The Complexity of Grundy Coloring and its Variants

Joint work with Florent Foucaud, Eun Jung Kim, and Florian Sikora

Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary (MTA SZTAKI)

FPT seminar of October 7, 2015
Grundy coloring

The worst way of reasonably coloring a graph.
Grundy coloring

The **worst way** of reasonably coloring a graph.

- Order the vertices v_1, v_2, \ldots, v_n to **maximize** #colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color $c(v_i)$ that does not appear in its neighborhood.
Grundy coloring

The worst way of \textbf{reasonably} coloring a graph.

- Order the vertices v_1, v_2, \ldots, v_n to \textit{maximize} \#colors used by the \textbf{greedy} coloring.
- Greedy coloring: v_i gets the first color $c(v_i)$ that does \textit{not} appear in its neighborhood.
Grundy coloring

The worst way of reasonably coloring a graph.

- Order the vertices v_1, v_2, \ldots, v_n to maximize \#colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color $c(v_i)$ that does not appear in its neighborhood.
- Connected version: $\forall i, G[v_1 \cup \ldots \cup v_i]$ is connected.
- Weak version: v_i can be colored with any color $\leq c(v_i)$.
Grundy coloring

The worst way of reasonably coloring a graph.

- Order the vertices v_1, v_2, \ldots, v_n to maximize the number of colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color $c(v_i)$ that does not appear in its neighborhood.
- Connected version: $\forall i, G[v_1 \cup \ldots \cup v_i]$ is connected.
- Weak version: v_i can be colored with any color $\leq c(v_i)$.

Grundy number $\Gamma(G)$, connected/weak Grundy number
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Was it a weak Grundy coloring?
Was it a connected Grundy coloring?
(Minimal) witness = (minimal) induced subgraph having the same X Grundy number, where $X \in \{-1, \text{weak, connected}\}$.
A brief History of Grundy colorings

- 1939: Studied in directed acyclic graphs by Grundy.
- 1979: Formally defined by Kristen and Selkow.
- 1983: Ochromatic number defined by Simmons.
- 1987: Erdős et al. proved that ochromatic number = Grundy number.
A brief History of Grundy colorings

- 1939: Studied in directed acyclic graphs by Grundy.
- 1979: Formally defined by Kristen and Selkow.
- 1983: Ochromatic number defined by Simmons.
- 1987: Erdös et al. proved that ochromatic number = Grundy number.
- 2011: Weak Grundy defined by Kierstead and Saoub.
- 2014: Connected Grundy defined by Benevides et al.
Algorithmic motivations

- $\Gamma(G)$ upper bounds the number of colors used by any greedy heuristic for \textsc{Min Coloring}.
- $\Gamma(G) \leq C\chi(G)$ on some classes of graphs gives a C-approximation for \textsc{Min Coloring}.
- Online coloring.
- see Sampaio’s PhD thesis for further motivations.
More questionable motivations

▶ (Weak) Grundy Coloring is to (Independent) Dominating Set what Coloring is to Independent Set.
▶ Is Sudoku more interesting than Grundy Coloring?
▶ Idea for commercialization: rename color i to 2^i and set the goal to 2048.
Complexity of computing the Grundy number

\(k = \Gamma(G) \) and \(w \) denotes the treewidth of the graph

XP algorithm: \(n^{f(\kappa)} \); FPT algorithm: \(f(\kappa)n^{O(1)} \).

- NP-hard on (co-)bipartite, chordal, line, claw-free graphs.
- Solvable in \(n^{2^{k-1}} \) [Z ’06].
- Solvable in \(2^{O(kw)}n \) and\(^1\) in \(n^{O(w^2)} \) [TP ’97].

\(^1\)one can show that \(k \leq 1 + w \log n \) [TP ’97]
Complexity of computing the Grundy number

$k = \Gamma(G)$ and w denotes the treewidth of the graph

XP algorithm: $n^{f(\kappa)}$; FPT algorithm: $f(\kappa)n^{O(1)}$.

