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Abstract

This note corrects and extends a recent axiomatic characterization of the Orlovsky choice

function for a particular class of transitive fuzzy relations. The interest of characterizing choice

functions for "well-behaved" fuzzy relations is then discussed.
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I- Introduction

Following the classic work of Orlovsky [10], much attention has been devoted to the so-called

"Orlovsky choice function" in the literature on "rational choice" based on fuzzy preferences.

Barrett et al. [2] have shown that the Orlovsky choice function possesses many interesting

desirable properties when applied to max-min transitive fuzzy relations. Recently Banerjee [1]

proposed an axiomatic characterization of this choice function for a particular class of transitive

fuzzy relations using a notion of transitivity distinct from max-min transitivity. This

characterization proves incorrect however and a recent citation in [9] of Banerjee's alleged

result motivated this note. After having recalled a few useful definitions and notations, we

propose various characterizations of the Orlovsky choice function for several classes of "well-

behaved" fuzzy preference relations. These characterizations heavily rest on classical results

concerning crisp relations and we conclude with some remarks concerning the interest of

characterizing choice functions for "well-behaved" fuzzy relations.

II- Notations and Definitions

Let X be a finite set of objects called "alternatives" with at least three elements. We denote by

(X) the set of all nonempty subsets of X.

Definition 2.1. A fuzzy (binary) relation on X is a function R associating with each ordered

pair of alternatives (x, y) ∈ X2 an element of [0, 1]. Without loss of generality for our

purposes, we shall suppose throughout this note that all fuzzy relations are reflexive, i.e. such

that R(x, x) = 1, for all x ∈ X. We denote by (X) the set of all fuzzy reflexive relations on X.

A fuzzy relation R is said to be crisp if R(x, y) ∈ {0, 1}, for all x, y ∈ X. When R is crisp, we

often write x R y instead of R(x, y) = 1.

Definition 2.2. Let R be a crisp relation on X. We say that R is:

- reflexive if x R x,

- complete if  x R y or y R x,

- asymmetric if x R y implies Not (y R x),

- transitive if x R y and y R z imply x R z.
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for all x, y , z ∈ X.

We denote by α(R) the asymmetric part of R, i.e. the crisp relation on X such that, for all x,

y ∈⊇X, [x α(R) y] ⇔ [x R y and Not(y R x)]. We say that R is acyclic if, for all k ≥ 1 and all

x1, x2,..., xk ∈ X, [x1 α(R) x2, x2 α(R) x3, ..., xk-1 α(R) xk] ⇒ [Not xk α(R) x1].

Definition 2.3. A choice function (cf) C on X is a function from (X) to (X), such that

C(A) ⊆ A, for all A ∈ (X), i.e., a function associating with each nonempty subset A of X a

nonempty choice set C(A) included in A which we interpret as the set of the chosen alternatives

in A. The base relation RC of a cf C is the crisp relation on X such that x RC y ⇔ x ∈ C({x,

y}), for all x, y ∈ X. Observe that the base relation of a cf is always complete.

Definition 2.4. A cf C on X satisfies:

Condition α if [x ∈ A ⊆ B] ⇒ [x ∈ C(B) ⇒ x ∈ C(A)].

Condition α2 if [x ∈ C(A)] ⇒ [x ∈ C({x, y}) for all y ∈ A].

Condition γ2 if [x ∈ C({x, y}) for all y ∈ A] ⇒ [x ∈ C(A)].

Condition γ if [B = A1∪A2, x ∈ C(A1), x ∈ C(A2)] ⇒ [x ∈ C(B)],

Condition β if [x, y ∈ C(A) and A ⊆ B] ⇒ [x ∈ C(B) ⇔ y ∈ C(B)],

for all A, B, A1, A2 ∈ (X).

Definition 2.5. A cf C is said to be "crisp-rationalizable" if there is a crisp binary relation R

on X such that, for all A ∈ (X), C(A) = {a ∈ A: a R b for all b ∈ A}, in which case we say

that R crisp-rationalizes C. It is easy to see that if a cf is crisp-rationalizable, it is crisp-

rationalizable by a unique crisp relation which is necessarily complete and acyclic.

