
Chapter 2

Binary Relations and Preference Modeling

2.1. Introduction

This volume is dedicated to concepts, results, procedures and software aiming
at helping people make a decision. It is then natural to investigate how the various
courses of action that are involved in this decision comparein terms of preference.
The aim of this chapter is to propose a brief survey of the maintools and results that
can be useful to do so.

The literature on preference modeling is vast. This can firstbe explained by the
fact that the question of modeling preferences occurs in several disciplines, e.g.

– in Economics, where one tries to model the preferences of a ‘rational consumer’
[e.g. DEB 59];

– in Psychology in which the study of preference judgments collected in experi-
ments is quite common [KAH 79, KAH 81];

– in Political Sciences in which the question of defining a collective preference on
the basis of the opinion of several voters is central [SEN 86];

– in Operational Research in which optimizing an objective function implies the
definition of a direction of preference [ROY 85]; and

– in Artificial Intelligence in which the creation of autonomous agents able to take
decisions implies the modeling of their vision of what is desirable and what is less so
[DOY 92].
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50 Decision Making

Moreover, the question of preference modeling can be studied from a variety of
perspectives [BEL 88], including:

– anormativeperspective, where one investigates preference models that are likely
to lead to a ‘rational behavior’;

– adescriptiveperspective, in which adequate models to capture judgements ob-
tained in experiments are sought; or

– aprescriptiveperspective, in which one tries to build a preference model that is
able to lead to an adequate recommendation.

Finally, the preferences that are to be modeled can be expressed on a variety of ob-
jects depending on the underlying decision problem. For instance, one may compare:

– vectors inRp indicating the consumption ofp perfectly divisible goods;

– candidates in an election;

– probability distributions modeling the possible financial results of various invest-
ment prospects;

– alternatives evaluated on several criteria expressed in incommensurable units
when comparing sites for a new factory;

– projects evaluated on a monetary scale conditionally on the occurrence of various
events or on the actions of other players.

It would be impossible within the scope of this chapter to exhaustively summarize
the immense literature on the subject. More realistically,we will try here to present
in a simple way the main concepts used in building models of preference. This will
give the reader the necessary background to tackle the remaining chapters in this book.
The reader willing to deepen their understanding of the subject is referred to [ALE 06,
FIS 70, FIS 85, KRA 71, PIR 97, ROB 79, ROU 85].

This chapter is organized as follows. Section 2.2 is devotedto the concept ofbinary
relationsince this is the central tool in most models of preference. Section 2.3 defines
a ‘preference structure’. Section 2.4 introduces two classical preference structures:
complete orders and weak orders. Sections 2.5 and 2.6 introduce several more general
preference structures. Section 2.7 concludes with the mention of several important
questions that we cannot tackle here.

2.2. Binary relations

2.2.1. Definitions

A binary relationT on a setA is a subset of the Cartesian productA × A, i.e. a
set of ordered pairs(a, b) of elements ofA. If the ordered pair(a, b) belongs to the
setT , we will often writea T b instead of(a, b) ∈ T . In the opposite case, we write
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(a, b) 6∈ T or a ¬T b. Except when explicitly mentioned otherwise, we will suppose
in all what follows that the setA is finite.

Remark2.1. Since binary relations are sets, we can apply the classical operations of
set theory to them. For instance, given any two binary relationsT1 andT2 onA, we
will write:

T1 ⊂ T2 ⇔ [a T1 b⇒ a T2 b, ∀a, b ∈ A],

a (T1 ∪ T2) b⇔ a T1 b or a T2 b,

a (T1 ∩ T2) b⇔ a T1 b anda T2 b.

Moreover, theproductT1 · T2 will be defined by:

a T1 · T2 b⇔ ∃c ∈ A : a T1 c andc T2 b.

We denote byT 2 the relationT · T , i.e. the product of the relationT with itself.

Given a binary relationT onA, we define:

– its inverse relationT− such that:

a T− b⇔ b T a;

– its complement, i.e. the binary relationT c such that:

a T c b⇔ a ¬T b;

– its dual relationT d such that:

a T d b⇔ b ¬T a;

– its symmetric partIT such that:

a IT b⇔ [a T b andb T a];

– its asymmetric partPT such that:

a PT b⇔ [a T b andb ¬T a];

– its associated equivalence relationET such that:

a ET b⇔
{
a T c⇔ b T c,
c T a⇔ c T b,

}
, ∀c ∈ A.

Remark2.2. It is easy to check that we have:

T d = T−c = T c−,

IT = T ∩ T−,

PT = T ∩ T d.
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2.2.2. Properties of a binary relation

A binary relationT onA is said to be:

– reflexiveif a T a;

– irreflexiveif a ¬T a;

– symmetricif a T b⇒ b T a;

– antisymmetricif a T b andb T a⇒ a = b;

– asymmetricif a T b⇒ b ¬T a;

– weakly completeif a 6= b⇒ a T b or b T a;

– completeif a T b or b T a;

– transitiveif a T b andb T c⇒ a T c;

– negatively transitiveif a ¬T b andb ¬T c⇒ a ¬T c;

– Ferrers if [a T b andc T d]⇒ [a T d or c T d]; and

– semitransitiveif [a T b andb T c]⇒ [a T d or d T c]

for all a, b, c, d ∈ A.

Remark2.3. The above properties are not independent. For instance, it is easy to check
that

– a relation is asymmetric⇔ it is irreflexive and antisymmetric;

– a relation is complete⇔ it is weakly complete and reflexive;

– an asymmetric and negatively transitive relation is transitive; and

– a complete and transitive relation is negatively transitive.

Whatever the properties ofT , it is clear that

– PT is always asymmetric;

– IT is always symmetric; and

– ET is always reflexive, symmetric and transitive.

Remark2.4. It is possible to reformulate the above properties in a variety of ways.
For instance, observe that:

– T is complete⇔ T ∪ T−= A×A;

– T is asymmetric⇔ T ∩ T−= ∅;

– T is transitive⇔ T 2 ⊂ T ;

– T is Ferrers⇔ T · T d · T ⊂ T ; and

– T is semi-transitive⇔ T · T · T d ⊂ T .