- NP-hard on (co-)bipartite, chordal, line, claw-free graphs.
- Solvable in $n^{2^{k-1}}$ [Z ’06].
- Solvable in $2^{O(kw)}n$ and\(^1\) in $n^{O(w^2)}$ [TP ’97].

\[\begin{array}{ccc}
\text{parameter} & \text{XP} & \text{FPT} \\
\hline
k & n^{2^{k-1}} & ? \\
w & n^{O(w^2)} & ? \\
k + w & - & 2^{O(kw)}n \\
\end{array} \]

\(^1\)one can show that $k \leq 1 + w \log n$ [TP ’97]
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?

4
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?

A minimal witness is of size at most 2^{k-1}.
(and its vertices are at distance $\leq k$ of the vertex colored by k)

Theorem (Zaker ’06)

The Grundy number can be computed in $O(f(k)n^{2^{k-1}})$.
Complexity of computing the Grundy number

Outline [BFKS '15]:

- Solvable in time $O^*(2.443^n)$.
- FPT in various classes such as H-minor free graphs, chordal graphs, claw-free graphs.
- An $O^*(2^{o(w \log w)})$ algorithm would contradict the ETH.
Complexity of the variants

- **Weak Grundy Coloring** is NP-complete [GV '97].
- **Connected Grundy Coloring** is NP-complete on chordal graphs, co-bipartite graphs [B+ '14].
Complexity of the variants

- **Weak Grundy Coloring** is NP-complete [GV '97].
- **Connected Grundy Coloring** is NP-complete on chordal graphs, co-bipartite graphs [B+ '14].

Outline [BKFS '15]:

- **Weak Grundy Coloring** is solvable in $O^*(2^{O(k)})$ but not in $2^{o(k)}2^{o(n+m)}$ under the ETH.
- **Connected Grundy Coloring** is NP-complete for $k = 7$.
Grundy Coloring
Exact exponential algorithm

Try all possible orderings and run the corresponding greedy coloring: $O^*(n!)$.
Exact exponential algorithm

Try all possible orderings and run the corresponding greedy coloring: $O^*(n!)$.

Can we improve on this trivial algorithm?
Solving Grundy Coloring

In a minimal witness:

- C_i is an independent dominating set in $G[\bigcup_{i \leq j \leq k} C_j]$.
Solving Grundy Coloring

In a minimal witness:

- C_i is an independent dominating set in $G[\bigcup_{i \leq j \leq k} C_j]$.
- $\Gamma(S) = \max\{\Gamma(S \setminus X), X \text{ ind. dom. set in } G[S]\} + 1.$
Solving Grundy Coloring

- Enumerating the independent dominating sets takes time $O^*(3^{n^3}) = O(1.443^n)$.
- So, filling a cell of the table takes 1.443^i for a subset of size i.
- Hence, the total running time is
 $$\sum_{i=0}^{n} \binom{n}{i} 1.443^i = (1 + 1.443)^n = 2.443^n.$$
Solving Grundy Coloring

- Enumerating the independent dominating sets takes time $O^*(3^{\frac{n}{3}}) = O(1.443^n)$.
- So, filling a cell of the table takes 1.443^i for a subset of size i.
- Hence, the total running time is
 $$\sum_{i=0}^{n} \binom{n}{i} 1.443^i = (1 + 1.443)^n = 2.443^n.$$

The same scheme solves Weak Grundy Coloring in time 2.716^n.
Solving Grundy Coloring

- Enumerating the independent dominating sets takes time $O^*(3^{n/3}) = O(1.443^n)$.
- So, filling a cell of the table takes 1.443^i for a subset of size i.
- Hence, the total running time is
 \[\sum_{i=0}^{n} \binom{n}{i} 1.443^i = (1 + 1.443)^n = 2.443^n. \]

The same scheme solves Weak Grundy Coloring in time 2.716^n.

$O^*(2^n)$ algorithms? Polynomial space? Connected Grundy?
On H-minor free graphs

Induced Subgraph Isomorphism: B induced subgraph of A?

Theorem (FG ’01)

ISI is FPT in $|V(B)|$ on H-minor-free graphs.
On H-minor free graphs

Induced Subgraph Isomorphism: B induced subgraph of A?

