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Abstract

In the field of Artificial Intelligence many models for decision making under un-
certainty have been proposed that deviate from the traditional models used in Deci-
sion Theory, i.e. the Subjective Expected Utility (SEU) model and its many variants.
These models aim at obtaining simple decision rules that can be implemented by
efficient algorithms while based on inputs that are less rich than what is required in
traditional models. One of these models, called the likely dominance (LD) model,
consists in declaring that an act is preferred to another as soon as the set of states on
which the first act gives a better outcome than the second act is judged more likely
than the set of states on which the second act is preferable. The LD model is at much
variance with the SEU model. Indeed, it has a definite ordinal flavor and it may
lead to preference relations between acts that are not transitive. This paper proposes
a general model for decision making under uncertainty tolerating intransitive and/or
incomplete preferences that will contain both the SEU and the LD models as particu-
lar cases. Within the framework of this general model, we propose a characterization
of the preference relations that can be obtained with the LD model. This characteri-
zation shows that the main distinctive feature of such relations lies in the very poor
relation comparing preference differences that they induce on the set of outcomes.
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On some ordinal models for decision making under uncertainty

1 Introduction

The specific needs of Atrtificial Intelligence techniques have led many Computer Scien-
tists to propose models for decision under uncertainty that are at variance with the classi-
cal models used in Decision Theory, i.e. the Subjective Expected Utility (SEU) model and
its many variants (see Fishburn, 1988; Wakker, 1989, for overviews). This gives rise to
what is often called “qualitative decision theory” (see Boutilier, 1994; Brafman and Ten-
nenholtz, 1997, 2000; Doyle and Thomason, 1999; Dubois et al., 1997, 2001; Lehmann,
1996; Tan and Pearl, 1994, for overviews). These models aim at obtaining simple decision
rules that can be implemented by efficient algorithms while based on inputs that are less
rich than what is required in traditional models. This can be achieved, e.g. comparing acts
only on the basis of their consequences in the most plausible states (Boutilier, 1994; Tan
and Pearl, 1994) or refining the classical criteria (Luce and Raiffa, 1957; Milnor, 1954) for
decision making under complete ignorance (see Brafman and Tennenholtz, 2000; Dubois
etal., 2001).

One such model, called the “likely dominance” (LD) model, was recently proposed
by Dubois et al. (1997) and later studied in Dubois et al. (2003a, 2002) and Fargier and
Perny (1999). It consists in declaring that an @t preferred to an acdtas soon as the
set of states for which gives a better outcome thans judged “more likely” than the
set of states for which gives a better outcome than Such a way of comparing acts has
a definite ordinal flavor. It rests on a simple “voting” analogy and can be implemented
as soon as a preference relation on the set of outcomes and a likelihood relation between
subsets of states (i.e. events) are known. Contrary to the other models mentioned above,
simple examples inspired from Condorcet’s paradox (see Sen, 1986) show that the LD
model does not always lead to preference relations between acts that are complete or
transitive. Such relations are therefore quite different from the ones usually dealt with in
Decision Theory.

Previous characterizations (see Dubois et al., 2003a, 2002; Fargier and Perny, 1999)
of the relations that can be obtained using the LD model (of, for short, LD relations)
have emphasized their “ordinal” character via the use of variants of a “noncompensation”
condition introduced in Fishburn (1975, 1976, 1978) that have been thoroughly studied in
the area of multiple criteria decision making (see Bouyssou, 1986, 1992; Bouyssou and
Vansnick, 1986; Dubois et al., 2003b; Fargier and Perny, 2001; Vansnick, 1986). Since
this condition is wholly specific to such relations, these characterizations are not perfectly
suited to capture their essential distinctive features within a more general framework that
would also include more traditional preference relations.

The purpose of this paper is twofold. We first introduce a general axiomatic frame-
work for decision under uncertainty that will contain both the SEU and LD models as
particular cases. This general framework tolerating incomplete and/or intransitive pref-
erences is based on related work in the area of conjoint measurement (see Bouyssou and
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Pirlot, 2002). The second aim of this paper is to propose an alternative characterization of
the preference relations that can be obtained using the likely dominance rule within this
general framework. This characterization will allow us to emphasize the main distinctive
feature of such relations, i.e. the poor relation comparing preference differences that they
induce on the set of outcomes. This analysis specializes the one in Bouyssou and Pirlot
(2004b) to the case of decision making under uncertainty.

It should be noticed that the interest of studying models tolerating intransitive pref-
erences was forcefully argued by Fishburn (1991). It has already generated much work
(see, e.g. Fishburn, 1982, 1984, 1988, 1989, 1990, 1991; Fishburn and Lavalle, 1987a,b,
1988; Lavalle and Fishburn, 1987; Loomes and Sugden, 1982; Nakamura, 1998; Sugden,
1993). These models all use some form of an additive nontransitive model. The orig-
inality of our approach is to replace additivity by a mere decomposability requirement
which, at the cost of much weaker uniqueness results, allows for a very simple axiomatic
treatment.

This paper is organized as follows. Section 2 introduces our setting and notation. The
LD model is introduced in section 3. Our general framework for decision making under
uncertainty is presented and analyzed in section 4. Section 5 characterize the relations
that can be obtained using the LD model within our general framework. A final section
discusses our results and presents several extensions of our analysis. An appendix con-
tains examples showing the independence of the conditions used in the paper. The rest of
this section is devoted to our, classical, vocabulary concerning binary relations.

A binary relationR on a setX is a subset ofX x X; we writea R b instead of
(a,b) € R. A binary relationR on X is said to be:

o reflexiveif [a R a],

e completef a Rborb R al,

e symmetricif [a R b] = [b R al,

e asymmetridf [a R b] = [Not[b R al],

e transitiveif [a R bandb R ¢| = [a R ¢],

e Ferrersif [(a RbandcR d) = (a R dorcRb),

e semi-transitivef [(a R bandbR ¢) = (a R dord R ¢)]

forall a,b,c,d € X.

A weak order(resp. arequivalencgis a complete and transitive (resp. reflexive, sym-
metric and transitive) binary relation. R is an equivalence o, X/ R will denote the
set of equivalence classes®fon X. An interval orderis a complete and Ferrers binary
relation. Asemiorderis a semi-transitive interval order.
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2 The setting

We adopt a classical setting for decision under uncertainty with a finite number of states.
Letl’ = {a,3,7,...} be the set obutcomesand N = {1,2,...,n} be the set of states.

It is understood that the elements Sfare exhaustive and mutually exclusive: one and
only one state will turn out to be true. Aactis a function from/N to I'. The set of all

acts is denoted byl = I'V. Acts will be denoted by lowercase lettersh, c,d,.... An

acta € A therefore associates to each state N an outcomex(i) € I'. We often abuse
notation and write:; instead ofu (7).

Among the elements aofl are constant acts, i.e. acts giving the same outcome in all
states. We denote the constant act giving the outcomec TI' in all states € N. Let
E C N anda,b € A. We denoteizb the actc € A such that; = a,, for alli € E and
¢ = by, foralli € N\ E. Similarly agb will denote the actl € A such thatl; = «, for
alli € Fandd; = b;,foralli € N\ E. WhenE = {i} we write ;b andq;b instead of
a{i}b anda{i}b.

In this paper= will always denote a binary relation on the sét The binary relation
>~ is interpreted as an “at least as good as” preference relation between acts. \We note
(resp.~) the asymmetric (resp. symmetric) part’of A similar convention holds when
> Is starred, superscripted and/or subscripted. The relatiomduces a relatiofr; on
the sefl” of outcomes via the comparison of constant acts letting:

aijpﬁ@aiﬁ

Let £ be a nonempty subset &f. We define the relatiorr z on A letting, for all
a,be A,

aZpb<s lape 7 bge, forallc € A|.

WhenFE = {i} we write 7, instead ofZ ;.

If, for all a,b € A, agc = bgc, for somec € A, impliesa g b, we say that_ is
independent for. If > is independent for all nonempty subsets of states we saythat
is independentlt is not difficult to see that a binary relation is independent if and only if
itis independent forv \ {:}, for alli € N (see Wakker, 1989). Independence as defined
here is therefore nothing else than the Sure Thing Principle (postiijtmtroduced by
Savage (1954).

We say that statec N isinfluent(for 2) if there aren, 3, v, € I'anda, b € A such
thato,;a 7Z 3;0 and Not[y;a 7Z 0;0] anddegenerat@therwise. It is clear that a degenerate
state has no influence whatsoever on the comparison of the elemedtarad may be
suppressed froniV. In order to avoid unnecessary minor complications, we suppose
henceforth thaall states inN are influent Note that this does not rule out the existence
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of null eventsEl C N, i.e. such thatizc ~ bgc, for all a,b,c € A. This is exemplified
below.