The following lemma recalls a number of well-known facts from the literature.

Lemma 2.6. For any cf C on a finite set X,

(a) α ⇒ α2,
(b) γ ⇒ γ2,

(c) [α2 and γ2] ⇔ [α and γ] ⇔ [C is crisp-rationalizable] ⇔ [RC crisp-rationalizes C]

(d) [α2 and β] ⇒ γ,

(e) [α2 and β] ⇔ [C is crisp-rationalizable by a transitive relation].

Proof. See, e.g., [13].

Definition 2.7. An preference-based choice function (pbcf) on X is a function  :

(X) x (X) →  (X), such that (A, R) ⊆ A, for all R ∈ (X) and all A ∈ (X), i.e., a

function associating with each nonempty subset A of X and each fuzzy relation R ∈ (X) a

nonempty choice set (A, R) included in A which we interpret as the set of the chosen

alternatives in A given the relation R. Observe that any pbcf defines a cf C in an obvious

way and properties of cf are easily extended to pbcf.

Remark 2.8. In the preceding definition, when (X) is replaced by a subset  ⊆ (X) of

"admissible" fuzzy relations we speak of an pbcf. Properties of pbcf obviously extend to

pbcf.
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Remark 2.9. Let A ∈  (X) and R ∈  (X). A simple way to obtain an pbcf is to

associate a score W(x, A, R) with each alternative x ∈ A based on the behavior of R on A and

to include in the choice set (A, R) the alternatives with the highest score, i.e.

(A, R) = {a ∈ A : W(a, A, R) ≥ W(b, A, R) for all b ∈ A}. (1)

Definition 2.10. Let R ∈ (X) and A ∈ (X). We respectively define the Orlovsky score

and the Min Difference score of an alternative x ∈ A given the relation R ∈ (X) by:

WOV(x, A, R)   =   Min  Min [1 – R(y, x) + R(x, y) ; 1]. (2)
                        y ∈  A

and

WmD(x, A, R)   =   Min  [R(x, y) – R(y, x)]. (3)
                        y ∈  A

Equations (1) and (2) (resp. (1) and (3)) define the Orlovsky pbcf OV (resp. the Min

Difference pbcf mD).

Lemma 2.11. For all R ∈ (X) and all A ∈ (X), OV(A, R) = mD(A, R).

Proof. See [2, proposition 3.10].

Definition 2.12. For all R ∈ (X) and A ∈ (X), the set of pairwise dominant alter-

natives in A given R is defined by:

PD(A, R) = {x ∈ A : R(x, y) ≥ R(y, x), for all y ∈ A}. (4)

The set of pairwise dominant alternatives does not define a pbcf since this set may well be

empty for some R ∈ (X) and some A ∈ (X).

Definition 2.13. Let R ∈ (X). We say that R is:

– max-min transitive if R(x, z) ≥ min[R(x, y) ; R(y, z)],

– Banerjee-transitive if [R(x, y) ≥ R(y, x) and R(y, z) ≥ R(z, y)] ⇒ [R(x, z) ≥ R(z, x)],

– Acyclic if [R(x1, x2) > R(x2, x1), R(x2, x3) > R(x3, x2), …, R(xn-1, xn) > R(xn, xn-1)] ⇒
[R(x1, xn) ≥ R(xn, x1)],

for all x, y, z, x1, x2, …, xn ∈ X.

Remark 2.14. When R is a crisp relation, it is clear that the definition of acyclicity in

definitions 2.2 and 2.13 coincide. Furthermore, for a crisp relation, max-min transitivity and

Banerjee-transitivity are equivalent and coincide with the transitivity property of definition 2.2.

The version of Banerjee-transitivity given here is slightly different from the one given in

Banerjee's paper. They are nevertheless easily seen to be equivalent. It is well-known that a

fuzzy relation R is max-min transitive if and only if all of its λ-cuts are transitive. Banerjee-

transitivity and acyclicity focus, instead of λ-cuts, on the crisp relation R* derived from a fuzzy

relation R letting, for all x, y ∈ X,

x R* y ⇔ R(x, y) ≥ R(y, x). (5)

It is easily seen that a fuzzy relation R is acyclic (resp. Banerjee-transitive) if and only if R* is

acyclic (resp. transitive). It should be noticed that R* is always complete.