An equivalenceis a reflexive, symmetric and transitive binary relation (hence, the
binary relationET defined earlier is an equivalence whatever the properties ofT ). Let
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E be an equivalence onA. Given an elementa ∈ A, the equivalence class associated
to a, denoted by[a]E , is the set{b ∈ A : a E b}. It is always true thata ∈ [a]E . It is
easy to show that∀a, b ∈ A, either[a]E = [b]E or [a]E ∩ [b]E = ∅. An equivalence
therefore partitionsA into equivalence classes. The set of all these equivalence classes
is called the quotient ofA for E and is denotedA/E.

2.2.3. Graphical representation of a binary relation

A binary relationT onA can be represented as a directed graph(A, T ) whereA
is the set of vertices of the graph andT is the set of the arcs of the graph (i.e. ordered
pair of vertices). The particular properties of a binary relation can easily be interpreted
using the sagittal representation of the graph(A, T ). The reflexivity ofT implies the
presence of a loop on each vertex. The symmetry ofT means that when there is an arc
going froma to b, there is also an arc going fromb to a. The transitivity ofT means
that as soon as there is a path of length2 going froma to b, there is an arc froma to
b. Taking the inverse relation is tantamount to inverting theorientation of all arcs in
the graph. Taking the complement consists of adding all missing arcs and deleting all
existing ones.

Observe that a symmetric relation can be more conveniently represented using a
non-oriented graph, in which the ordered pairs(a, b) and (b, a) of the relation are
represented using a single edge between the verticesa andb.

2.2.4. Matrix representation of a binary relation

Another way to represent a binary relationT onA is to associate to each element
ofA a row and a column of a square matrixMT of dimension|A|. The elementMT

ab of
this matrix, being at the intersection of the row associatedto a and at the intersection
of the column associated tob, is 1 if a T b and 0 otherwise.

With such a representation, the reflexivity ofT implies the presence of 1 on the
diagonal of the matrix, provided that the elements ofA have been associated in the
order of the row and columns of the matrix. Under this hypothesis, the symmetry ofT
is equivalent to the fact thatMT is equal to its transpose. Taking the inverse relation
consists of transposing the matrixMT . The matrix associated to the product of two
binary relations is the boolean product of the two corresponding matrices.

2.2.5. Example

LetA = {a, b, c, d, e}. Consider the binary relation

T = {(a, b), (b, a), (b, c), (d, b), (d, d)}.
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A matrix representation ofT is the following:

	 a b c d e
a 0 1 0 0 0
b 1 0 1 0 0
c 0 0 0 0 0
d 0 1 0 1 0
e 0 0 0 0 0

.

A sagittal representation of the graph(A, T ) is depicted in Figure 2.1.

a

b c

d

e

Figure 2.1. Sagittal representation of the graph(A, T )

2.3. Binary relations and preference structures

Consider an ordered pair(a, b) of objects. It is classically supposed that there can
only be two answers to the question ‘is objecta at least as good as objectb?’: yes or
no, these two answers being exclusive. Asking such a question for all ordered pais of
objects leads to the definition of abinary relationS on the setA of all objects letting
a S b if and only if the answer to the question ‘isa at least as good asb?’ is yes. In
view of its definition, it is natural to consider thatS is reflexive; we will do so in all
that follows.

Definition 2.1. A preference structure onA is a reflexive binary relationS onA.

Remark2.5. The preceding definition raises a question ofobservability. If the idea
of preference is to be based on observable behavior, the primitive may be taken to be
choices made on various subsets of objects. This change of primitive is at the heart of
‘revealed preference’ theory in which the relationS is inferred from choices that are
observable. Such an inference requires that choices are essentially ‘binary’, i.e. that
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choices made on pairs of objects are sufficient to infer choice made on larger sets of
objects. The conditions allowing such a rationalization ofa choice function through a
binary relation are classical [e.g. SEN 70, SEN 77]. They have recently been severely
questioned [MAL 93, SEN 93, SUG 85].

Remark2.6. In some cases, one may envisage answers other than yes or no tothe
question ‘isa at least as good asb?’, e.g.

– answers such as ‘I do not know’;

– answers including information on theintensity of the preference, e.g. ‘a is
strongly/weakly/moderately preferred tob’;

– answers including information on thecredibility of the proposition ‘a is at least
as good asb’, e.g. ‘the credibility of the ‘a is at least as good asb’ is greater than the
credibility of the proposition ‘c is at least as good asd’ ’ or even ‘the credibility of the
proposition ‘a is at least as good asb’ is α ∈ [0; 1]’.

Admitting such answers implies using a language that is richer than that of binary
relations, e.g.

– the language offuzzy relations[DOI 86, FOD 94, PER 92], each assertion of the
typea S b having adegree of credibility;

– languages tolerating hesitation [e.g. ROY 87];

– languages using the idea ofintensity of preference[COS 94, DOI 87], an asser-
tion such thata S b and b ¬S a being further qualified (weak, strong or extreme
preference, for instance); or

– languages making use ofnon-classical logics[TSO 92, TSO 95, TSO 97] al-
lowing the capture of the absence of information or, on the contrary, the existence of
contradictory information (with such languages, the truthvalue of the assertiona S b
can take values different from just ‘true’ or ‘false’ and include ‘unknown’ and ‘con-
tradictory’).

We do not consider such extensions in this paper.

Let us consider a preferenceS on a setA. For all pairs of objects{a, b}, we are in
one of the following four situations (see Figure 2.2):

1) [a S b andb S a], denoted bya IS b, interpreted as ‘a is indifferentto b’;

2) [a ¬S b andb ¬S a], denoted bya JS b, interpreted as ‘a is incomparableto
b’;

3) [a S b andb ¬S a], denoted bya PS b, interpreted as ‘a is strictly preferredto
b’; and

4) [a ¬S b andb S a], denoted byb PS a, interpreted as ‘b is strictly preferredto
a’.
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b S a b ¬S a
a S b a I b a P b
a ¬S b b P a a J b

Figure 2.2. Four exhaustive and mutually exclusive situations

When there is no risk of ambiguity, we useI, J andP instead ofIS , JS andPS .

By construction,I andJ are symmetric andP is asymmetric. SinceS is reflexive,
I is reflexive andJ is irreflexive. The three relationsP , I andJ are:

– mutually exclusive, i.e.P ∩ I = P ∩ J = I ∩ J = ∅ and

– exhaustive, i.e.P ∪ P− ∪ I ∪ J = A2.