Example 1
Let N ={1,2,3,4} andI’ = R. Letp, = ps = p; = ps = 1/4. DefineZ on A letting

arbs Z pi > Z pj — 1/4.

i € S(a,b) j € S(b,a)

forall a,b € A, whereS(a,b) = {i € N : a; > b;}. With such a relation, it is easy to
see that all states are influent while they are all null. Observezti@tomplete but is not
transitive. We shall shortly see that this relation can be obtained with the LD modbel.

3 The likely dominance model

The following definition, building on Dubois et al. (1997) and Fargier and Perny (1999),
formalizes the idea of a LD relation, i.e., of a preference relation that has been obtained
comparing acts by pairs on the basis of the “likelihood” of the states favoring each element
of the pair.

Definition 1 (LD relations)
Let - be areflexivebinary relation onA. We say that_ is a LD relation if there are:

e acompletebinary relationS onT',

e a binary relation®> between subsets &f having NV for union that ismonotonic
w.r.t. inclusion, i.e. such that forall, B,C, D C N,

[A>B,C DA, B2D,CUD=N]=Cb>D, (1)

such that, for alla, b € A,
a7 b 8(a,b) & S(b,a), 2

where$(a,b) = {i € N : a; 8 b;}. We say that>, S) is arepresentatioof -.

Hence, whery is a LD relation, the preference betweerandb only depends on the
subsets of states favoringor b in terms of the complete relatigh It does not depend

on “preference differences” between outcomes besides what is indicatedAynajor
advantage of the LD model is that it can be applied to compare acts as soon as there is a
binary relation allowing to compare outcomes and a relation allowing to compare events
in terms of likelihood.
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Let - be a LD relation with a representatidk,S). We denote by (resp.?P) the
symmetric part (resp. asymmetric part)SofFor all 4, B C N, we define the relations,
> anda between subsets df having NV for union letting: A £ B < [A> BandB >
Al,A> B< [AD> BandNot[B > Al], A= B < [Not[A > Bl andNot[B > A]].

The following lemma takes note of some elementary properties of LD relations; it
uses the hypothesis that all states are influent.

Lemmal
If 2~ is a LD relation with a representatiof®, 8), then:

1. P is nonempty,

2. forall A, B C N suchthatdu B = N exactlyoneofdi > B, B> A, A= Band
A > B holds and we have/ £ N,

forall AC N, N> A,
N> g,

>~ is independent,

2

>~ is marginally complete, i.e., foralle N, all o, € I'and alla € A, a;a = Sia
or B;a 7 aa,

7.8="r,
8. foralli € Nandalla,b € A, eithera —; b < a; 8 b; ora ~; b,

9. =~ has auniquerepresentation.

PROOF
Part 1. IfP is empty, then, sinc& is completes(a,b) = N, for all a,b € A. Hence, for
allie N,alla,3,v,0 € I',and alla, b € A,

S(Olia, ﬁlb) = 8(’)/1‘@, (Szb) and
8(61177 O[i(l> = 8(5Zb, %a)

This implies, using (2), that state= N is degenerate, contrarily to our hypothesis.

Part 2. Since the relatiofi is nonempty and is complete, for allA, B C N such
that AU B = N, there ares,b € A such thatS(a,b) = A and8(b,a) = B. We have,
by construction, exactly one af > b, b >~ a, a ~ b and[Not[a 2Z b] and Not[b - al].
Hence, using (2), we have exactly one4ot> B, B> A, A £ B andA < B. Since the
relationS is complete, we hav8(a,a) = N. Using the reflexivity of-, we know that
a ~ a, so that (2) impliesV £ N.
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Parts 3 and 4. Leti C N. BecauseV £ N, the monotonicity of> implies N > A.
Suppose thap > N. Then the monotonicity o would imply thatA > B, for all
A, B C N suchthatAu B = N. This would contradict the fact that each state is influent.

Part 5. Using the completeness&fwe have, for alkv, 5,v,0 € I'and alla, b € A,

S(ozl-a, Oézb) = 8(@@, sz) and
S(Oéib, ozia) = S(BZb, Bza)

Using (2), this implies that, forall € N, all o, 5 € T'and alla,b € A, c;a - a;b <
Bia - B;b. Thereforey is independent foV \ {i} and, hence, independent.

Part 6 follows from the fact tha is complete,N £ N andN > N \ {i}, for all
1€ N.
Part 7. Suppose that ~— ( so thata ,ﬁ_ﬁ and Not|« § 3]. Sinces is complete, we

haves P «. Using (2) andV > &, we haves - @, a contradiction. Conversely, df S /3
we obtain, using (2) and the fact th&t> A, forall A C N, a = 3 so thata ~—r .

Part 8. Leti € N. We know thatV & N andN > N\ {i}. If N & N\ {i}, then (2)
impliesa >; b for all a,b € A. Otherwise we hav&/ > N \ {i} andN = N. It follows
thata $ 3 = @ =, fanda P 3 = @ =, (. Since$ and’-; are complete, it follows that
8§ =1

Part 9. Suppose that is a LD relation with a representatigér, S). Suppose that
has another representatign’, 8'). Using part 7, we know thdét = 8’ = . Using (2),
it follows that> = >, O

4 A general framework for decision under uncertainty
tolerating intransitive preferences

We consider in this section binary relationnon A that can be represented as:
a ,>\_, b F(p(@h bl)ap(a27 b2)7 s ap(an7 bn)) Z 0 (UM)

wherep is a real-valued function oh? that isskew symmetri€i.e. such thap(a, 8) =
—p(B,a), forall a, 5 € T') and F is a real-valued function ofi[;_, p(I'"*) beingnonde-
creasingin all its arguments and such that, abusing notatio@) > 0.

It is useful to interprep as a function measuring preference differences between out-
comes. The fact that is supposed to be skew symmetric means that the preference
difference between andg is the opposite of the preference difference betweandc,
which seems a reasonable hypothesis for preference differences. With this interpretation
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in mind, the acts: andb are compared as follows. In each state N, the preference
difference between; andb; is computed. The synthesis of these preference differences is
performed applying the functiof' If this synthesis is positive, we conclude that; b.
Given this interpretation, it seems reasonable to supposé tisahondecreasing in each

of its arguments. The fact th&t(0) > 0 simply means that the synthesis of null prefer-
ence differences in each state should be nonnegative; this ensurestiibbe reflexive.
Model (UM) is the specialization to the case of decision making under uncertainty of
conjoint measurement models studied in Bouyssou and Pirlot (2002).

It is not difficult to see that model (UM) encompasses preference relatioms .A
that are neither transitive nor complete. It is worth noting that this model is sufficiently
flexible to contain many others as particular cases including:

e the SEU model (see, e.g. Wakker, 1989) in which:

azbe > wula) > Y wu(b) (SEV)
=1 i=1

wherew; are nonnegative real numbers that add up to oneuaisda real-valued
function onT,

e the Skew Symmetric Additive model (SSA) (see Fishburn, 1988, 1990) in which

i=1

wherew; are nonnegative real numbers that add up to onefaisch skew symmet-
ric (®(a, 8) = —®(3, )) real-valued function o

We will show in the next section that model (UM) also contains all LD relations. As
shown below, model (UM) implies that is independent. It is therefore not suited to
cope with violations of the Sure Thing Principle that have been widely documented in
the literature (Allais, 1953; Ellsberg, 1961; Kahneman and Tversky, 1979), which can be
done, e.g. using Choquet Expected Utility or Cumulative Prospect Theory (see Chew and
Karni, 1994; Gilboa, 1987; Karni and Schmeidler, 1991; Luce, 2000; Nakamura, 1990;
Schmeidler, 1989; Wakker, 1989, 1994, 1996; Wakker and Tversky, 1993).

The flexibility of model (UM) may obscure some of its properties. We summarize
what appears to be the most important ones in the following.

Lemma 2
Let - be a binary relation ond that has a representation in mod&IM). Then:

1. - is reflexive, independent and marginally complete,
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2. [a=;bforallie JC N|=[a>,1],

3. ~r is complete.

~Y

PROOF

Part 1. The reflexivity of- follows from the skew symmetry gf and £ (0) > 0. In-
dependence follows from the fact th&iy, «) = 0, for all « € . Not[oa 22 (;a] and
Not|B;a 7= a;a] imply, abusing notationZ ([p(«, 3)]:, [0]-:) < 0 andF([p(3, «)];, [0]-;)
< 0. SinceF(0) > 0 and F' is nondecreasing, we hayéx, 5) < 0 andp(5,a) < 0,
which contradicts the skew symmetryafHence, - is marginally complete.

