Chapter 2

Binary Relations and Preference Modeling

2.1. Introduction

This volume is dedicated to concepts, results, procedurdssaftware aiming
at helping people make a decision. It is then natural to iiya®e how the various
courses of action that are involved in this decision comjaterms of preference.
The aim of this chapter is to propose a brief survey of the n@its and results that
can be useful to do so.

The literature on preference modeling is vast. This can liesexplained by the
fact that the question of modeling preferences occurs iarsddisciplines, e.g.

— in Economics, where one tries to model the preferencesratiahal consumer’
[e.q. DEB 59];

—in Psychology in which the study of preference judgmentiected in experi-
ments is quite common [KAH 79, KAH 81];

—in Political Sciences in which the question of defining demilve preference on
the basis of the opinion of several voters is central [SEN 86]

—in Operational Research in which optimizing an objectiwection implies the
definition of a direction of preference [ROY 85]; and

— in Artificial Intelligence in which the creation of autononns agents able to take
decisions implies the modeling of their vision of what isidedsle and what is less so
[DOY 92].

Chapter written by Denis 8uyssouand Philippe INCKE.

49



50 Decision Making

Moreover, the question of preference modeling can be duflgan a variety of
perspectives [BEL 88], including:

— anormativeperspective, where one investigates preference modebsrtnkkely
to lead to a ‘rational behavior’;

— adescriptiveperspective, in which adequate models to capture judgenudnt
tained in experiments are sought; or

— aprescriptiveperspective, in which one tries to build a preference mdulis
able to lead to an adequate recommendation.

Finally, the preferences that are to be modeled can be esqui@s a variety of ob-
jects depending on the underlying decision problem. Fdairee, one may compare:

— vectors inR? indicating the consumption gf perfectly divisible goods;
— candidates in an election;

— probability distributions modeling the possible finahogsults of various invest-
ment prospects;

— alternatives evaluated on several criteria expressedcdommensurable units
when comparing sites for a new factory;

— projects evaluated on a monetary scale conditionallyewtcurrence of various
events or on the actions of other players.

It would be impossible within the scope of this chapter toadtively summarize
the immense literature on the subject. More realisticalig,will try here to present
in a simple way the main concepts used in building models efgpence. This will
give the reader the necessary background to tackle themergahapters in this book.
The reader willing to deepen their understanding of theetili§ referred to [ALE 06,
FIS 70, FIS 85, KRA 71, PIR 97, ROB 79, ROU 85].

This chapter is organized as follows. Section 2.2 is deviméte concept dbinary
relation since this is the central tool in most models of prefereneetiBn 2.3 defines
a ‘preference structure’. Section 2.4 introduces two aaspreference structures:
complete orders and weak orders. Sections 2.5 and 2.6 urdexxkveral more general
preference structures. Section 2.7 concludes with theiorenf several important
guestions that we cannot tackle here.

2.2. Binary relations
2.2.1. Definitions
A binary relationT" on a setA is a subset of the Cartesian producix A, i.e. a

set of ordered pairéu, b) of elements ofA. If the ordered pai(a, b) belongs to the
setT, we will often writea T' b instead of(a,b) € T'. In the opposite case, we write
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(a,b) ¢ T ora =T b. Except when explicitly mentioned otherwise, we will suppo
in all what follows that the sed is finite.

Remark2.1 Since binary relations are sets, we can apply the classuehtions of
set theory to them. For instance, given any two binary meteti; and7, on A, we
will write:

T1CTQ@[GleiaTQb,VCL,bGA],
CL(T1UT2)b<:>CLT1b0rCLT2b,
a(TlﬂTg)béaleandaTgb.

Moreover, thgproductT; - T, will be defined by:
aTi-Tobs dee A:aTy cande Ty b.
We denote byl the relationl” - T, i.e. the product of the relatidfi with itself.

Given a binary relatiofi’ on A, we define:
— its inverse relatiofi’~ such that:

aT b bT a;

— its complement, i.e. the binary relati@ti such that:
aTbs a-Tb;

— its dual relatiori™® such that:
aT¥b e b-T a;

— its symmetric parfr such that:
alrbs[aTbandb T al;

— its asymmetric patPr such that:
aPrbs aTbandb —T a;

— its associated equivalence relatiBp such that:

aTcebT c,

aETb(:){ cTa<cTh,

},VCEA.