Remark2.7. Many works use% instead ofS,� instead ofP and∼ instead ofI.

Remark2.8. Given a preference structure ofS onA, it may be useful to consider the
relation induced byS on the quotient setA/ES , whereES denotes the equivalence
associated toS. This allows the simplification of many results.

Remark2.9. Since a preference structure is a reflexive binary relation,we can use
the graphical and matrix representations introduced earlier to represent it. In order to
simplify graphical representations, we will systematically omit reflexivity loops and
will use the conventions introduced in Figure 2.3.

a

b

a

b

a

b

a P b a I b a J b

Figure 2.3. Graphical conventions

Example 2.1. LetA = {a, b, c, d, e} and the preference structureS = { (a, a), (a, b),
(a, c), (a, e), (b, a), (b, b), (b, c), (c, b), (c, c), (d, a), (d, b), (d, c), (d, d), (e, a), (e, c),
(e, e) }. We have:

P = {(a, c), (d, a), (d, b), (d, c), (e, c)},
I = {(a, a), (a, b), (a, e), (b, a), (b, b), (b, c), (c, b), (c, c), (d, d), (e, a), (e, e)},
J = {(b, e), (d, e), (e, b), (e, d)}.



Binary Relations and Preference Modeling 57

Using the above conventions, we obtain the matrix representation (Figure 2.4) and the
graphical representation (Figure 2.5) ofT .

	 a b c d e
a 1 1 1 0 1
b 1 1 1 0 0
c 0 1 1 0 0
d 1 1 1 1 0
e 1 0 1 0 1

Figure 2.4. Matrix representation

a

b c

d

e

Figure 2.5. Graphical representation

2.4. Classical preference structures

2.4.1. Total order

2.4.1.1.Definition

A preference structureS is a total order if:

– S is complete;

– S is transitive; and

– S is antisymmetric.

In a total order, the incomparability relation is empty (J = ∅) and the indifference
relationI is limited to pairs of identical objects (I = {(a, a) : a ∈ A}). The strict
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preference isP is weakly complete and transitive. A total order therefore consists of
a ranking of the objects fromA from best to worst (using the relationP ) without the
possibility ofex aequo.

Remark2.10. It is easy to check that an equivalent definition of a total order consists
of saying thatS is complete and the only circuits in this relation are loops.

It is clear that, ifS is a total order,

– P is weakly complete and transitive;

– I is transitive;

– I · P ⊂ P ; and

– P · I ⊂ P .

Remark2.11. Checking if a preference structure is a total order is quite simple us-
ing the matric representation ofS. Indeed, labeling rows and columns of the matrix
according toP , we obtain a matrix that has only 0 below the diagonal and 1 else-
where. The relationP corresponds to off-diagonal 1’s. In the graphical representation,
if vertices are ranked according toP , all arcs are going from left to right.

Example 2.2. LetA = {a, b, c, d, e}. Consider the preference structureS = {(a, a),
(a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, d), (d, e),
(e, e)}.

It is easy to check that it is a total order using the matrix representation shown on
Figure 2.6 or its graphical representation shown on Figure 2.7.

	 a b c d e
a 1 1 1 1 1
b 0 1 1 1 1
c 0 0 1 1 1
d 0 0 0 1 1
e 0 0 0 0 1

Figure 2.6. Matrix representation of a total order

a b c d e

Figure 2.7. Graphical representation of a total order
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2.4.1.2.Numerical representation

Let S be a total order onA. One may associate a number to each object in such a
way that this number reflects the position of the object in therelationS. We leave the
easy proof of the following result to the reader.

Theorem 2.1. A preference structureS on a finite setA is a total order if and only if
there is a functiong : A→ R such that∀a, b ∈ A:

{
a S b⇔ g(a) ≥ g(b),
g(a) = g(b)⇒ a = b.

Remark2.12. The numerical representation of a total order is not unique.It is easy to
show that given a numerical representationg satisfying the conditions of Theorem 2.1,
any increasing transformation applied tog leads to another admissible representation.
Conversely, ifg andh are two numerical representations of the same total order inthe
sense of Theorem 2.1, there is an increasing functionφ such thatg = φ◦h. The scale
g is said to be anordinal scale.

Let g be a function satisfying the condition of the above theorem.It is possible
to compare differences such asg(a) − g(b) andg(c) − g(d). These comparisons are
nevertheless clearly dependent upon the choice of the particular functiong: another
legitimate choice can lead to other comparisons of differences. Hence, in general, it is
impossible to give a particular meaning to these comparisons.

Remark2.13. Theorem 2.1 remains true ifA is countably infinite (g is defined by an
easy induction argument). It is clear that the result is no more true in the general case.
Let us illustrate this fact by two examples.

1) It is well know that the cardinality ofP(R) (i.e. the set of subsets ofR) is strictly
greater than that ofR. Any total order onP(R) cannot have a numerical representation
in the sense of Theorem 2.1. A natural question arises: is Theorem 2.1 true when
attention is restricted to setsA, having at most the cardinality ofR? This is not so, as
shown by the following famous example.

2) LetA = R × {0, 1}. It is easy to show thatA has the same cardinality asR.
Consider the lexicographic order defined, letting:

(x, y) P (z, w)⇔
{
x > z or
x = z andy > w,

and

(x, y) I (z, w)⇔ x = z andy = w.

It is easy to show that the structureS = P ∪ I is a total order. It does not have a
numerical representation in the sense of Theorem 2.1. Indeed, suppose thatg is such
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a representation. We would have∀x ∈ R, (x, 1) P (x, 0) so thatg(x, 1) > g(x, 0).
There exists a rational numberµ(x) such thatg(x, 1) > µ(x) > g(x, 0). We have
(y, 1) P (y, 0) P (x, 1) P (x, 0) ⇔ y > x. Hence,y > x impliesµ(y) > µ(x). The
functionµ built above is therefore a bijection betweenR andQ, a contradiction.

Beardonet al. [BEA 02] propose a detailed analysis of the various situations in
which a total order does not have a numerical representation. The necessary and suffi-
cient conditions ensuring that a total order has a numericalrepresentation are known
[BRI 95, DEB 54, FIS 70, KRA 71]. They amount to supposing thatS on A has a
behavior that is ‘close’ to that of≥ in R.