Part 2. Observe that -, 3 is equivalent ta?'([p(«, 8)]:, [0]—;) > 0 and F'([p(53, «)];,
[0]_;) < 0. SinceF'(0) > 0 we know thaty(3, o) < 0 using the nondecreasingnessrof
The skew symmetry gb impliesp(«, ) > 0 > p(8, a) and the desired property easily
follows using the nondecreasingnesg-of

Part 3. Because is skew symmetric, we have, for all, 5 € T', p(o,3) > 0 or
p(B,«) > 0. SinceF'(0) > 0, the completeness @fr follows from the nondecreasing-
ness off". 0O

The analysis of model (UM) heavily rests on the study of induced relations comparing
preference differences on the set of outcomes. The interest of such relations was already
powerfully stressed by Wakker (1988, 1989) (note however that, although we use similar
notation, our definitions differs from his).

Definition 2 (Relations comparing preference differences)
Let - be a binary relation ond. We define the binary relatioris* and =~ ** onT*? letting,
forall o, 3,7,6 €T,

(v, B) Z* (7,0) < [forall a,b € Aand alli € N,~;a - 6;b = a7 5;b],

(o, 3) T (7,0) & [(a, B) Z7 (7, 0) and (,7) =" (B, a)].

The asymmetric and symmetric parts of are respectively denoted by* and ~*, a
similar convention holding for;**. By constructiongZ* andZ** are reflexive and transi-
tive. Therefore~* and~** are equivalence relations. Note that, by constructigti,is
reversiblei.e. (o, 5) =** (v,0) < (0,7) =™ (5, a).

We note a few useful connections betweenhand - in the following lemma.

Lemma 3
1. =~ isindependent if and only if (iff, ) ~* (5, 3), forall a, 5 € T
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2. Forall a,b,c,d e A,alli e Nandalla, 5 € T’

[CL /_>\__, band (Ci, dl) /_>\__,* (ai, bl)] = CGa i: dlb, (3)
[(Cj,dj) ~* (aj,bj), fora”j GN] = [aib@c?\jd] (4)
PROOF
Part 1. It is clear thaz is independents [ is independent foV \ {:}, for alli € N].
Observe that is independent folV \ {:}, foralli € N] & [oa = a;b & Bia 7 (ib,
foralla,f €T, alli € Nandalla,b € A] < [(a,a) ~* (5,5) forall a, 3 € T'].

Part 2. (3) is clear from the definition gf*, (4) follows. a

The following conditions are an adaptation to the case of decision making under uncer-
tainty of conditions used in Bouyssou and Pirlot (2002) in the context of conjoint mea-
surement. They will prove will prove central in what follows.

Definition 3 (Conditions URC1 and URC?2)
Let— be a binary relation onA. This relation is said to satisfy:

aa 7 Bib via 7 0;b
URCL1 if and = or

’ij t 5]d OéjC r>\: ﬁjd,

a;a 7 Bib yia 27 6;b
URC2 if and = or

Bic Z a;d djc Z v5d,

foralli,j € N,alla,b,c,d € Aand alla, 3,7v,0 € T.

Condition URC1 suggests that, independently of the stateN, either the difference
(o, B) is at least as large as the differerieed) of vice versalndeed, suppose thata -
B;b and Not[y;a 7Z 6;b]. This is the sign that the preference difference betweamd
appears to be larger than the preference difference betwaeds. Therefore ify;c -
d,d, we should havec 7 3;d, which is URC1. Similarly, conditioRC2 suggests that
the preference differendey, 3) is linked to the “opposite” preference differeng@ «).
Indeed ifo;a 72 ;b and Not|v;a - 6;b], so that the difference betweenandd is not
larger than the difference betwearand 3, URC2 implies that3;c 2Z o;d should imply
d;c  7;d, so that the difference betweenand v is not smaller than the difference
betweens anda. The following lemma summarizes the main consequencé$RiT1
and URC2.

Lemma 4
1. URCl< [Z* is completé

2. URC2&
[forall a, 3,v,0 € ', Not[(e, B) ZZ* (7,0)] = (B, ) ZZ* (6,7)],
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3. [URC1 and URCR<« [Z** is completé
4. In the class of reflexive relations, URC1 ad&C2 are independent conditions.

5. URC2=- [~ is independent

PROOF
Part 1. Suppose that URCL1 is violated so that = 5;b, v;c = d;d, Not|v,a 2 6;b] and
Notlajc 7 ;d]. This is equivalent taVot[(«, B) 2 (v,9)] andNot[(v,6) Z* (a, 5)].

Part 2. Suppose that URC2 is violated so hat - 3;b, 8¢ 77 ojd, Not[v,a 77 0;b]
andNot[d,c 77 v;d]. Thisis equivalent tdVot[(v,0) =* (o, B)] andNot[(d, ) " (5, )]
Part 3 easily follows from parts 1 and 2.

Part 4: see examples 2 and 3 in appendix.

Part5. Suppose thata - «;b. Using URC2 impliess;a = 5;b, forall 5 € T". Hence,
> is independent. O

The following lemma shows that all relations satisfying model (UM) satiéRC1 and
URC2; this should be no surprise since within model (UM) the skew symmetric function
p induces ol a reversible weak order.

Lemma5
Let~ be a binary relation ord. If 7~ has a representation in mod@JM) then’- satisfies
URC1 and URC2.

PROOF
[URC1]. Suppose that;a - ;b and~,c 2 §;d. Using model (UM) we have:
F([p(a, B)li; [p(ar, br)]kzi) > 0@and F([p(v,0)];, [p(ce, de)leri) > 0,

with [-]; denoting theith argument ofF’. If p(a,3) > p(v,0) then using the nonde-
creasingness of’, we haveF([p(a, 3)];, [p(ce, de)]ez;) > 0 so thataye = Bid. |If
pla, B) < p(v,6) we haveF([p(v, )i, [p(ak, bk)|kzi) > 0 so thaty,a 7 6;b. Hence
URC1 holds.

[URCZ. Similarly, suppose that;a 7 3;b andj;c - a;d. We thus have:

F([p(a, B)]i, [p(ar, br)kzi) = 0 @andF([p(8, a)l;, [p(ce, de)]ez;) > 0.

If p(c, B) > p(7,d), the skew symmetry gf impliesp(d,v) > p(5, «). Using the nonde-
creasingness df', we haveF ([p(d,v)];, [p(ce, de)]exj) > 0, so thatd;c 27 v;d. Similarly,

if p(cr, B) < p(7, ), we have, using the nondecreasingneds,af ([p(~, 0)];, [p(ak, br)]kzi) >
0 so thaty;a =~ ¢;b. HenceURC2 holds. O
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It turns out that conditions URC1 and URC2 allow to completely characterize model
(UM) whenT'/ ~** is finite or countably infinite.

Theorem 1
Let - be a binary relation onA. If I'/ ~** is finite or countably infinite, thefr has a
representatior{fUM) iff it is reflexive and satisfiedRC1 and URC2.

PROOF
Necessity follows from lemmas 2 and 5. We establish sufficiency.

Since URC1 and URC2 hold, we know from lemma 4 that is complete so that it
is a weak order. This implies that* is a weak order. SincE/ ~** is finite or countably
infinite, itis clear that’/ ~* is finite or countably infinite. Therefore, there is a real-valued
functiong onT'? such that, for alky, 5,v,6 € T, (o, 8) =* (7,9) < q(a, 3) > q(7,9).
Given a particular numerical representatipof >-*, letp(«a, 3) = q(«, 5) — q(5, ). Itis
obvious thap is skew symmetric and represeints’.

Define F" as follows:

n b if q -
F(p(ai,b1),plag, bs),...,plan, b)) = { B 2§EE§§?Z(ZZ(’(&)ZL)) gtﬁe?v\l/)i;e

The well-definedness df follows from (4). To show thaf’ is nondecreasing, suppose
thatp(a, B) > p(v,9), i.e. that(a, B) 2™ (v,0). If y,a = §;b, we know from (3) that
a;a 7Z ;b and the conclusion follows from the definition &f. If Not[y;a = §;b], we
have eithetNot|o;a 7 ;0] or aya 77, 5;b. In either case, the conclusion follows from the
definition of /. Since’; is reflexive, we havé’(0) > 0, as required. This completes the
proof. O

Remark 1

Following Bouyssou and Pirlot (2002), it is not difficult to extend theorem 1 to sets of
arbitrary cardinality adding a, necessary, condition implying that the weak grd@nd,
hence/-**) has a numerical representation. This will not be useful here and we leave the
details to the interested reader.

We refer to Bouyssou and Pirlot (2002) for an analysis of the, obviously quite weak,
uniqueness properties of the numerical representation of model (UM). Observe that, if
has a representation in model (UM), we must have that:

(a, 8) =™ (7,6) = pla, B) > p(7,96). (5)
Hence, the number of distinct values takengay a representation in model (UM) is an
upper bound of the number of distinct equivalence classes of °

Remark 2
Following the analysis in Bouyssou and Pirlot (2002), it is not difficult to analyze variants
of model (UM). For instance, whdnis finite or countably infinite:

12
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¢ the weakening of model (UM) obtained considering a funcpidhat may not be
skew symmetric but is such thafo, o) = 0, for all « € T', is equivalent to suppos-
ing that- is reflexive, independent and satisfies URC1,

¢ the weakening of model (UM) obtained considering a functiothat may not be
nondecreasing is equivalent to supposing thas reflexive and independent,

¢ the strengthening of model (UM) obtained considering a funcfiothat is odd
(F(x) = —F(x)) is equivalent to supposing thatis complete and satisfies URC1
and URC2.