Theorem (FG ’01)

ISI is FPT in $|V(B)|$ on H-minor-free graphs.

Why does it imply an FPT algorithm for Grundy Coloring?
On H-minor free graphs

Induced Subgraph Isomorphism: B induced subgraph of A?

Theorem (FG ’01)

ISI is FPT in $|V(B)|$ on H-minor-free graphs.

Why does it imply an FPT algorithm for Grundy Coloring?

Minimal witnesses have size at most 2^{k-1}.
So, there are less than $k2^{2k}$ graphs B to try.
On chordal graphs

Fact: for any chordal graph G, $tw(G) = \omega(G) - 1$.
On chordal graphs

Fact: for any chordal graph G, $tw(G) = \omega(G) - 1$.

Besides, $\omega(G) \leq \Gamma(G)$.

Therefore, $tw(G) \leq \Gamma(G) - 1$

\leadsto run FPT algorithm in $2^{O(tw(G)\Gamma(G))} = 2^{O(\Gamma(G)^2)}$.
On claw-free graphs

Observation

Grundy Coloring is solvable in time $O^*(\Delta^{\Delta^O(\Delta)})$.
On claw-free graphs

Observation

Grundy Coloring is solvable in time $O^*(\Delta^{O(\Delta)})$.

Guess a vertex v colored by $k := \Gamma(G)$ in a minimal witness.
On claw-free graphs

Observation
Grundy Coloring is solvable in time $O^*(\Delta^{\mathcal{O}(\Delta)})$.

Guess a vertex v colored by $k := \Gamma(G)$ in a minimal witness. This minimal witness is in $\mathcal{N}^k[v]$ of size roughly Δ^k.

Observation
For any class such that $\Delta(G) \leq f(\Gamma(G))$, Grundy Coloring is FPT.
On claw-free graphs

Observation

Grundy Coloring is solvable in time $O^*(\Delta^\Delta^O(\Delta))$.

Guess a vertex v colored by $k := \Gamma(G)$ in a minimal witness. This minimal witness is in $N^k[v]$ of size roughly Δ^k. Check if one of the k^{Δ^k} k-coloring of $N^k[v]$ is a Grundy Coloring.
On claw-free graphs

Observation

Grundy Coloring is solvable in time $O^*(\Delta^{O(\Delta)})$.

Guess a vertex v colored by $k := \Gamma(G)$ in a minimal witness. This minimal witness is in $N^k[v]$ of size roughly Δ^k. Check if one of the k^{Δ^k} k-coloring of $N^k[v]$ is a Grundy Coloring. Observe that $k \leq \Delta + 1$.
On claw-free graphs

Observation

Grundy Coloring is solvable in time $O^*(\Delta^{O(\Delta)})$.

Guess a vertex v colored by $k := \Gamma(G)$ in a minimal witness. This minimal witness is in $N^k[v]$ of size roughly Δ^k. Check if one of the k^{Δ^k} k-coloring of $N^k[v]$ is a Grundy Coloring. Observe that $k \leq \Delta + 1$.

Observation

For any class such that $\Delta(G) \leq f(\Gamma(G))$, Grundy Coloring is FPT.
On claw-free graphs

Observation

Grundy Coloring is solvable in time $O^*(\Delta^\Delta^{O(\Delta)})$.

Guess a vertex v colored by $k := \Gamma(G)$ in a minimal witness. This minimal witness is in $N^k[v]$ of size roughly Δ^k. Check if one of the k^Δ^k k-coloring of $N^k[v]$ is a Grundy Coloring. Observe that $k \leq \Delta + 1$.

Observation

For any class such that $\Delta(G) \leq f(\Gamma(G))$, Grundy Coloring is FPT.

In a claw-free graph, if $d(v) = \Delta(G)$, then $\chi(G[N(v)]) \geq \frac{\Delta(G)}{2}$. Besides, $\Gamma(G) \geq \chi(G) \geq \chi(G[N(v)])$ holds in any graph.
Weak Grundy Coloring
Color Coding

Theorem

Weak Grundy Coloring *is solvable in* $O^*(k^{2k-1})$.

- Color each vertex uniformly at random between 1 and k.