2.4.2. Weak orders

2.4.2.1.Definition

A preference structureS is a weak order if:

– S is complete; and

– S is transitive.

Weak orders generalize total orders since they do not have tobe antisymmetric.
Hence, indifference between distinct elements is allowed in weak orders.

Remark2.14. An equivalent definition of a weak order is thatS is complete and any
circuit of S has noP arc.

It is clear that, ifS is a weak order,

– P is transitive;

– P is negatively transitive;

– I is transitive (I is therefore an equivalence);

– I · P ⊂ P ;

– P · I ⊂ P ; and

– the relationS induces a total order on the quotient setA/I.

Remark2.15. Let T be an asymmetric and negatively transitive binary relationonA.
LetS = T ∪ (T− ∩ T d). It is easy to show thatS is a weak order.

Remark2.16. If the rows and columns of the matrix representation of a weakorder
are ordered according to a relation that is compatible withP (the ordering of the rows
and columns for indifferent elements being unimportant), we obtain a matrix in which
the 1’s are separated from the 0’s by a stepped frontier that is below the diagonal and
touches the diagonal. In a similar way, the graphical representation of a weak order
generalizes that of a total order.
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Example 2.3.LetA = {a, b, c, d, e}. Consider the preference structureS = (a, a), (a, b),
(a, c), (a, d), (a, e), (b, a), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, c), (d, d),
(d, e), (e, e)}. It is easy to check that this is a weak order, considering thematrix repre-
sentation depicted in Figure 2.8 or the graphical representation depicted in Figure 2.9.

	 a b c d e
a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 1 1
d 0 0 1 1 1
e 0 0 0 0 1

Figure 2.8. Matrix representation of a weak order

a

b

c

d

e

Figure 2.9. Graphical representation of a weak order

2.4.2.2.Numerical representation

Remembering that weak order induces a total order on the quotient setA/I, it is
easy to prove the following result.

Theorem 2.2. A preference structureS on a finite setA is a weak order if and only if
(iff) there is a functiong : A→ R such that∀a, b ∈ A

a S b⇔ g(a) ≥ g(b).
Remark2.17. As above, the numerical representation of a weak order is defined up
to an increasing transformation. The functiong is an ordinal scale and most of the
assertions that can be obtained using arithmetic operations on the values ofg have a
truth value that depends on the functiong that was chosen: they are not meaningful in
the sense of [ROB 79].
Remark2.18. It is clear that the above result remain true whenA is countably infi-
nite (since in this case a total order structure always has a numerical representation).
As was the case with total orders, extending this result to arbitrary sets implies the
introduction of additional conditions.
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2.4.3. Classical problems

In most studies involving preferences, the weak order modelis used: the function
g representing the weak order is the function that should be maximized. Depending on
the context, it is referred to as the value function, objective function, criterion or value
function. It is striking that decision problems have been dealt with so often in this way
without much investigation on the adequateness ofg as a model of preference.

We discuss here a few classical questions that have been dealt with using the weak
order model.

2.4.3.1.Choosing on the basis of binary relation

Suppose that we have a weak orderS on a setA and consider the situation (com-
mon in Economics) in which a choice must be made in a subsetB ⊆ A. How should
the information contained inS be used to guide such a choice? A natural way to define
the setC(B,S) of chosen objects (note that since we do not requireC(B,S) to be
a singleton, it would be more adequate to speak of objects that are susceptible to be
chosen) inB on the basis ofS is to let

C(B,S) = {b ∈ B : Not[ a P b ] for all a ∈ B}.

An objecta belongs to the choice set as soon as there is no other object that is
strictly preferred toa. It is not difficult to show thatC(B,S) is always non-empty as
soon asB is finite (the general case raises difficult questions, see [BER 75]) andS is
a weak order. Let us observe that, whenB is finite, imposing thatS is a weak order is
only a sufficient condition for the non-emptyness ofC(B,S).

A classic result [SEN 70] states that, whenB is finite,C(B,S) is non-empty as
soon asP is acyclic inB (it is never true that, for alla1, a2, . . . , ak in B, a1 P
a2, a2 P a3, . . . , ak−1 P ak and ak P a1). The use of structures that are more
general than the weak order also allows a simple answer to theproblem to be derived.

We note that there are situations (e.g. a competitive exam) in which it is desirable
to rank order all elements in a subsetB ⊆ A and also to define the choice setC(B,S).
The weak order model allows a trivial answer to this problem to be derived since the
restriction of a weak order onA to a subsetB ⊆ A is a weak order onB.

2.4.3.2.Aggregating preferences

Suppose that you have collectedn ≥ 2 preference structures onA, for example
because the objects are evaluated according to various points of view (voters, criteria
or experts). In such a situation, it is natural to try to builda ‘collective’ preference
structureS that aggregates the information contained in(S1, S2, . . . , Sn).
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In general, one looks for a mechanism (e.g. an electoral system or an aggrega-
tion method) that is able to aggregateany n-tuple of preference structures onA
into a collective preference structure. When the weak ordermodel is used, defining
such a mechanism amounts to defining an aggregation functionF fromWO(A)n in
WO(A), whereWO(A) is the set of all weak orders onA.

The work of Arrow [ARR 63] has clearly shown the difficulty of such a problem.
Imposing a small number of apparently reasonable conditions onF (unanimity, in-
dependence with respect to irrelevant alternatives and absence of dictator) leads to a
logical impossibility: it is impossible to simultaneouslysatisfy all these principles (for
a rich synthesis of such results, see [CAM 02, SEN 86]). The simple majority method
can be used to illustrate the problem uncovered by Arrow’s result. This method con-
sists of declaring that ‘a is collectively at least as good asb’ if there are more weak
orders in which ‘a is at least as good asb’ than weak orders for which ‘b is at least
as good asa’. Such a method seems highly reasonable and in line with our intuitive
conception of democracy.