In Bouyssou and Pirlot (2004c), we study the strengthening of model (UM) obtained
requiring thatF’ that is odd and strictly increasing in each of its arguments. In the finite
or countably infinite case, this model is shown to be characterized by the completeness
of -~ and the “Cardinal Coordinate Independence” condition introduced in Wakker (1984,
1988, 1989) in order to derive the SEU model. This condition implies biiRIC1 and

URC2 for complete relations.

All the above results are easily generalized to cover the case of an arbitrary set of
consequences adding appropriate conditions guaranteeing'ttiats a numerical repre-
sentation (on these conditions, see Fishburn, 1970; Krantz et al., 1971) .

5 A new characterization of LD relations

We have analyzed in Bouyssou and Pirlot (2004c) the relations between model (UM)
and models (SEU) and (SSA). We show here what has to be added to the conditions of
theorem 1 in order to characterize LD relations. The basic intuition behind this analysis
is quite simple. Consider a binary relatignthat has a representation in model (UM)

in which the functionp takes at most three distinct values, i.e. a positive value, a null
value and a negative value. In such a case, it is tempting to define the reldétimg

aP p e pla b)) >0anda d < pla,B) = 0. Sincep takes only three distinct
values, the relatio§ summarizes without any loss the information contained in the skew
symmetric functiorp. This brings us quite close to a LD relation. We formalize this
intuition below. This will require the introduction of conditions that will limit the number

of equivalence classes of* and, therefore;-**.

13
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Definition 4 (Conditions UM1 and UM2)
Let - be a binary relation on a setl. This relation is said to satisfy:

ﬁia t Oéib
a;a ?\: ﬁzb or
UM if and = dia 7 ;b
v;¢ 7 05d or
CYJ'C r>\: ﬁjd,
Bia 7 agb
a;a 77 Bib or
ﬁjc i: Oéjd or
vic % 0id,

foralli,j € N,alla,b,c,d € Aand alla, 3,~,0 € T.

In order to analyze these two conditions, it will be useful to introduce the following two
conditions:

a;a 7 Bib Bia 7 aib

and = or (6)
vi¢ % 05d ajc 7 Bid,
a;a ?\: Bib Bia ?\Z a;b

and = or (7)
Bjc zZ a;d vic 7 0,d,

foralli,j € N, all a,b,¢c,d € A and alla,3,v,6 € I'. Condition (6) has a simple
interpretation. Suppose thata - ;b and Not[5;a 77 o;b]. This is the sign that the
preference difference betweenand j is strictly larger than the preference difference
betweens anda. Because with LD relations there can be only three types of preference
differences (positive, null and negative) and preference differences are compared in a
reversible way, this implies that the preference difference betweand 5 must be at
least as large as any other preference difference. In particulae, if §;d, it must follow
thato;c 27 (;d. This is what condition (6) implies. Condition (7) has an obvious dual
interpretation: if a difference is strictly smaller than its opposite then any other preference
must be at least as large as this difference. Conditidddd and UM2 are respectively
deduced from (6) and (7) by adding a conclusion to these conditions. This additional
conclusion ensures that these new conditions are independentJR®@1 and URC2.

This is formalized below.

Lemma 6
1. (6) & [Not[(B8, ) Z* (o, B)] = (o, B) Z* (7, 6)],

2. (7)< [Not[(8,0) Z* (o, B)] = (7,6) Z* (B, )],

14
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(6) = UML,
(7) = UM2,
URC2 and UM1= (6),
URC1 and UMZ= (7),

S S R

[URC1 URC2 UM1 and UM2 = [-** is a weak order having at most three equiv-
alence classes

8. In the class of reflexive relation§]RC1, URC2, UM1 and UM2 are independent
conditions.

PROOF
Part 1. We clearly havé&/ot[(6)] < [Not|(5,«) Z* («, 5)] and Not[(a, 5) 7=* (v, 0)]]-

The proof of part 2 is similar. Parts 3 and 4 are obvious sigH. (resp. UM2) amounts
to adding a possible conclusion to (6) (resp. (7)).

Part 5. Suppose that,a = 5;b andvy;c = 6;d. If Not[d;a 7 ~;b], UM implies

Bia 77 a;b or aje 7 B;d. Suppose now thata = v;0. Using URC26;a 77 ~;b and
a 7 0;bimply 5;a 7 b or aja 27 B;b. Hence, (6) holds.

Part 6. Suppose that,a = §;b andf;c = a;d. If Not[y,a 7 6;b], UM2 implies
Gia IS Z o;b or e 7 0;d. Suppose now thata =7 9;,b. Using URCly;a Z 6;b and
Bjc 7 od imply Bia 2 > a;bory;c 7 0;d. Hence, (7) holds.

Part 7. Since URC1 and URC2 hold, we know th&t is complete. Since-** is
reversible, the conclusion will be false iff there are3,~,§ € I' such that(a, 3) >

(7,9) =** (a, a).

1. Suppose thata, 5) =* (v,9) and(v,d) =* (o, ). UsingURC2, we know that
(o, ) ZZ* (0,7). Using the transitivity ofz* we have(y,d) >=* (4,7). Since
(e, B) »* (v, 9), this contradicts (6).

2. Suppose thata, 5) =* (v,d) and(a, ) =* (9,7). UsingURC2, we know that
(7,6) =* (a,a). Using the transitivity of-* we have(v,d) >=* (J,v). Since
(e, B) =* (v, 6), this contradicts (6).

3. Suppose thatd,v) =* (5,«) and(v,d) =* (o, «). UsingURC2, we know that
(v, ) 7 (6,7y) sothat(, ) =* (4,~). Since(d,v) >=* (3, «), this contradicts (7).

4. Suppose that, v) > ( «) and(a, ) >=* (9,7). UsingURC2 we havé~,d) =
(o, ) so that(vy,d) =* (d,7). Slnce(é v) =* (8, «), this contradicts (7).

Part 8: see examples 4, 5, 6 and 7 in appendix. O
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In view of the above lemma, conditions UM1 and UM2 seem to adequately capture the
ordinal character of the aggregation at work in a LD relation within the framework of
model (UM). Indeed, the following lemma shows that all LD relations satif¥§1 and

UM2 while having a representation in model (UM).

Lemma 7
Let- be a binary relation on4. If =~ is a LD relation then,

1. - satisfies URC1 and URC2,
2. - satisfies UM1 and UM2.

PROOF
Let (>, 8) be the representation &f.

Part 1. Let us show thdRC1 holds, i.e. thatya 2 £;0 and~y;c 7 6;d imply
Y i 5117 or (671& i: ﬁ]d

There are 9 cases to envisage:

yPo ~4I6 6P~y
aPp (i) @) (i)
alf (v) (v) (Vi)
BPa (vii) (vii) (ix)

Casesi(), (v) and {x) clearly follow from (2). All other cases easily follow from (2) and
the monotonicity of>. The proof forURC2 is similar.

Part 2. Let us show thatM1 holds, i.e. thatv,a 7 3;b andy;c 2 6;dimply B;a 27 a;b
or v;a i (Szb orajc r>\: ﬁjd

If o P 3 then, using (2) and the monotonicity &f, v;c 7 §;d impliesa;c 5 5;d.
If 3 P « then, using (2) and the monotonicity &f, cya = ;b implies f;a = «;b. If
a J 3, theng J « so that, using (2)v;a =~ 5;b implies 5;a - a;b. The proof forUM2 is
similar. O

We are now in position to present the main result of this section.

Theorem 2
Let - be a binary relation ond. Thenz: is a LD relation iff it is reflexive and satisfies
URC1, URC2, UM1 and UM2.

PROOF

Necessity follows from lemma 7 and the definition of a LD relation. We show that if
> satisfies URC1 and URC2 and is such thét has at most three distinct equivalence
classes therr is a LD relation. In view of lemma 6, this will establish sufficiency.

16
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Defines§ letting, for alla, 3 € T, o 8 B < (o, 8) ™ (8, 5). By hypothesis, we
know that—** is complete and: is independent. It easily follows th&tis complete.