Color Coding

Theorem

Weak Grundy Coloring is solvable in $O^*(k^{2^{k-1}})$.

- Color each vertex uniformly at random between 1 and k.
- The probability that a witness is well colored is at least $\frac{1}{k^{2^{k-1}}}$.
Color Coding

Theorem

Weak Grundy Coloring is solvable in $O^*(k^{2^k-1})$.

- Color each vertex uniformly at random between 1 and k.
- The probability that a witness is well colored is at least $\frac{1}{k^{2^k-1}}$.
- Solving the instance is easier with this extra information.
Color Coding

Theorem

Weak Grundy Coloring is solvable in $O^*(k^{2k-1})$.

- Color each vertex uniformly at random between 1 and k.
- The probability that a witness is well colored is at least $\frac{1}{k^{2k-1}}$.
- Solving the instance is easier with this extra information.
- Repeat $100k^{2k-1}$ tries to have a small probability of failure.
Guess #1
Guess #1
Guess #1

![Graph Diagram]
Guess #2
Guess #2
Guess #2
Guess #2
\ldots O(k^{2^k}) \text{ unsuccessful guesses later} \ldots
\(O(k^{2^k}) \) unsuccessful guesses later ...
Back to binomial trees $T_k = v(T_1, T_2, \ldots, T_{k-1})$
Back to binomial trees $T_k = \nu(T_1, T_2, \ldots, T_{k-1})$

A *unique* optimal (weak) Grundy Coloring.
Back to binomial trees $T_k = v(T_1, T_2, \ldots, T_{k-1})$

A *unique* optimal (weak) Grundy Coloring.
Dominant subtree: largest among its siblings.
The binomial tree with missing dominant subtrees

$$G - T$$

User guide: show that only v can get color 4, with degree-based considerations.
The binomial tree with missing dominant subtrees

User guide: show that only v can get color 4, with degree-based considerations.
Fact: solving \textbf{MONOTONE NAE-3-SAT} in $2^{o(n+m)}$ would disprove the ETH.
Fact: solving $\text{MONOTONE NAE-3-SAT}$ in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$?
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$
Fact: solving \textsc{Monotone NAE-3-SAT} in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Weak Grundy?
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Weak Grundy?
Fact: solving Monotone NAE-3-SAT in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Weak Grundy?
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Weak Grundy?
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil} + 5$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Grundy?
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil} + 5$? $2^{\lceil \log m \rceil} \geq m$
Fact: solving \textsc{Monotone Nae-3-Sat} in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Grundy?
Fact: solving **Monotone NAE-3-SAT** in \(2^{o(n+m)}\) would disprove the ETH.

How many dominant \(T_3\) in \(T_{\lceil \log m \rceil + 5}\)? \(2^{\lceil \log m \rceil} \geq m\)

How do you want to complete the construction for Grundy?
Fact: solving \textsc{Monotone Nae-3-Sat} in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

How do you want to complete the construction for Grundy?
Fact: solving MONOTONE NAE-3-SAT in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

Degree-based considerations...
Fact: solving \textsc{Monotone Nae-3-Sat} in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

Number of vertices and edges? $O(n + m)$
Fact: solving **MONOTONE NAE-3-SAT** in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}^5$? $2^{\lceil \log m \rceil} \geq m$

Value of the parameter?
Fact: solving $\text{MONOTONE NAE-3-SAT}$ in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}$? $2^{\lceil \log m \rceil} \geq m$

Value of the parameter? $\lceil \log m \rceil + 5$
Fact: solving Monotone NAE-3-SAT in $2^{o(n+m)}$ would disprove the ETH.

How many dominant T_3 in $T_{\lceil \log m \rceil + 5}^\ast$? $2^{\lceil \log m \rceil} \geq m$

Solving (Weak) Grundy in $2^{2^{o(k)}} 2^{o(n+m)}$ would disprove the ETH.
Back to Grundy Coloring parameterized by treewidth

Binomial tree gadgetry + tricks for fine-grained lower bounds:

Theorem

Solving Grundy Coloring in \(O^*(2^{o(w \log w)})\) would disprove the ETH.
Back to Grundy Coloring parameterized by treewidth

Binomial tree gadgetry + tricks for fine-grained lower bounds:

Theorem

Solving Grundy Coloring in $O^*(2^{o(w \log w)})$ would disprove the ETH.