It does not always lead to a collective weak order; it may evenlead to a collective
relation having a cycle in its asymmetric part. This is the famous Condorcet paradox:
A = {a, b, c}, n = 3, a P1 b P1 c, c P2 a P2 b and b P3 c P3 a gives the
simplest example of such a situation. Using a collective preference structure in which
strict preference may be cyclic in order to choose and/or to rank order is far from
being an easy task. Many works have investigated the question [e.g. LAS 97, MOU 86,
SCH 86].

2.4.3.3.Particular structure of the set of objects

In many situations, it is natural to suppose that the set of objectsA has a particular
structure. This will be the case in:

– decision with multiple criteria in which the elements ofA are vectors of evalu-
ations on several dimensions, attributes or criteria (A ⊆ A1 × A2 × · · · × An where
Ai is the set of possible evaluations of the objects on theith dimension);

– decision under risk in which the elements onA are viewed as probability dis-
tribution on a set of consequences (A ⊆ P(C) whereP(C) is a set of probability
distributions on a set of consequencesC); or

– decision under uncertainty in which the elements ofA are characterized by con-
sequences occurring contingently upon the occurrence of ‘several states of nature’
(A ⊆ Cn whereC is a set of consequences, supposing thatn distinct states of nature
are distinguished).

In all these cases it is tempting to add to the weak order modeladditional con-
ditions that will allow us to take advantage of the particular structure of the setA.
Among these condition, let us mention the following.
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1) Preference independence[KEE 76, KRA 71, WAK 89]: In the case of decision-
making with multiple criteria, this implies that the comparison of two objects differing
only on a subset of criteria is independent from their commonevaluations:

(aI , c−I) S (bI , c−I)⇔ (aI , d−I) S (bI , d−I)

whereI is a subset of criteria{1, 2, . . . , n} and where(aI , c−I) denotes the object
e ∈ A such thatei = ai if i ∈ I andei = ci otherwise.

2) Independence with respect to probabilistic mixing[FIS 70, FIS 88]: In the case
of decision-making under risk, this implies that the preference relation between two
probability distributions is not altered when they are bothmixed with a common prob-
ability distribution:

a S b⇔ (aαc) S (bαc)

where(aαb) denotes the convex combination of the probability distributionsa andb
with the coefficientα ∈ (0; 1).

3) The sure-thing principle[FIS 70, SAV 54, WAK 89]: In the case of decision-
making under uncertainty, this implies that the preferencebetween two acts does not
depend on common consequences obtained in some states of nature, i.e.

(aI , c−I) S (bI , c−I)⇔ (aI , d−I) S (bI , d−I)

whereI is a subset of states of nature and(aI , c−I) denotes the acte ∈ A such that
ei = ai if i ∈ I andei = ci otherwise.

When these conditions are applied to sets of objects that aresufficiently ‘rich’ (and
when it is required thatS behaves coherently with this richness [FIS 70, WAK 89]),
we obtain some famous models based on that of the classical theory.

– The model ofadditive value functionsin the case of decision with multiple cri-
teria:

a S b⇔
n∑

i=1

ui(ai) ≥
n∑

i=1

ui(bi)

whereui is a real-valued function onAi and the evaluation of objecta on theith
criterion is denoted byai.

– Theexpected utilitymodel in the case of decision making under risk:

a S b⇔
∑

c∈C

pa(c)u(c) ≥
∑

c∈C

pb(c)u(c)

whereu is a real-valued function onC andpa(c) is the probability to obtain conse-
quencec ∈ C with objecta.
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– Thesubjective expected utilitymodel in the case of decision-making under un-
certainty:

a S b⇔
n∑

i=1

piu(ai) ≥
n∑

i=1

piu(bi)

whereu is a real-valued function onC and thepi’s are non-negative numbers summing
to 1 that can be interpreted as the subjective probabilitiesof the various states of nature.

One of the major aims of these models is to allow a numerical representationg of S
that is much more specific than that given by Theorem 2.2. The additional conditions
mentioned above imply that, whenA is adequately rich (e.g. thatA = A1×A2×· · ·×
An in the case of decision making with multiple criteria, and that eachAi has a rich
structure [WAK 89]),g can be additively decomposed. The numerical representation
obtained is an interval scale (unique up to the choice of origin and unit). It is then
possible to use sophisticated elicitation techniques to assessg and, therefore, structure
a preference model [KEE 76, KRA 71, WAK 89].

These additional conditions were subjected to many empirical tests. In the fields of
decision making under risk and uncertainty, it was show thatthe conditions at the heart
of the expected utility model (independence axiom and sure-thing principle) were fal-
sified in a predictable and reproducible way [ALL 53, ELL 61, KAH 79, MCC 79].
This has generated numerous studies investigating models using only weakening of
these additional conditions (see [FIS 88, MAC 82, QUI 82, QUI93, YAA 87] for de-
cision under risk and [DUB 01, GIL 87, GIL 89, SCH 89, WAK 89] for decision under
uncertainty).

Dutch book-like arguments (adhering to these generalized models may transform
an individual into a ‘money pump’) have often been used to criticise these models
[RAI 70]. The validity of such arguments nevertheless raises difficult questions (see
[MAC 89, MCC 90] for a criticism of such arguments for decision making under risk).

Finally, let us mention that other structures forA can be usefully studied. For in-
stance, whenA is endowed with a topological structure, it is natural to investigate
numerical representation having continuity properties [BOS 02a, BRI 95, JAF 75].
Similarly, if A is endowed with a binary operation allowing the combinationof its
elements (this is the case in decision under risk using ‘probabilistic mixing’ of two
objects), a numerical representation is sought that is somehow compatible (most often
through addition) with this operation [KRA 71].

2.5. Semi-orders and interval orders

In weak orders, the indifference relationI is transitive. This hypothesis is some-
times inadequate since it amounts to supposing a perfect discrimination between close
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but distinct objects. Luce [LUC 56] was the first to suggest a preference structure in
which indifference may be intransitive [PIR 97]. He suggested the following example.

Example 2.4. Consider a setA consisting of 101 cups of coffee numbered from 0–
100 and identical except that there arei grains of sugar in theith cup. It is likely that
an individual comparing these cups will not be able to detecta difference between two
consecutive cups. Hence, it is likely that we obtain:

a0 I a1, a1 I a2, . . . , a99 I a100.

If the relationI is supposed to be transitive, we should havea0 I a100, which seems
unlikely as the individual is supposed to prefer sugared coffee.