Remark2.2. Itis easy to check that we have:
Ti=T7"°“=7°",
Ir=TNnT",
Pr=TnT"%
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2.2.2. Properties of a binary relation

A binary relationT” on A is said to be:

— reflexiveif a T a;

—irreflexiveif a —T q;

—symmetridf a T b= 0T a;

—antisymmetrié¢f a T bandb T a = a = b;
—asymmetridgf a T'b = b =T a;

—weakly completd a #b=a T borb T a;
—completaf a T borb T «a;

—transitiveif a T bandb T ¢ = a T ¢;

— negatively transitivéf « =7 bandb T ¢ = a =T c;
—Ferrersif [a T bandc T d] = [a T dorc T dJ; and
—semitransitivef [« Tbandb T ¢] = [a T dord T |

foralla,b,c,d € A.

Remark2.3. The above properties are notindependent. For instanseasly to check
that

— arelation is asymmetries it is irreflexive and antisymmetric;
— arelation is completes it is weakly complete and reflexive;
— an asymmetric and negatively transitive relation is fitaves and
— a complete and transitive relation is negatively transiti

Whatever the properties @f, it is clear that
— Pr is always asymmetric;
— I is always symmetric; and
— Er is always reflexive, symmetric and transitive.

Remark2.4. 1t is possible to reformulate the above properties in a tamé ways.
For instance, observe that:

—Tiscompletes T UT = A x A;
—Tisasymmetrics T NT~ = &,
—Tis transitives T2 C T
—TisFerrers=T-T¢.T c T; and

— T is semi-transitives T - T - T* C T.

An equivalencas a reflexive, symmetric and transitive binary relationnge the
binary relationEr defined earlier is an equivalence whatever the propertig$.dfet
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FE be an equivalence oA. Given an element € A, the equivalence class associated
to a, denoted byja] g, is the sef{b € A : a E b}. Itis always true that € [a]g. Itis
easy to show thata,b € A, either[a]gp = [b]g Or [a]g N [b]g = @. An equivalence
therefore partitionsl into equivalence classe$he set of all these equivalence classes
is called the quotient ofl for £ and is denotedi/E.

2.2.3. Graphical representation of a binary relation

A binary relationT on A can be represented as a directed grgpHl’) where A
is the set of vertices of the graph aids the set of the arcs of the graph (i.e. ordered
pair of vertices). The particular properties of a binaratiein can easily be interpreted
using the sagittal representation of the gragh7’). The reflexivity ofT" implies the
presence of a loop on each vertex. The symmetf} ofeans that when there is an arc
going froma to b, there is also an arc going frobrto . The transitivity of" means
that as soon as there is a path of lengjoing froma to b, there is an arc from to
b. Taking the inverse relation is tantamount to inverting dnientation of all arcs in
the graph. Taking the complement consists of adding allingsarcs and deleting all
existing ones.

Observe that a symmetric relation can be more convenieglsesented using a
non-oriented graph, in which the ordered pdiisb) and (b, a) of the relation are
represented using a single edge between the vertiaaesb.

2.2.4. Matrix representation of a binary relation

Another way to represent a binary relatiéron A is to associate to each element
of Aarowand a column of a square mathik” of dimensior| A|. The elemend/?, of
this matrix, being at the intersection of the row associaedand at the intersection
of the column associated tgis 1 if « T' b and 0 otherwise.

With such a representation, the reflexivity Bfimplies the presence of 1 on the
diagonal of the matrix, provided that the elementsdofiave been associated in the
order of the row and columns of the matrix. Under this hypsithehe symmetry df’
is equivalent to the fact that/” is equal to its transpose. Taking the inverse relation
consists of transposing the matrx”. The matrix associated to the product of two
binary relations is the boolean product of the two corresjpunmatrices.