The relation-* being complete, the influenceo& N implies thatthere are, §, o, 3 €
I' such that(«, 5) =* (v,d). Sincez** is complete, this impliesa, 5) >=** (v,9). If
(o, B) =** (,0) thena P §. If not, then(3,5) = (a, 3) so that(3,5) =** (v,0)
and, using the reversibility of ** and the independence &f, 6 P ~. This shows thaf
is not empty. This implies that** has exactly three distinct equivalence classes, since
aPpe (ap) = (6,8) < (8,8) = (6,«a). Thereforew P S iff (a, 3) belongs
to the first equivalence class of** and(, «) to its last equivalence class. Consider any
two subsetsA, B C N such thatd U B = N and let:

A> B & [a b, forsomea,b € Asuchthat(a,b) = Aand$(b,a) = B.

If @ 77 bthen, by construction, we hawa,b) > 8(b,a). Suppose now the(a,b) >
S(b,a), so that there are b € A such that ~ d and(c;, d;) ~** (a;, b;), foralli € N.
Using (4), we have — b. Hence (2) holds. The monotonicity &f easily follows from
(3). This completes the proof. O

We have therefore obtained a complete characterization of LD relation within the
general framework of model (UM). ConditiotdM1 and UM2 implying that-** has at
most three distinct equivalence classes appear as the main distinctive characteristic of LD
relations. Clearly a binary relation having a representation in models (SEU) or (SSA)
will, in general, have a much richer relatigri*.

6 Discussion and extensions

The purpose of this paper was twofold. We have first introduced a general axiomatic
framework for decision under uncertainty that contains both the SEU and the LD models
as particular cases. This model, while tolerating intransitive and/or incomplete prefer-
ences, has a simple and intuitive interpretation in terms of preference differences. It
is nontrivial unlike, e.g., the general model introduced in Chu and Halpern (2003). We
showed that it can be characterized using simple conditions, while avoiding the use of any
unnecessary structural assumptions. The second aim of this paper was to put our general
framework to work, using it to propose an alternative characterization of the preference
relations that can be obtained using the likely dominance rule. This characterization has
emphasized the main specific feature of LD relations, i.e. the fact that they use a very
poor information concerning preference differences admitting only “positive”, “null” and
“negative” differences.

17
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6.1 Comparison with Fargier and Perny (1999) and Dubois et al.
(2003a)

We compare below our characterization of LD relations with the one proposed in Fargier
and Perny (1999); closely related results are found in Dubois et al. (2003a, 2002). Their
characterization is based on a condition called “qualitative independence” (and later called
“ordinal invariance” in Dubois et al. (2003a, 2002)) that is a slight variant (using a reflex-
ive relation instead of an asymmetric one) of the “noncompensation” condition introduced
in Fishburn (1975, 1976, 1978) which, in turn, is a “single profile” analogue of the inde-
pendence condition used in Arrow’s theorem (see Sen, 1986).

Since our definition of LD relations differs from the one used in Fargier and Perny
(1999) (they do not impose theatis necessarily monotonic w.r.t. inclusion) we reformu-
late their result below. For any, b € A, let R(a,b) ={i € N :a; Zr b;}.

Definition 5
Let —~ be a binary relation on4. This relation is said to satisfynonotonic qualitative
independenc@Ql) if,

R(a,b) D R(c,d)
and = czd=aZbl),
R(b,a) C R(d,c)

forall a,b,c,d € A.

Condition MQI is strengthens the “qualitative independence” condition used in Fargier
and Perny (1999) (this condition is obtained replacing inclusions by equalities in the ex-
pression of MQI; as observed in Dubois et al. (2003a, 2002), it is also possible to use
instead of MQI the original qualitative independence condition together with a condition
imposing that_ is monotonic w.r.t2-r) to include an idea of monotonicity. Condition
MQI is a “single profile” analogue of the NIM (i.e., Neutrality, Independence, Mono-
tonicity) condition that is classical in Social Choice Theory (see Sen, 1986, p. 1086).

As shown below, in what is an adaptation of Fargier and Perny (1999, proposition 5),
this condition allows for a very simple characterization of LD relations.

Proposition 1
Let - be a binary relation onAd. The relation is a LD relation iff

e ~ is reflexive,
e ~riscomplete,

~Y

e - satisfies MQI.

18
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PROOF

Necessity. Reflexivity holds by definition of a LD relation. That must be complete
follows from part 3 of lemma 2. The necessity of MQI follows from (2), using the mono-
tonicity of > and part 7 of lemma 1.

Sufficiency. LetS = —r. By hypothesiss is complete. If>r is empty, we have
R(a,b) = N for all a,b € A. Using the reflexivity of:; and M QI this implies that
a 7 b, foralla,b € A and, hence, that all statéss N are degenerate, contrary to our
hypothesis. Hence = P is nonempty.

Let A, B C N such thatA U B = N. Since® is nonempty there are b € A such
thatS(a,b) = A andS8(b,a) = B. Define> letting:

AD> B & [a b forsomea,b € Asuchtha8(a,b) = AandS(b,a) = B].

If « = b then, by construction, we ha¥da,b) > 8(b,a). Suppose now thefi(a,b) >
8(b,a). By construction, there are d € A such thate - d and$8(c¢,d) = A and
8(d,c) = B. Using MQI, it follows thata 7~ b. That>> is monotonic w.r.t. inclusion
clearly follows from MQI. O

We refer to Dubois et al. (2002); Fargier and Perny (1999) for a thorough analysis of this
result, including a careful comparison of the above conditions with the classical ones used
in Savage (1954).

Although proposition 1 offers a simple characterization of LD relations, condition
MQI appears at the same time quite strong (this will be apparent if one tries to reformulate
MQI in terms of ) and wholly specific to LD relations. In our view, the characterization
of LD relations within model (UM) proposed above allows to better isolate what appears
to be the specific features of LD relations while showing their links with more classical
preference relations used in the field of decision under uncertainty.

It should also be stressed that the characterization of LD relations is far from be-
ing the only objective of the above-mentioned papers. Rather, their aim is to study the,
drastic, consequences of supposing thas a LD relation and has nice transitivity prop-
erties (e.g> being transitive or without circuits). This analysis, that is closely related to
Arrow-like theorems in Social Choice Theory (see Campbell and Kelly, 2002; Sen, 1986,
for overviews), illuminates the relations between the LD rule, possibility theory and non-
monotonic reasoning. Such an analysis is clearly independent from the path followed to
characterize LD relations.

6.2 Extensions

As already mentioned, model (UM) is the specialization to the case of decision making
under uncertainty of the conjoint measurement models proposed in Bouyssou and Pirlot
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(2002). It is not difficult to see that model (UM) not only allows for intransitive relations

>~ between acts but also for intransitive relatigin between outcomes. This may be
seen as a limitation of model (UM). Indeed, whereas intransitivities are not unlikely
when comparing acts (see Fishburn, 1991), one would expect a much more well behaved
relation when it turns to comparing outcomes. We show in this section how to extend
our results to cover this case. Before doing so, let us stress that it is quite remarkable
that any transitivity hypothesis is unnecessary to obtain a complete characterization of
LD relations. As forcefully argued in Saari (1998), this seems to be an essential feature
of “ordinal” models.

Adapting the analysis in Bouyssou and Pirlot (2004a) to the case of decision under
uncertainty, let us first show that it is possible to specialize model (UM) in order introduce
a linear arrangement of the elementd'ofWe consider binary relationis on A that can
be represented as:

aZbe Fe(u(ar),ulbr)), ..., e(ulan),u(bn))) = 0 (UM*)

whereu is a real-valued function of, ¢ is a real-valued function on(I")? that is skew
symmetric, nondecreasing in its first argument (and, therefore, nonincreasing in its second
argument) and- is a real-valued function ofi[;"_, ¢(u(I")?) being nondecreasing in all

its arguments and such th&t0) > 0.

Comparing models (UM*) and (UM), it is clear that (UM*) is the special case of
model (UM) in which the functiop measuring preference differences between outcomes
may be factorised using a functianmeasuring the “utility” of the outcomes and a skew
symmetric functionp measuring preference differences between outcomes on the basis of
u. Itis easy to see that model (UM*) implies thgt is complete and that - is transitive.

The analysis below will, in fact, show that model (UM*) implies tiat is a semiorder.

The analysis of model (UM*) will require the introduction of three new conditions
inspired from Bouyssou and Pirlot (2004a).

Definition 6 (Conditions UAC1, UAC2 and UAC3)
We say that- satisfies:

a;a = b Gia 7= b
UAC1lif and = or
Bjc o d ae s d,
a = a;b a -, B;b
UAC2if and = or
¢z Bid ¢z ad,
a = ;b a 7, Bib
UAC3if and = or
aed Bjc 7 d,

forall a,b,c,d € A,alli,j € Nandalla,3 €T.

