 attr. /
2
= s
8 S ol
£ %6 "
£ H o
g 7
600 12 =
4 /
\\ 8 /
= 0 p
—o—o—o—0—" 0 —o—0— g 00"~
N 4
~—
M e
o o
T2 8 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0 31 32 T2 0 4 56 7 89 1011 12131415 1617 18 1920 21 22 23 24 25 26 27 28 23 %0 31 &
ireads reads

Fig. 1. Execution time and speed-up related to the number of threads. Test databases
ranging from 10 to 50 attributes with 10k lines, on COYOTE.

As shown by Figure 1(a), speed-ups can reach very satisfying values in suffi-
ciently complex situations. For example, speed-up is around 30 with 50 attributes
where the theoretical maximum is 32. The upper limit for 10 and 20 attributes
is not really surprising and can be explained by the lower number of individ-
ual tasks. As the number of tasks decreases and the complexity of each task
increases, it becomes more and more difficult to reach an acceptable load bal-
ance. This phenomenon is especially tangible during the initial database loading
phase (construction of the first level of the tree) where the number of tasks is
exactly the number of attributes. For example, the sequential execution on the

10-attribute database takes around 64 seconds from which the database loading
process takes 9 seconds. With 32 threads, the global execution time goes down
to 13 seconds but more than 5.5 seconds are still used for the loading phase.

Experimental results on IDKONN are very similar to these figures as speed-
ups go from a maximum of 4.8 with 24 threads on the 10-attribute database to a
maximum of 22.3 with 24 threads on the 50-attribute database. Detailed results
on IDKONN are available at http://www.lirmm.fr/~laurent/DASFAA10.

The second set of experiments reported in this article is about databases
with growing complexity in term of attributes. Figures 2(a) and 2(b) show the
evolution of execution time and speed-up respectively for 500-line databases with
various number of attributes - ranging from 50 to 350 - on IDKONN.

IDKONN IDKONN
500-line databases / 50 to 350 attributes / minsupp = 0.8 500-line databases / 50 to 350 attributes / minsupp = 0.8

— 50att. — 100attr. 150 attr.
©F 200attr. ¥ 250att. 4 300 attr.
O 350 attr.

— 50att. — 100attr. 150 attr.
1 200attr. ¥ 250att. 4 300 attr
O 350 attr.

12 3 4 5 6 7T 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 28 12 3 4 5 6 7T 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
threads threads

(a) Exec. time (b) Speed-up

Fig. 2. Execution time and speed-up related to the number of threads. Test databases
ranging from 50 to 350 attributes with 500 lines, on IDKONN.

As we can see, our solution is extremely efficient and scales very well for many
attributes: we almost reach the theoretical maximum linear speed-up progression
for 150 attributes or more. For example, the sequential processing of the 350
attributes database took more than five hours while it spend approximatively
13 minutes using 24 threads on IDKONN. Furthermore, speed-up results are
particularly stable from one architecture to another®, meaning that performances
do not rely on very specific architectural features (caches, memory systems...).

With an execution time of less than 0.2 second with 16 threads, the 50-
attribute database experiment illustrates how our approach can still achieve a
very tangible acceleration on this particular case, which appears as crucial for
real time or near real time data mining and applications (e.g., intrusion/fraud
detection).

5 Complete experiments, detailed at http://www.lirmm.fr/ laurent/DASFAA 10, show
very similar results on COYOTE (with 32 threads).

6 Conclusion and Perspectives

In this paper, we propose an original parallel approach to mine large numeric
databases for gradual patterns like the oldest a people, the higher his/her salary.
Mining these rules is indeed very difficult as the algorithms must perform many
time-consuming operations to get the frequent gradual patterns from the data-
bases. In order to tackle this problem, our method intensively uses the multiple
processors and cores that are now available on recent computers. The experi-
ments performed show the interest of our approach, by leading to quasi-linear
speed-ups on problems that were previously very time-consuming or even impos-
sible to manage, especially in the case of databases containing a lot of attributes.

This work opens many perspectives, not only based on technical improve-
ments depending on ad-hoc architectures of the machines, but also based on
other data mining paradigms. Hence we will consider closed gradual patterns
in order to cut down the computation runtimes. We will also study the use of
another parallel framework: clusters (including clusters of multi-core machines
in order to benefit from both architectures).

Acknowledgements

The authors would like to acknowledge Lisa Di Jorio for providing the source
code of the implementation of the GRITE algorithm [1].

References

1. Di Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from large
databases. In: Int. Conf. on Intelligent Data Analysis, IDA’09. (2009)

2. Berzal, F., Cubero, J.C., Sanchez, D., Vila, M.A., Serrano, J.M.: An alternative
approach to discover gradual dependencies. Int. Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems (IJUFKS) 15(5) (2007) 559-570

3. Buehrer, G., Parthasarathy, S., Chen, Y.K.: Adaptive parallel graph mining for cmp
architectures. In: ICDM. (2006) 97-106

4. Tatikonda, S., Parthasarathy, S.: Mining tree-structured data on multicore systems.
In: VLDB ’09: Proceedings of the 35th international conference on Very large data
bases. (2009)

5. Di Jorio, L., Laurent, A., Teisseire, M.: Fast extraction of gradual association
rules: A heuristic based method. In: IEEE/ACM Int. Conf. on Soft computing as
Transdisciplinary Science and Technology, CSTST’08. (2008)

6. Fiot, C., Masseglia, F., Laurent, A., Teisseire, M.: Gradual trends in fuzzy sequential
patterns. In: Proc. of the Int. Conf. on Information Processing and Management of
Uncertainty in Knowledge-based Systems (IPMU). (2008)

7. Hiillermeier, E.: Association rules for expressing gradual dependencies. In: Proc.
of the 6th European Conf. on Principles of Data Mining and Knowledge Discovery,
PKDD’02, Springer-Verlag (2002) 200-211

8. Laurent, A., Lesot, M.J., Rifqi, M.: Graank: Exploiting rank correlations for ex-
tracting gradual dependencies. In: Proc. of FQAS’09. (2009)