2.2.5. Example
Let A = {a,b,c,d, e}. Consider the binary relation

T= {(a7 b)a (b7 CL), (b7 C)a (d7 b)7 (d7 d)}
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A matrix representation df' is the following:

Ola b ¢ d e
a|l0 1 0 0 O
b|1 0 1 0 0
c|0 0 0 0 O0°
d|l0 1 0 1 0
e|0 0O 0O 0 O

A sagittal representation of the graph, T') is depicted in Figure 2.1.

(b) ©
@ ©

Figure 2.1. Sagittal representation of the graght, )

2.3. Binary relations and preference structures

Consider an ordered pdit, b) of objects. It is classically supposed that there can
only be two answers to the question ‘is objecit least as good as objg®’: yes or
no, these two answers being exclusive. Asking such a quefstiall ordered pais of
objects leads to the definition oftdnary relation.S on the setd of all objects letting
a S b if and only if the answer to the question ‘4sat least as good d#” is yes. In
view of its definition, it is natural to consider th&tis reflexive; we will do so in all
that follows.

Definition 2.1. A preference structure oA is a reflexive binary relatio§ on A.

Remark2.5. The preceding definition raises a questiorobservability If the idea
of preference is to be based on observable behavior, thétipgrmay be taken to be
choices made on various subsets of objects. This changéwifipe is at the heart of
‘revealed preference’ theory in which the relatisns inferred from choices that are
observable. Such an inference requires that choices agatedly ‘binary’, i.e. that
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choices made on pairs of objects are sufficient to infer éhoiade on larger sets of
objects. The conditions allowing such a rationalizatioa @hoice function through a
binary relation are classical [e.g. SEN 70, SEN 77]. Theyehaeently been severely
questioned [MAL 93, SEN 93, SUG 85].

Remark2.6. In some cases, one may envisage answers other than yes oithie to
question ‘isa at least as good d¢’, e.g.

— answers such as ‘| do not know’;

—answers including information on thiatensity of the preference, e.ga'is
strongly/weakly/moderately preferredi

— answers including information on tleeedibility of the propositioné is at least
as good a$’, e.g. ‘the credibility of the & is at least as good @sis greater than the
credibility of the proposition¢ is at least as good a5’ or even ‘the credibility of the
proposition & is at least as good asis « € [0;1]'.

Admitting such answers implies using a language that iseri¢han that of binary
relations, e.g.

— the language diizzy relation$DOI 86, FOD 94, PER 92], each assertion of the
typea S b having adegree of credibility

— languages tolerating hesitation [e.g. ROY 87];

— languages using the ideaiotensity of preferencgCOS 94, DOI 87], an asser-
tion such thata S b andb =S a being further qualified (weak, strong or extreme
preference, for instance); or

— languages making use abn-classical logic§TSO 92, TSO 95, TSO 97] al-
lowing the capture of the absence of information or, on tharewy, the existence of
contradictory information (with such languages, the trdltue of the assertion S b
can take values different from just ‘true’ or ‘false’ and lide ‘unknown’ and ‘con-
tradictory’).

We do not consider such extensions in this paper.

Let us consider a prefereneon a setA. For all pairs of object$a, b}, we are in
one of the following four situations (see Figure 2.2):

1) [a S bandb S a], denoted by: Is b, interpreted asd is indifferentto ’;
2) [a =S bandb —S «], denoted by: Js b, interpreted asd is incomparableo
v
3) [a S bandb —S «], denoted by: Ps b, interpreted asqd is strictly preferredto
b"; and
4) [a =S bandb S a], denoted by Ps a, interpreted ash'is strictly preferredto

a.
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|bSa b-Sa
aSblalb aPb
a-SblbPa aJb

Figure 2.2. Four exhaustive and mutually exclusive situations

When there is no risk of ambiguity, we uéeJ and P instead ofls, Jg and Ps.

By construction/ and.J are symmetric and’ is asymmetric. Sinc§ is reflexive,
1 is reflexive andJ is irreflexive. The three relation8, I and.J are:

— mutually exclusive,i.,ePNI=PNnJ=1INJ =2 and
— exhaustive, i.ePU P~ UTU J = A2
Remark2.7. Many works usez instead ofS, - instead ofP and~ instead off.

Remark2.8. Given a preference structure 8fon A, it may be useful to consider the
relation induced by5 on the quotient sel/ Es, where Es denotes the equivalence
associated t¢'. This allows the simplification of many results.