20



Annales du LAMSADE A3

Condition UAC1 suggests that the element$'@ian be linearly ordered considering “up-
ward dominance”: ifa “upward dominates’s then 5;a - b entailsco;a = b, for all

a,b € Aandalli € N. ConditionUAC2 has a similar interpretation considering now
“downward dominance”. ConditiodAC3 ensures that the linear arrangements of the ele-
ments ofl" obtained considering upward and downward dominance are not incompatible.
The study of the impact of these new conditions on model (UM) will require an additional
definition borrowed from Doignon et al. (1988).

Definition 7 (Linearity)
LetR be a binary relation on a seX?. We say that:

e R isright-lineariff [Not[(y, z) R (z,2)] = (z,w) R (y,w)],

e R isleft-lineariff [Not[(z,7) R (z,9)] = (w,y) R (w, )],

e R is strongly lineariff [Not[(y,z) R (z,z)] or Not[(z,z) R (z,y)]] = [(z,w) R
(y,w) and (w,y) R (w, z)],

forall z,y,z,w € X.

The impact of our new conditions on the relation$ and ~** comparing preference
differences between outcomes are noted below.

Lemma 8
1. UACl< ~*isright-linear,

2. UAC2 < " is left-linear,

3. UAC3 < [[Not[(a,vy) =" (B,7)] forsomey € T = [(0,«) ZZ* (4,5), forall
5 e,

4. [UAC1, UAC2 and UAC]3= —* is strongly linear< >-** is strongly linear.

5. In the class of reflexive relations satisfying URC1 and URC2, UAC1, UAC2 and
UACS are independent conditions.

PROOF
Part 1. —* is not right-linear iff for somev, 3,v,6 € I', we haveNot[(v, 3) =" («, B)]
andNot|[(a, 0) Z=* (,0)]. This equivalent to

[aa 7 3;b] and Not[y;a 7, 3;b] and
[vjc 2 d;d] and Not|ae 77 6;d],

for somea, b, c,d € A and some, j € N. This is exactlyNot[UAC1]. Parts 2 and 3 are
established similarly.
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Part 4. The first equivalence is immediate from parts 1 to 3. The second equivalence
directly results from the definitions ¢f* and—**.

Part 5: see examples 8, 9 and 10 in appendix. O

We summarize some useful consequences of model (UM*) in the following:

Lemma 9
Let - be a binary relation onA. If - has a representation ilUM*) then:

1. it satisfies URC1 and URC2,
2. it satisfies UAC1, UAC2 and UAC3,

3. the binary relationl” onI" defined byx T 5 < («, ) 2™ (o, «) is @ semiorder.

PROOF
Part 1 follows from the definition of model (UM*) and theorem 1.

Part 2. Suppose thata 7 b andg;c 7 d. This implies, abusing notation,

(6:)]i> [0 (u(ar), w(br))]rz:)
F(le(u(B), uld)))];; [o(ulee), ulde))]ez;)

If u(3) < u(a), sincey is nondecreasing in its first argument afids nondecreasing in
all its arguments, we obtain

F(lp(u(e), uld;)))]; [p(ulce), ulde))]ex) = 0,

i
6
=
)
IS

0 and
0.

IV 1V

so thatoc 7 d. If u(f) > u(a), sinceyp is nondecreasing in its first argument afids
nondecreasing in all its arguments, we obtain

F(lp(u(B), ulbi)]i, [p(u(ar), w(br))lkz) = 0,

so thatg;a - b. Hence UAC1 holds. The proof is similar for UAC2 and UAC3.

Part 3. Since URC1 and URC2 hold, we know from lemma 4 ttiéatis complete. It
is reversible by construction. From lemma 8, we know thét is strongly linear. From
the proof of theorem 2, we know th@tis complete. It remains to show that it is Ferrers
and semi-transitive.

[Ferrers]. Suppose that 7' g and~y T ¢ so that(a, 3) =™ (6,3) and(y,0) Z**
(0,0). In contradiction with the thesis, suppose théatt[a T' 6] and Not[y T /3] so that
(0,0) =* («,0) and (5, B) =** (v,0). Using the fact thaiz** is a weak order, this

implies («, 5) =** (v, 8) and(~y, ) =** («, ). This violates the strong linearity gf**.
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[Semi-transitivity]. Suppose that 7" 5 and 5 T ~ so that(«,5) =™ (8,5)
and (3,v) =** (v,7v). In contradiction with the thesis, suppose théit[« T" 4] and
Not[6 T ~] so that(d,6) =** («,d) and(y,vy) =** (4,7). Using the fact thajz** is a
reversible weak order, we obtain, 3) ~** («,d) and(3,v) >=** (6,7). This violates
the strong linearity of-**. Hence,T' is semi-transitive. O

The conditions introduced so far allow us to characterize model (UM*) wihend,
hence,A, is at most denumerable.

Theorem 3

Suppose thal is finite or countably infinite and let be a binary relation on4. Then
>~ has a representatioUM*) iff it is reflexive and satisfieldRC1, URC2, UAC1, UAC2
and UAC3.

PROOF
Necessity results from lemmas 2, 5 and 9. The proof of sufficiency rests on the following
claim proved in Bouyssou and Pirlot (2004a, Proposition 2).

CLAIM Let R be a weak order on a finite or countably infinite 8t There is a real-
valued function, on X and a real-valued functiop onu(X)? being nondecreasing in its
first argument and nonincreasing in its second argument, such that, foyall, w € X,

(2,9) R (2,w) & p(u(z),u(y)) = p(u(z), u(w))

iff R is strongly linear. In addition, the functiop can be chosen to be skew-symmetric
iff R is reversible.

Sufficiency follows from combining theorem 1 with lemma 8 and the above claini

Remark 3

The above result can be extended without much difficulty to sets of arbitrary cardinality.
Note however that, contrary to theorem 1, theorem 3 is only stated here for finite or count-
ably infinite setsA. This is no mistake. In fact, as shown in Fishburn (1973, Theorem
A(ii)), it may well happen thaRR is a strongly linear weak order ak?, that the set of
equivalence classes induced Ryis finite or countably infinite while the above claim
fails. °

We now use the framework of model (UM*) to analyze LD relations in whicls a
semiorder. Let us first show that all such relations have a representation in model (UM¥*).

Lemma 10
Let 7~ be a binary relation ond. If - is a LD relation with a representatiof>, S) in
which$8 is a semiorder their, satisfiedJAC1, UAC2 and UACS.
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PROOF
[UAC1]. Suppose that,,a - b andj3;c 77 d. We want to show that eithet,a 7 b or
ajc 7 d.

If b; P aord; P 3, the conclusion follows from the monotonicity bf.

If « P b; and P d;, we have, using the fact thatis Ferrerso P d; or 3 P b;. In
either case the desired conclusion follows using the factthata LD relation.

This leaves three exclusive casksJ b; andg P d;] or [o P b; and$ J d;], or [a J b;
and J d;]. Using Ferrers, either case implias$ d; or 3 8 b;. If eithera P d; or
B P b;, the desired conclusion follows from monotonicity. Suppose thereforexthat;
and( J b;. Since we have either J b; or 3 J d;, the conclusion follows using the fact
that- is a LD relation.

Hence UAC1 holds. The proof for UAC2 is similar, using Ferrers.

[UAC3]. Suppose that - a;b anda;c 77 d. We want to show that either - ;b or
ﬁjC ,_>\__, d.

If eithera P a; ord; P «, the conclusion follows from monotonicity.

If a; P o anda P d;, then semi-transitivity impliea; P 3 or 3 P d,. In either case,
the conclusion follows from monotonicity.

This leaves three exclusive cas€s; J a anda P d;] or [a; P canda I d;] or
la; J aanda I d;]. In either case, semi-transitivity implies 8 5 or g 8 d;. If either
a; P B or 3 P d;. the desired conclusion follows from monotonicity. Suppose therefore
thata; J 5 or 3 J d;. Since in each of the remaining cases we have eith&r or o J d;,
the conclusion follows becaugeis a LD relation. O

Although lemma 8 shows that in the class of reflexive binary relations satistyRQ1

and URC2, UAC1, UAC2 and UAC3 are independent conditions, the situation is more
delicate when we bring conditiondM1 and UM2 into the picture since they impose
strong requirements on* andZ**. We have:

Lemma 11
1. Let be areflexive binary relation oA satisfying URC1URC2, UM1 and UM2.
Then’- satisfies UACL iff it satisfies UAC2.

2. In the class of reflexive binary relations satisfyildRC1, URC2, UM1 and UM2,
conditions UAC1 andJAC3 are independent.

PROOF
Part 1. The proof uses the following claim.

CLAaiM When URC1, URC2, UM1 and UM2 hold then we have one of the following:
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1. (o, B) =* (B,8) =* (B, ), forall a, 5 € T such that«, 3) =** (53, 3),
2. (o, 3) =* (3,8) and(B3, 3) ~* (B3, ), forall a, 8 € T such that«, 3) =** (5, 3),
3. (o, B) ~* (B,0) and(53, 3) =* (5, a), forall a, 3 € T such that«, 3) =** (3, ),

PROOF OF THECLAIM

Using part 3 of lemma 4 and part 8 of lemma 8, we know thédtis a weak order having
at most three distinct equivalence classes. d.gt € I" be such thata, 5) = (3, 3).
By construction, we have eithéw, 3) >-* (5,5) or (3,5) =* (5,«). There are three
cases to examine.