The following lemmas recall a number of simple and well-known facts from the literature.

Lemma 2.15. For all R ∈ (X),
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(a) R is max-min transitive ⇒ R is acyclic,

(b) R is Banerjee-transitive ⇒ R is acyclic.

Proof. Part (b) is obvious. For part (a) see, e.g. [8].

Lemma 2.16. For all R ∈ (X) and all A ∈ (X),

(a) [PD(A, R) ≠ Ø] ⇒ [PD(A, R) = mD(A, R) = OV(A, R)],

(b) [PD(B, R) ≠ Ø, for all B ∈ (X)] ⇔ [R is acyclic].

Proof. For part (a) see [2, proposition 3.10], for part (b) see [8, corollary 1].

Remark 2.17. Since (4) can be rewritten as:

PD(A, R) = {x ∈ A : x R* y, for all y ∈ A}, (6)

it is clear, given remark 2.14, that part (b) of lemma 2.16 is nothing but a reformulation of a

classical result for crisp relations (see e.g. [12, 13]).

III- Results and Discussion
Definition 3.1. An pbcf  is said to satisfy:

Pairwise Strict Dominance (PSD) if [R(x, y) > R(y, x)] ⇒ [ ({x, y}, R) = {x}],

Pairwise Weak Dominance (PWD) if [R(x, y) ≥ R(y, x)] ⇒ [x ∈ ({x, y}, R)],

Reward for Pairwise Weak  Dominance (RPWD) if, for all A ∈ (X) and all x ∈ A, [R(x,

y) ≥ R(y, x), for all y ∈ A] ⇒ x ∈ (A, R),

for all R ∈ (X), all x, y ∈ X and all A, B ∈ (X).

Remark 3.2. PSD and PWD are fairly obvious conditions on the choice from a two-element

set. In spite of names, it is clear that PWD and PSD are independent conditions. Together they

imply that R* is identical to the base relation R of . Condition RPWD, introduced in [2],

generalizes PWD for sets with more than two elements. It implies that PD(A, R) ⊆ (A, R),

i.e. that the choice set contains all pairwise dominant alternatives.

Remark 3.3. Banerjee's [1] characterization of OV can be stated as follows: "Let  be a set

of (reflexive) Banerjee-transitive fuzzy relations on X. An pbcf satisfies conditions PSD,

PWD and β if and only if it coincides with the Orlovsky pbcf". The fact that the Orlovsky pbcf

satisfies conditions PSD and PWD is obvious. Verification of condition β follows from

lemmas 2.6 and 2.16 together with (6) since Banerjee-transitivity implies that R* is transitive.

The characterization result is incorrect however as shown by the following example. Let  be a

set of Banerjee-transitive fuzzy relations and let  be the pbcf such that:

(A, R) = OV(A, R) if |A| = 2 and (A, R) = A otherwise.

It is clear that  satisfies PSD, PWD. Condition β is an "expansion" condition and, thus, is

also obviously satisfied. The problem in Banerjee's proof is that it incorrectly assumes a

"contraction" condition (his condition 5.5 defined here as condition α) to hold for any pbcf.

Lemma 3.4. Let  ⊆ (X) and  be an pbcf.We have:

[  satisfies PWD and γ2] ⇒ [PD(A, R) ⊆ (A, R), for all R ∈  and all A ∈ (X)].
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Proof. By definition, [x ∈ PD(A, R)] ⇔ [x ∈ PD({x, y}, R) for all y ∈ A]. From PWD we

know that [x ∈ PD({x, y}, R)] ⇒ [x ∈ ({x, y}, R)] and using γ2 completes the proof.

Proposition 3.5. Let  be a nonempty set of acyclic fuzzy relations on X.

(a) The pbcf OV is the smallest pbcf (w.r.t. inclusion) satisfying PWD and γ2.

(b) The pbcf OV is the smallest pbcf (w.r.t. inclusion) satisfying RPWD.