The two preference structures introduced in this section aim to model situations in
which indifference is not transitive, while maintaining our other hypotheses (transitiv-
ity of P , no incomparability) made so far.

2.5.1. Semi-order

2.5.1.1.Definition

A preference structureS is a semi-order if:

– S is complete;

– S is Ferrers; and

– S is semitransitive.
Remark2.19. It is easy to check that an equivalent definition of a semi-order is to
suppose thatS is complete and all circuits ofS have moreI arcs thanP arcs.

Moreover, it is easy to prove that ifS is a semi-order:

– P is transitive;

– P is Ferrers;

– P is semi-transitive;

– P · I · P ⊂ P ;

– P · P · I ⊂ P ;

– I · P · P ⊂ P ; and

– P 2 ∩ I2 = ∅.

As will become apparent later, semi-orders arise when an indifference threshold
is introduced when comparing objects evaluated on a numerical scale. As an easy
exercise, the reader may wish to check that any weak order is asemi-order.
Remark2.20. The graphical representation of a semi-order is characterized by the fact
that the four configurations depicted in Figure 2.10 are forbidden (whatever appears on
the diagonal and with the possibility that two indifferent elements may be identical).
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a d

b c

a d

b c

a d

b c

a d

b c

Figure 2.10.Forbidden configurations in a semi-order

2.5.1.2.Weak order associated with a semi-order

Let S is be a binary relation onA. The binary relationS± onA defined by

a S± b⇔
{
b S c⇒ a S c,
c S a⇒ c S b,

}
∀c ∈ A

is called the trace ofS. It is clear that the trace of a relation is always reflexive and
transitive. We leave the easy proof of the following result to the reader.

Theorem 2.3. LetS be a reflexive binary relation onA. S is a semi-order if and only
if its traceS± is complete.

Remark2.21. WhenS is a semi-order, the weak orderS± is obtained by ranking the
elements ofA according to their degree inS (i.e. number of arcs leaving a vertex
minus the number of arcs entering it). One can check that a weak order is always
identical to its trace.

2.5.1.3.Matrix representation [JAC 78]

By ordering the row and columns of the matrix representationof a semi-order, by
using an order that is compatible with the trace of the relation, we obtain a matrix in
which the 1’s are separated from the 0’s by frontiers that arestepped and located below
the diagonal. This follows immediately from the definition of the trace. In contrast
with what happens with weak orders, the frontier separatingthe 1’s and the 0’s does
not necessarily touch the diagonal.

Example 2.5. Let A = {a, b, c, d, e, f}. Consider the preference structureS =
{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f) (b, a), (b, b), (b, c), (b, d), (b, e), (b, f),
(c, b), (c, c), (c, d), (c, e), (c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e),
(e, f), (f, e), (f, f) }. We obtain the matric representation shown in Figure 2.11.
This relation is not a weak order: we have e.g.e S c andc S b bute ¬S b.
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	 a b c d e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 0 1 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 1 1 1
f 0 0 0 0 1 1

Figure 2.11.Matrix representation of a semi-order

2.5.1.4.Numerical representation

Theorem 2.4. LetA be a finite set. The following propositions are equivalent.

1) S is a semi-order onA.

2) There is a functiong : A→ R and a constantq ≥ 0 such that∀a, b ∈ A:

a S b⇔ g(a) ≥ g(b)− q.

3) There is functiong : A→ R and a functionq : R→ R+ such that∀a, b ∈ A:

g(a) > g(b)⇒ g(a) + q(g(a)) ≥ g(b) + q(g(b))

and

a S b⇔ g(a) ≥ g(b)− q(g(b)).

Proof: See [FIS 85], [PIR 97, theorem 3.1], [SCO 58] or [SUP 89, chapter 16].

This result shows that semi-orders naturally arise when objects evaluated on a
numerical scale are compared on the basis of the scale, however, differences that are
less than a constant threshold are not perceived or are not considered to be significant.
The threshold is not necessarily constant provided that we never haveg(a) > g(b) and
g(b) + q(g(b)) > g(a) + q(g(a)). Let us observe that the generalization of this result
to arbitrary sets raises delicate problems [BEJ 92, CAN 02, FIS 73, FIS 85].

Remark2.22. Let us build the numerical representation of the semi-orderfor which
we gave the matrix representation earlier. Having chosen anarbitrary positive value
for q, e.g.q = 1, the functiong is built associating increasing values to the elements
f, e, d, c, b, a (i.e. considering the lower elements in the weak orderS± first), while
satisfying the desired numerical representation. In such away, we obtain:g(f) = 0,
g(e) = 0.5, g(d) = 1.1, g(c) = 1.2, g(b) = 2.15 andg(a) = 3.

Remark2.23. The numerical representation of a semi-order is not unique.All increas-
ing transformation applied tog gives another acceptable representation provided that
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the same transformation is applied toq. However, all representations of a semi-order
cannot be obtained in this way as shown by the following example. The scale that is
built is more complex than an ordinal scale.

Example 2.6. Let A = {a, b, c, d}. Consider the preference structureS = {(a, d),
(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (b, d), (d, b), (c, d), (d, c)}. It
is easy to check, e.g. using a matrix representation, that this structure is a semi-order.
Table 2.1 gives two numerical representations ofS that cannot be obtained from one
another by an increasing transformation.

a b c d threshold
g 2 1.1 1 0 1.5
g′ 2 1 1 0 1.5

Table 2.1.Two numerical representations of a semi-order

2.5.2. Interval order

2.5.2.1.Definition

A preference structureS is an interval order if:

– S is complete; and

– S is Ferrers.

This structure generalized all structures introduced so far. As we will later see, it
arises naturally when one wishes to compare intervals on an ordinal scale.

Remark2.24. It is easy to check that an equivalent definition of an interval order con-
sists of saying thatS is complete and that all circuits inS have at least two consecutive
I arcs.

It is easily checked that, ifS is an interval order,

– P is transitive;

– P is Ferrers; and

– P · I · P ⊂ P .

Remark2.25. The graphical representation of an interval order is characterized by the
fact that the three configurations depicted on Figure 2.12 are forbidden (anything can
appear on the diagonal).
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a d

b c

a d

b c

a d

b c

Figure 2.12.Forbidden configurations in an interval order

2.5.2.2.Weak orders associated to an interval order

Let S be a binary relation onA. Let us define a relationS+ onA, setting

a S+ b⇔ [b S c⇒ a S c, ∀c ∈ A].