- **Grouping technique**: partition the variables into k sets of size $n/k \leadsto$ you can add one gadget per group assignment.
Back to Grundy Coloring parameterized by treewidth

Binomial tree gadgetry + tricks for fine-grained lower bounds:

Theorem

Solving Grundy Coloring in $O^(2^{o(w \log w)})$ would disprove the ETH.*

- **Grouping technique:** partition the variables into k sets of size $n/k \leadsto$ you can add one gadget per group assignment.
- **"Compression by permutation" trick:** $(3^{n/k}/\log n/k)! > 2^n/k \leadsto$ encode a group of n/k variables with a clique of size only $3^{n/k}/\log n/k$.

Back to Grundy Coloring parameterized by treewidth

Binomial tree gadgetry + tricks for fine-grained lower bounds:

Theorem

Solving Grundy Coloring in $O^*(2^{o(w \log w)})$ would disprove the ETH.

- **Grouping technique**: partition the variables into k sets of size $n/k \implies$ you can add one gadget per group assignment.
- **”Compression by permutation” trick**: $(3 \frac{n}{k}/ \log \frac{n}{k})! > 2^n \implies$ encode a group of n/k variables with a clique of size only $3 \frac{n}{k}/ \log \frac{n}{k}$.

Might become tight if the $k + w$ algorithm is improved to $O^*(k^w) = O^*(w^w (\log n)^w) = O^*(w^w w^{2w}) = O^*(w^{O(w)})$.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Grundy Coloring</th>
<th>Weak Grundy Coloring</th>
<th>Connected Grundy Coloring</th>
</tr>
</thead>
</table>

Connected Grundy Coloring
Connected Grundy number $= 3$, unbounded witness
Connected Grundy number = 3, unbounded witness
Connected Grundy number = 3, unbounded witness
Connected Grundy number $= 3$, unbounded witness
Connected Grundy coloring weak Grundy coloring connected Grundy coloring

Connected Grundy number $= 3$, unbounded witness
paraNP-hardness of Connected Grundy Coloring

- Reduction from 3Sat-3Occ.
paraNP-hardness of Connected Grundy Coloring

- Reduction from 3Sat-3Occ.
- We move along a "path" P_1 of literal vertices: coloring such a vertex by $3 \equiv$ setting the literal to true.
paraNP-hardness of Connected Grundy Coloring

▶ Reduction from 3Sat-3Occ.
▶ We move along a "path" P_1 of literal vertices: coloring such a vertex by 3 \equiv setting the literal to true.
▶ We then move along a "path" P_2 of clause vertices c_js: coloring such a vertex by 4 \equiv satisfying the clause.
paraNP-hardness of Connected Grundy Coloring

- Reduction from $3\text{Sat}-3\text{Occ}$.
- We move along a "path" P_1 of literal vertices: coloring such a vertex by $3 \equiv$ setting the literal to true.
- We then move along a "path" P_2 of clause vertices c_j's: coloring such a vertex by $4 \equiv$ satisfying the clause.
- To achieve color 7, three special neighbors of the c_j's should be colored by 1, 2 and 3 respectively.
P_1 and P_2 for the instance

\[\{x_1 \lor \neg x_2 \lor x_3\}, \{x_1 \lor x_2 \lor \neg x_4\}, \{\neg x_1 \lor x_3 \lor x_4\}, \{x_2 \lor \neg x_3 \lor x_4\}. \]
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the \(c_j \)s to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
A connected Grundy coloring setting all the c_js to 4.
The doubly circled vertices are linked to all the *clause* vertices c_js.
A connected Grundy coloring achieving color 7.
Open Questions

- Is Grundy Coloring FPT in the highest color k?
- Is Grundy Coloring FPT in the treewidth w?
- Is (Weak) Grundy Coloring solvable in $O^*(2^n)$?
- Is Connected Grundy Coloring solvable in $O^*(c^n)$?