(c) An pbcf  satisfies PSD, PWD, α2 and γ2 if and only if it coincides with OV.

Proof.

(a) Combine lemmas 2.16 and 3.4.

(b) Obvious combining lemma 2.16 and remark 3.2.

(c) By lemma 2.16, we have OV(A, R) = PD(A, R), for all A ∈ (X) and all R ∈ . Thus, it

is clear that OV satisfies PSD, PWD, α2 and γ2. Let us show that any pbcf satisfying

PSD, PWD, α2 and γ2 coincides with OV. Given PWD and γ2, we know from lemma 3.4

that PD(A, R) ⊆ (A, R), for all A ∈ (X) and all R ∈ . Suppose now that x ∈ (A, R). If

x ∉ PD(A, R) then R(y, x) > R(x, y) for some y ∈ A and, from PSD, it follows that ({x, y},

R) = {y}. Thus, x ∈ (A, R) contradicts α2.

Remark 3.6. From lemma 2.15, we know that Banerjee-transitivity as well as max-min

transitivity implies acyclicity. Thus part (c) of proposition 3.5 offers a characterization of OV

in the set of Banerjee transitive relations or max-min transitive relations. Proposition 3.7 offers

an alternative one which is closer from Banerjee's alleged result. Simple examples show that in

proposition 3.7, it is not possible to replace "Banerjee-transitive" by "acyclic" or by "max-min

transitive".

Proposition 3.7. Let  be a set of Banerjee-transitive fuzzy relations on X. An -pbcf PSD,

PWD, α2 and β if and only if it coincides with OV.

Proof.
Since Banerjee-transitivity implies acyclicity, we know from corollary 3.6 that OV satisfies

PSD, PWD and α2. We already observed – see remark 3.3 – that OV satisfies β when applied

to a Banerjee-transitive relation. The sufficiency part follows from proposition 3.5 and lemma

2.6.

Remark 3.8.  From lemma 2.16 we know that  OV coincides with the set PD of pairwise

dominant alternatives when attention is restricted to acyclic relations and, thus, makes little use

of the fuzziness of R. The characterization of OV in this particular case mainly boils down to

rephrasing in terms of R well-known properties of the set of the greatest elements of a crisp

relation (the crisp relation R* defined by (5)). This explains why OV behaves so nicely when

applied to reflexive and max-min transitive – and, thus, acyclic – fuzzy relations, see [2].

Remark 3.9. In many cases, e.g. in Social Choice Theory or in Multiple Criteria Decision

Making, preference are modelled using fuzzy relations that are not necessarily acyclic (see, e.g.,

[11] or [4]). Even in this case, OV intuitively seems to be a very reasonable choice function.

Obtaining a nice characterization of OV in the general case is an open and interesting problem.
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Contrary to the situation with acyclic relation, its solution is likely to lead to "truly fuzzy"

results. As already observed in [7] it should be noticed that OV satisfies γ2 whatever the

properties of the fuzzy relation to which it is applied.

Remark 3.10. Let C be a cf on X. The problem of rationalizing C in terms of fuzzy

preferences consists in finding a pbcf  and a fuzzy relation R ∈ (X) such that C(A) = (A,

R), for all A ∈ (X) – on this problem, see, e.g. [3], [5] or [6]. Many pbcf can be envisaged

to rationalize a "non preference-based" cf. The ones that have been proposed so far in the

literature all satisfy condition PWD. Thus, proposition 3.5 (a) shows that if we insist on using

acyclic relations and pbcf satisfying γ2, very few gains in terms of explanatory power will be

obtained with the fuzzy preference framework compared to the crisp one. Since PWD seems

rather undisputable, if one is to show that the fuzzy preference framework is more flexible than

the crisp one in order to rationalize cf then either acyclicity – e.g. using a form of transitivity

that is independent from acyclicity such as the so-called "sum minus one transitivity", see

Jain's T5 transitivity in [6], or no transitivity condition at all, see [3] – or γ2 must be dropped.

Examples of pbcf violating γ2 even when coupled with max-min transitive relations can be

found in [2].
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