Similarly, we define the relationS− setting

a S− b⇔ [c S a⇒ c S b, ∀c ∈ A].

The relationS+ (respectivelyS−) is called the right trace (respectively left trace) of
S. It is clear thatS+ andS− are always reflexives and transitives.

The proof of the following result is easy and left to the reader.

Theorem 2.5. LetS be a reflexive binary relation onA. The following three proposi-
tions are equivalent:

1) S is an interval order;

2) S+ is complete; and

3) S− is complete.

Remark2.26. WhenS is an interval order, the weak orderS+ (respectivelyS−) can
be obtained ranking the elements ofA according to their out-degree (respectively in-
degree) inS.

2.5.2.3.Matrix representation

Let us rank the rows of the matrix representation in a way thatis compatible with
S+ taking care to rank indifferent elements according toS+ using an order that is
compatible withS−. Let us perform a similar operation on the columns of the matrix,
permuting the roles ofS+ andS−. We obtain a matrix in which the 1’s are separated
from the 0’s by a stepped frontier that is below the diagonal.
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Example 2.7. Let A = {a, b, c, d, e, f}. Consider the following structure:S = {
(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, a), (b, b), (b, c), (b, d), (b, e), (b, f),
(c, b), (c, c), (c, d), (c, e), (c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e),
(e, f), (f, e), (f, f) }.

We obtain the following matrix representation:

	 a b d c e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 0 1 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 1 1 1
f 0 0 0 1 1 1

This structure is an interval order. It is not a semi-order sincef S c andc S b but
f ¬S d andd ¬S b. It is therefore impossible to represent this structure using a
stepped matrix with a similar order on rows and columns.

2.5.2.4.Numerical representation

The proof of the following result can be found in [PIR 97, theorem 3.11] or [FIS 85].

Theorem 2.6. LetA be a finite set. The following propositions are equivalent:

1) S is an interval order onA; and

2) there are two functionsg : A→ R andq : R→ R+ such that∀a, b ∈ A:

a S b⇔ g(a) + q(g(a)) ≥ g(b).

We refer to [BRI 95, CHA 87, FIS 73, FIS 85, NAK 02, OLO 98] for the problems
involved in generalizing this result to arbitrary sets.

Remark2.27. For instance, it is possible to build the numerical representation of the
interval order presented earlier as follows. The values ofg are arbitrarily chosen pro-
vided they increase from the first to the last row of the matrix. The values ofg + q
are then defined in such a way that they increase from the first to the last column of
the matrix and they satisfy the desired representation. Forinstance, we successively
obtain:

g(f) = 0, g(e) = 5, g(c) = 10, g(d) = 15, g(b) = 20, g(a) = 25,

(g + q)(f) = 12, (g + q)(e) = 17, (g + q)(d) = 19,

(g + q)(c) = 23, (g + q)(b) = 28, (g + q)(a) = 30.
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Letting g = g andg = (g + q), it is clear that the numerical representation of an
interval order amounts to associating an interval[g, g] with eacha ∈ A such that:





a P b⇔ g(a) > g(b),

a I b⇔
{
g(a) ≤ g(b),
g(b) ≤ g(a),

which leads to the representation depicted in Figure 2.13.

0 30

f d b

e a

c

Figure 2.13. Interval representation of an interval order

2.5.3. Remarks

Remark2.28. Interval orders may be generalized using a threshold depending on
both objects compared. One then obtains a threshold representation of all relations for
which the asymmetric part is acyclic [ABB 93, ABB 95, AGA 93, ALE 06, DIA 99,
SUB 94]. We do not tackle such models here.

Remark2.29. In an interval order, the relationP is transitive and hence is acyclic. For
all non-empty finite subsetsB ⊂ A, C(B,S) is therefore always non-empty. Using
one of the structures introduced in this section does not raise major problems when it
comes to linking preferences and choices.

Remark2.30. We saw that whenA has a particular structure and thatS is a weak order,
it is interesting to use such a structure to try to arrive at a numerical representation
that is more constrained than an ordinal scale. These extensions make central use of
the transitivity of indifference in order to build these numerical representations. It is
therefore not simple to do similar things on the basis of a semi-order or an interval
order [DOM 71, KRA 67, LUC 73, SUP 89].

Remark2.31. Building a collective preference that is a semi-order or an interval order
does not significantly contribute to the solution of the aggregation problem of weak
orders uncovered by Arrow’s theorem [SEN 86]. As soon as|A| ≥ 4, the theorem still
holds if the collective preference is required to be complete and Ferrers (or complete
and semi-transitive).
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2.6. Preference structures with incomparability

In all the structures envisaged so far, we supposed thatS was complete. This hy-
pothesis may seem innocuous, in particular when preferences are inferred from ob-
served choices. It is not without problems however. Indeed,it may well happen that:

– information is poor concerning one or several of the elements ofA;

– comparing elements ofA implies synthesizing on several conflicting points of
view; and

– the objects are not familiar to the individual.

In such cases, it may prove useful for preference modeling touse structures that ex-
plicitly include incomparability [FLA 83, ROY 85].

2.6.1. Partial order

A preference structureS is a partial if:

– S is reflexive;

– S is antisymmetric; and

– S is transitive.

Intuitively, a partial order is a structure in which, given two distinct objects, either
object is strictly preferred to the other or the two objects are incomparable, with strict
preference being transitive.

Remark2.32. It is easy to check that, ifS is a partial order,

– P is transitive; and

– I is limited to loops.

A fundamental result [DUS 41, FIS 85] shows that all partial orders on a finite set
can be obtained intersecting a finite number of total orders on this set. The minimal
number of total orders that are needed for this is called thedimensionof the partial
order. This easily implies the following result.

Theorem 2.7. LetA be a finite set. The following propositions are equivalent:

1) S is a partial order onA; and

2) there is a functiong : A→ R such that∀a, b ∈ A:

{
a S b⇒ g(a) ≥ g(b),
g(a) = g(b)⇒ a = b.
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a b d e

c

Figure 2.14.Graphical representation of a partial order

Example 2.8. LetA = {a, b, c, d, e}. Consider the preference structure:S = { (a, a),
(a, b), (a, c), (a, d), (b, b), (b, d), (b, e), (c, c), (c, e), (d, d), (d, e), (e, e) }. A graphi-
cal representation of this structure is depicted in Figure 2.14.