1. Suppose first thalw, 5) =* (5,5) and(53,5) >=* (8, «). Considery,d € T" such
that (v, d) =** (0,9). If either (v,d) ~* (§,6) or (6,v) ~* (9,9), it is easy to see,
using the independence pfand the definition of;**, that we must have:

(a, B) =7 (7,0) =" (B, 8) =™ (6,7) = (B, ),

violating the fact that-** has at most three distinct equivalence classes. Hence we

have, for ally, 0 € T"such that~, o) =** (9,9), (v,9) >=* (d,6) and(d,d) =* (6,7).

2. Suppose thato, 5) =* (3, 8) and(53, 5) ~* (8, «) and consider any, ¢ € I' such
that (v, d) =** (0,0). If (v,0) >=* (4,9) and(5,5) =* (4,~), we have, using the
independence af and the definition of-**,

(7,6) =" (e, B) =" (B, 8) =™ (B, ) =7 (8,7),

violating the fact that-** has at most three distinct equivalence classe€s;, f) ~*
(0,0) and(0,9) =* (0,7), then URC2 is violated since we have, 3) >* (v, J)
and(3, ) =* (4,v). Hence, it must be true thé&y, o) >=** (4, d) implies (v, ) >*
(0,0) and(d,5) ~* (6,7).

3. Suppose thato, 3) ~* (8, 8) and(3, 5) =* (5, «) and consider any, § € I" such
that (v, d) =™ (4,0). If (v,9) =* (6,0) and(d,d) =* (0,v), we have, using the
independence df and the definition of-**,

(7,6) =" (o, B) =7 (B, 8) =™ (B, ) =7 (6,7),

violating the fact that-** has at most three distinct equivalence classgs;, If) >~
(6,0) and(0,9) ~* (d,7), then URC2 is violated since we have, d) >~* («, )
and(é,v) =* (8, «). Hence, it must be true thé&f, ) >=** (9, ) implies(v,d) ~*

(8,6) and(8,8) =* (6,7).
This proves the claim.
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We prove that UAC1=- UAC2, the proof of the reverse implication being similar.
SupposdJAC? is violated so that, for some b, c,d € A and somev, 5 € T', we have
a 7 a;b e 7 Bid, Notla 77 B;b], Not[e 72 a;d).

This implies(a, ) >=* (a,d) and(vy,0) =* (v, [), so that(«, 5) =** («,d) and
(7,0) = (7, 3).

Because, URC1, URC2, UM1 and UM2 hold, we know that we must be in one of the
cases of the above claim.

If either of the last two cases holg," has at most two distinct equivalence classes, so
that (o, 5) ~* (v,9) and(«, ) ~* (v, 3). This implies(y,d) =* («,d) and(«, 3) =*
(v, 8). SinceUAC1 implies the right-linearity of-*, (v,9) >=* («a,d) implies (v, 3) =*

(«, B), a contradiction.

Suppose that the first case holds true. We distinguish several subcases.

1. If both (a, 3) and (v, d) belong to the middle equivalence class’gf, we have
[(a, B) ~* (7,0)] =* [(ar, §) ~* (7, B)]. As shown above, this leads to a contradic-
tion.

2. Suppose that botfw, 3) and(+y, ) belong to the first equivalence class’of. We
therefore havéa, 5) ~* (v,9), (o, 5) =* («a,d) and(~, ) =* (v, ). This implies
(o, B) =* (v, 5). Using UAC1, we havéa, d) =* (v, d), a contradiction.

3. Suppose thaly, 5) belongs to the first equivalence clasggfand(y, §) belongs to
the central class gf *. This implies, using the reversibility gf ** and the fact that
it has at most three equivalence classgs,3) ~* (5,7)] =* [(7,0) ~* (8,7)] >
(v, B) ~* (B,«a)]. Hence, we havés,~) =* (4,7) and usingUAC1, we have
(8,a) Z* (0, ), @ contradiction.

Part 2: see examples 11 and 12 in appendix O

This leads to a characterization of LD relations in whicis a semiorder.

Theorem 4

Let’- be a binary relation ond. Then’: is a LD relation having a representatiof>, S)
in which § is a semiorder iff it is reflexive and satisfied)RC2, UM1, UM2, UAC1 and
UACS.

PROOF
The proof of theorem 4 follows from combining lemmas 9, 10 and 11 with the results in
section 5. 0
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Let us finally mention that in our definition of LD relations in section 3, the only remark-
able property imposed an is monotonicity w.r.t. inclusion. In most instances, we would
expect> to be transitive as well. It is easy to devise conditions that imply the transitivity
of . We leave the details to the interested reader.

Appendices

A Examples related to model(UM)

Example 2 URC2, Not[URC1])
LetT = {«, 3,7} andN = {1,2}. Let = on A identical to.4> except that, using obvious
notation,Not[osz i: 51&2] andNOt[’leZQ f>\: Oélﬁg].

It is easy to see that is complete (and, hence, reflexive). It violates URCL1 since
arag 7 BB andy vy, Z agag but neithera vy, 27 Bras Noryag 2 aq fo.

It is not difficult to check that we have:
o [(a, ), (B,8),(v:7): (. 7), (B, @), (B,7), (7, 8)] =" («, 3) and
o [(a, ), (B,8),(7,7), (@,7), (B,), (B,7), (7, B)] =" (7, @),

while («, 3) and(~, «) are incomparable in terms gf*. Using part 2 of lemma 4, it is
easy to check that satisfiedJRC2. &

Example 3 URC1, Not[URC2))
LetT' = {«, 3} andN = {1,2}. LetZ on A be such that:

a Z b plai,bi) + plas, bs) > 0,

wherep is a real valued function ofi? defined by the following table (to be read from
line to column):

g
—1
1

™ R
— o

It is easy to see that is complete (and hence, reflexive) and satisfies URC1 (we have:
[(8,08) ~* (B,@)] =* (a, ) =* (v, 8)). The relationz is not independent sing& v, 7~
(132 but Not[aan) 7 52]. Hence URC2 is violated in view of part 5 of lemma 4
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B Examples related to LD relations

Example 4 URC1, URC2, UM2, Not[UM1))
LetT' = {«a, 3,7} andN = {1,2}. Let7 on A be such that:

a r>\_./ b& p1<a17 bl) +p2((12, b2) Z 07
wherep; andp, are real valued functions dr? defined by the following table:

Pl‘

a By p| o B~
al0 4 0 al 0 0 0
310 0 0 31-3 0 0
vlo 0 0 vl =3 =3 0

The relation is clearly complete. It is not difficult to see that is such that:
(a,8) =" [(a, ), (B, 8): (7, 7); (. 7), (B: )] =" [(B, @), (7, @), (v, B)]-

This shows, in view of lemma 4, thaiRC1 and URC2 are satisfied. It is easy to
check that (7) holds, so that the same is trueUdf2. We have(a,vy) =* (v,«) but

Not[(a,y) =* («, 8)]. This shows that (6) is violated. SintdlRC2 holds, this shows that
UML1 is violated in view of part 5 of lemma 6. <&

Example 5 URC1, URC2, UM1, Not[UM2])
Letl’ = {a, 3,7} andN = {1,2}. Let; on A be such that:

a b g(pi(ar,by) + pa(ag, b2)) >0,

wherep, andp, are real valued functions dr? defined by the following table:

pl‘a B

gl P2 ‘ « B
o} 0 2 2 « 0 0 O
G| —2 0 2 g —2 0 O
vyl —4 =2 0 vyl -2 =2 0

andg is such that:

g(l‘)z{ zif |z > 2,

0 otherwise

The relationz is clearly complete. It is not difficult to see that is such that:

(e, @), (8, 8), (7,7): (@, B), (@, 7), (B, )] = [(B, ), (v, 8)] =™ (7, ).
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This shows, in view of lemma 4, thailRC1 and URC2 are satisfied. It is easy to
check that (6) holds, so that the same is trueUtl. We have(«, 5) >=* (5, «) but
Not[(vy, «) zZ* (8, a)]. This shows that (7) is violated. SintdiRC1 holds, this shows that

~

UM2 is violated in view of part 6 of lemma 6. &

Example 6 URC1, UM1, UM2, Not[URC2))

LetT’ = {a, 3} andN = {1,2}. Let onA be identicald? except thaiVot[3, 52 7 ajas)

and Not 132 77 an32]. This relation is clearly complete. It is not independent, so that
URC2 is violated in view of lemma 4. We havfx, a), (o, )] =* (5,0) =* (5, ).
Since~* is complete, URCL1 holds. In view of parts 1 and 2 of lemma 6, we know that
(6) and (7) hold. HencéJM1 and UM2 hold. O

Example 7 URC2, UM1, UM2, Not[URC1])

LetT = {a,3,7} andN = {1,2,3}. Let = on A be identical taA? except that the
following 25 relations are missingoyasas 72 Y173, arasas 7 Y1023, 1aoas 7
Y1273y Q1203 t a10ys, apBas ?, Bragys, arfaas i T3, 1B ?, 15273,
a1 Baa3 i V17273, G17Y2003 i T1G27Y3, 17203 i Y8273, Q12003 i Y1Y273s B12cs i
ar1aoas, Bifaas L araefs, Bifaas T aranys, Bifeas I Bianys, Bifeas T Yicwys,
513233 i a0z, 513253 i’, ar1af3s, 15203 i 1073, B18273 i’, a0z, £15273 i

a3, P12y 2 ez, 11Baas T anaays, Mifeas I Bianys andy faag 2 y1027s.
It is not difficult to check that; is complete. We have:

(o, ), (B, 8), (7,7), (B,7), (v, @), (7, B), (7, B)] =™ («,y) and
(o, ), (B,8), (7, 7): (B, %), (v, @), (7, B), (7, B)] =" (B, ),

while (a,~) and (3, «) are nor comparable in terms gf*. This shows thatURC1 is
violated. Using part 2 of lemma 4, it is easy to check H®RC2 holds. Using part 1 of
lemma 6, it is easy to check that (6) holds. In view of part 3 of lemma 6, this shows that
UM1 is satisfied. It remains to check tHaM2 holds.

It is not difficult to check thata = asb impliesmsa 7 o9b, for all a,b € A and all
(r,0) € T'%. Furthermore, for al(7, o), (x,%) € T2\ (8, @), x2a 7 b & Ta 7 oab.
Similarly, it is easy to check thatsa - ~3b impliessa =~ o3b, for all a,b € A and all
(7,0) € T2. Furthermore, for all, o), (x, ) € T%\ (a,7), x3a = ¥s3b < 130 7= 03b.

The two premises of UM2 are thaja 7 o,b andojc 7 7;d. The three possible
conclusions ofJM2 are thato;a 7 7,0 or x;a 27 ;b or xjc 22 ¥;d.

Suppose first thatr, o) is distinct from(~, «) and(«, ). In this case, we know that
(o,7) =* (1,0), so thatr;a - o;b implieso;a = 7;b. Hence, the first conclusion &fM2
will hold.

Suppose henceforth thét, o) = (v,a). If i = 2, we know thaty,a 77 axb <
asa 7 b, SO that the first conclusion &fM2 will hold.
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Suppose that = 3. If j = 3, the second premise of UM2 becomeg: -~ ~s3d. This
implies y3¢ 7~ asd so that the last conclusion of UM2 will hold. A similar reasoning
shows that the last conclusion 0M2 will hold if j = 1. Suppose that = 2. The two
premises of UM2 are that;a - a3b andasc - v2d. The three desired conclusions are
that eitherysa 77 asb Or xsa 72 ¥3b or xac 22 1had. If (x, ) is distinct from(53, o), we
know thatasce 77 v2d < xac 77 1od SO that the last conclusion @fiVi2 will hold. Now if
(x, %) = (B, «), we have thati;a 7 asb so that the second conclusion of UM2 holds.

Suppose that= 1. If (x, ¢) is distinct from(3, «), y1a 7 b will imply xja 7 1b,
so that the second conclusion of UM2 will hold. (I, ) = (3, «), it is easy to check
that there is na, b € A such thaty;a = a1, Not[aia 7 v1b] and Not[B1a 7 a1 b]. This
shows that UM2 cannot be violated.

Hence, we have shown that UM2 holdgif o) = (v, ). A similar reasoning shows
thatUM2 holds if (1, 0) = («, ). &

C Examples related to mode(UM*)

Throughout the remaining examples, we use the following notation:

az® B [(a,y) 27 (8,7) and(s, 8) Z* (6, a), ¥y, € T,

azt Be () 27 (8,7),Vy e,
aZ” Be[6,8) 27 (6,a),VeT].

The reader will easily check that:

UAC1 < =7 is complete
UAC2 < —~ is complete
UAC3 < [ =T = Not[3 =~ «]].

It is also interesting to note that:

arztBs [Bicrd= e dVe,d e A,
arz” e ldn ae=dz fic,Ve,d € A,
ot 4o o fanda s ]

Example 8 URC1, URC2, UAC2, UAC3, Not[UAC1))
Letl’ = {a,3,7,0} andN = {1,2}. LetZ on .4 be such that:

a ,>\_, b =4 g(p(ah bl) +p(a27 b2)) Z 07
wherep is a real valued function ohi? defined by the following table:
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p|l a B 4 4
al 0 =3 —1 2
gl 3 0 1 2
vl 1 -1 0 2
§l—-2 -2 -2 0

andg is such that:
(z) = zif |z > 2,
I\ = 0 otherwise

The relation is clearly complete and satisfies URC1 and URC2. It is not difficult to
check that we have:

B="7>=" a=" 4.

We haves =1 v,y =1 aandy =" § but neithera. =1 ¢ (because,a, = [(as but
Notlagas 7 fras]) noro =+ « (becauseviay 7= agvy, but Not[das 7 arye]). This

~

shows thatUAC2 and UACS3 hold but that UAC1 is violated. &

Example 9 URC1, URC2, UAC1, UAC3, Not[UAC2))
Letl’ = {a,3,v,0} andN = {1,2}. LetZ on.4 be such that:

a t b =4 g(p(ahbl) +p(a27b2)) Z 07

wherep is a real valued function ohi? defined by the following table:

p|l a B v ¢
al 0 3 1 =2
Bl1-=3 0 -1 -2
yl-1 1 0 =2
51 2 2 2 0

andyg is as in example 8.

The relation”; is clearly complete and satisfies URC1 and URC2. Observeptlsat
defined via the transposition of the table used in example 8. This interchanges the roles
of UAC1 and UAC2. In fact it is not difficult to see that we have:

S=Tax=T~y=Tp4

We have:d =~ ~, a =~ v,v =~ 3 but neithera —== § nord —— «. This shows that
UAC1 and UAC3 hold but that UAC2 is violated. &
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Example 10 (URC1, URC2, UAC1, UAC2, Not[UAC3])
Letl’ = {a,3,7,0} andN = {1,2}. Let - on .4 be such that:

a i: b = g(p(ahbl) +p(a27b2)) Z 07

wherep is a real valued function ofi? defined by the following table:

pla B v 0
al 0 =5 0 -2
Bl5 0 1 2
vl0 -1 0 0
512 =2 0 0

andg is as in example 8.

The relation is clearly complete and satisfies URC1 and URC2. We have:

B=Ty=T§="aand
B="0=" > a.

This shows thatJAC1 and UAC2 hold but that UAC3 is violated singe =" ¢ but
0 >="1. <&

D Examplesrelatedto LD relations in whichs is a semiorder

Example 11 URC1, URC2, UM1, UM2, UAC1, UAC2, Not[UAC3])
LetT' = {«a,3,v,0} andN = {1,2}. Let Z on .4 be such that:

a r?/ b< g(p(a17bl) _'_p(aQ?bQ)) 2 07

wherep is a real valued function oh? defined by the following table:

pla B v 0
al 0 =2 0 -2
gl2 0 0 2
10 0 0 0
512 =2 0 0

andg is as in example 8.
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The relation” is clearly complete and satisfies URC1 and URC2. Sintakes3
distinct values, it is easy to see thai*11 and UM2 holds. We have:

3,7] =" § =% aand
B="0="[y,qa]

This shows thatJAC1 and UAC2 hold but that UAC3 is violated singe =" § but
o =" 1. &

Example 12 (URC1, URC2, UM1, UM2, UAC3, Not[UAC1], Not[UAC2))
Letl’ = {a,3,v,0} andN = {1,2}. Let = on .4 be such that:

a i: b = g(p(ahbl) +p(a27b2)) Z 07

wherep is a real valued function ofi? defined by the following table:

p|l « B v 0
o 0 -2 -2 2
3l 2 0 0 0
0 2 0 0 2
0| —2 0 -2 0

andg is as in example 8.

The relation’ is clearly complete and satisfies URC1 and URC2. Sintakes3
distinct values, it is easy to see thdi1l and UM2 holds. It is easy to see thati~T ~,
B=Ta,B="0,v>"a,v=T4,butneitherr = § nord = «. Similarly we obtain:
vy o,y =" B,y =" 6, a =" 0,0 =" ¢ but neithera =—= g norp - a. Hence
UAC3 holds but UAC1 and UAC2 are violated. <&
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