It is easy to check that the structure is partial order with dimension2, obtained by
intersecting the two total orders (using obvious notation):

a > b > d > c > e and

a > c > b > d > e.

Let us note that the detection of a partial order of dimension2 can be done in poly-
nomial time. On the contrary, the determination of the dimension of a partial order is
NP -difficult [DOI 84, FIS 85].

2.6.2. Quasi-order

A preference structureS is a quasi-order if:

– S is reflexive; and

– S is transitive.

Quasi-orders generalize partial orders by allowing indifference between distinct ele-
ments, the indifference relation being transitive.

Remark2.33. It is easy to check that, ifS is a quasi-order,

– P is transitive;

– I is transitive;

– P · I ⊂ P ; and

– I · P ⊂ P .

As with partial orders, it is easy to show that any quasi-order on a finite set can
be obtained intersecting a finite number of weak orders [BOS 02b, DON 98]. This
implies the following result.
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Theorem 2.8. LetA be a finite set. The following propositions are equivalent:

1) S is a quasi-order onA; and

2) there is a functiong : A→ R such that∀a, b ∈ A:

a S b⇒ g(a) ≥ g(b).

Remark2.34. Alternatively, one can build a numerical representation ofa quasi-order
considering a set of numerical representations of weak orders [OK 02].

Example 2.9.LetA = {a, b, c, d, e, f}. Consider the preference structureS= {(a, a),
(a, b), (a, c), (a, d), (a, e), (a, f) (b, b), (b, d), (b, e), (b, f), (c, c), (c, e), (c, f), (d, b),
(d, d), (d, e), (d, f), (e, e), (e, f), (f, e), (f, f)}. It is easy to check that this is a quasi-
order. Its graphical representation is depicted in Figure 2.15.

a c

e

f

b

d

Figure 2.15.Graphical representation of a quasi-order

Remark2.35. It is possible to extend classical models of decision under risk to deal
with quasi-orders [AUM 62, FIS 70]. The multi-attribute case was only studied in the
finite case [FIS 70, SCO 64]. Let us also mention that allowingfor incomparability
in the collective preference does not significantly contribute to the solution of the
problem uncovered by Arrow’s theorem [WEY 84].

Remark2.36. Roubens and Vincke [ROU 85] proposed definitions of partial semi-
orders and interval orders. They allow an intransitive indifference relation at the same
time as incomparability situations. We do not detail this point here.

2.6.3. Synthesis

We summarize in Table 2.2 the properties of preference structures that have been
introduced so far.
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Structures Definition

Total order
S complete
S antisymmetric
S transitive

Weak order
S complete
S transitive

Semi-order
S complete
S Ferrers
S semi-transitive

Interval order
S complete
S Ferrers

Partial order
S reflexive
S antisymmetric
S transitive

Quasi-order
S reflexive
S transitive

Table 2.2.Common preference structures

2.7. Conclusion

2.7.1. Other preference structures

In all the structures introduced so far, the relationP was transitive and, hence,
was acyclic. This seems a natural hypothesis. Abandoning itimplies reconsidering the
links existing between ‘preference’ and ‘choice’ as we already saw. Nevertheless, it is
possible to obtain such preferences in experiments [MAY 54,TVE 69] when subjects
are asked to compare objects evaluated on several dimensions. They are also common
in social choice due to Condorcet’s paradox. Indeed, a famous result [MCG 53] shows
that with a simple majority, any complete preference structure can be be obtained
as the result of the aggregation of individual weak orders. With other aggregation
methods, all preference structures may occur [BOU 96].

The literature on Social Choice abounds with studies of adequate choice procedure
on the basis of such preferences. The particular case oftournaments(complete and
antisymmetric relations) have been explored in depth [LAS 97, MOU 86].

More recently, it was shown that it is possible to build numerical representations of
such relations [BOU 86, BOU 99, BOU 02, FIS 82, FIS 88, FIS 91a,FIS 91b, FIS 92,
TVE 69, VIN 91]. In the models proposed in [BOU 02], we have setsA being Carte-
sian products (as in decision under uncertainty or in decision with multiple attributes):

a S b⇔ F (p1(a1, b1), p2(a2, b2), . . . , pn(an, bn)) ≥ 0
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wherepi are functions fromA2
i to R, F is a function from

∏n
i=1 pi(A

2
i ) to R and

where, for example,F can be increasing in all its arguments. This model generalizes
the classical additive difference model proposed in [TVE 69] in which:

a S b⇔
n∑

i=1

ϕi(ui(ai)− ui(bi)) ≥ 0

whereui are functions fromAi to R andϕi are odd increasing functions onR.

Similarly, in the models studied in [FIS 82, FIS 88] for the case of decision-making
under risk, the numerical representation is such that:

a S b⇔
∑

c∈C

∑

c′∈C

pa(c)pb(c
′)φ(c, c′) ≥ 0

whereφ is a function fromC2 to R andpa(c) is the probability to obtain the conse-
quencec ∈ C with objecta.

A common criticism of such models is that cycles leave the door open to apparently
‘irrational’ behavior and makes an individual vulnerable to Dutch books [RAI 70]. As
in the case of decision under risk mentioned earlier, it is not clear that the arguments
are actually convincing [FIS 91b].

2.7.2. Other problems

This brief survey of classical preference structures used in preference modeling
will hopefully give the reader enough clues to tackle a vast and complex literature.
This chapter has neglected many important questions, including

– the question of the approximation of preference structureby another one, e.g.
the search for a total order at minimal distance of a tournament [BAR 89, BAR 81,
BER 72, CHA 92, HUD 96, MON 79, SLA 61];

– the way to collect and validate preference information in agiven context
[WIN 86];

– the links between preference modeling and the question of meaningfulness in
measurement theory [ROB 79];

– the statistical analysis of preference data [COO 64, GRE 88]; and

– deeper questions on the links between value systems and preferences [BRO 91,
COW 88, TSO 92, WRI 63].
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