Remark2.9. Since a preference structure is a reflexive binary relatiencan use

the graphical and matrix representations introducedegddirepresent it. In order to
simplify graphical representations, we will systematicaimit reflexivity loops and

will use the conventions introduced in Figure 2.3.

® () ®
@ O

aPb alb aJb

Figure 2.3. Graphical conventions

Example 2.1. Let A = {a, b, ¢, d, e} and the preference structufe= { (a, a), (a, b),

(a,c), (a,€), (b,a), (b,b), (b, c), (¢,b), (¢, ), (d,a), (d,b), (d; ¢), (d,d), (e, a), (e, c),
(e,e) }. We have:

P = {(a,

= {

J = {(

), (d, a), (d,b), (d,c), (e, c)},
a,a),(a,b),(a,e),(b,a),(bb),(bc),(cb),(cc),(dd),(ea),(ee)},
b,e),(d,e), (e,b), (e,d)}.

)

—~
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Using the above conventions, we obtain the matrix reprasient(Figure 2.4) and the
graphical representation (Figure 2.5)1of

o a0 oG
(el N e
— == = =
o~ oo ol
— o oo

a
1
1
0
1
1

Figure 2.4. Matrix representation

Figure 2.5. Graphical representation

2.4. Classical preference structures
2.4.1. Total order

2.4.1.1. Definition
A preference structur§ is a total order if:
— S'is complete;
— S'is transitive; and
— S is antisymmetric.

In a total order, the incomparability relation is empiy-£€ @) and the indifference
relation is limited to pairs of identical objectd (= {(a,a) : a € A}). The strict
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preference ig is weakly complete and transitive. A total order therefarasists of
a ranking of the objects from from best to worst (using the relatidn) without the
possibility ofex aequo

Remark2.10Q Itis easy to check that an equivalent definition of a totakoibnsists
of saying thatS is complete and the only circuits in this relation are loops.

Itis clear that, ifS is a total order,

— P is weakly complete and transitive;

— I is transitive;

—I-PC P;and

-P-ICP.
Remark2.11 Checking if a preference structure is a total order is quitgpke us-
ing the matric representation 6f Indeed, labeling rows and columns of the matrix
according toP, we obtain a matrix that has only 0 below the diagonal and é-els

where. The relatio® corresponds to off-diagonal 1's. In the graphical represéem,
if vertices are ranked according I all arcs are going from left to right.

Example 2.2. Let A = {a, b, ¢, d, e}. Consider the preference structufe= {(a, a),
(a7 b)’ (a7 C)’ (a’ d)’ (a’ e)’ (b’ b)v (b’ C)v (ba d), (b, 6), (07 C), (Ca d)a (Ca e)a (dv d)v (da e)a
(e;e)}.

It is easy to check that it is a total order using the matrixespntation shown on
Figure 2.6 or its graphical representation shown on Figufe 2

Ola b ¢ d e
all 1 1 1 1
b0 1 1 1 1
c/0 0 1 1 1
d|0 0 0 1 1
e|0 0 0 0 1

Figure 2.6. Matrix representation of a total order

0=0 . 0=0

Figure 2.7. Graphical representation of a total order
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2.4.1.2.Numerical representation

Let S be a total order ord. One may associate a number to each object in such a
way that this number reflects the position of the object inreation.S. We leave the
easy proof of the following result to the reader.

Theorem 2.1. A preference structurg on a finite setd is a total order if and only if
there is a functiory : A — R such thatva,b € A:

{ aSbsgla)>g),
g(a) = g(b) = a =0>.

Remark2.12 The numerical representation of a total order is not unitjug easy to
show that given a numerical representagaatisfying the conditions of Theorem 2.1,
any increasing transformation appliedstteads to another admissible representation.
Conversely, ify andh are two numerical representations of the same total ordéein
sense of Theorem 2.1, there is an increasing funetisach thayy = ¢ o h. The scale

g is said to be amrdinal scale

Let g be a function satisfying the condition of the above theorkris possible
to compare differences such @&) — ¢g(b) andg(c) — g(d). These comparisons are
nevertheless clearly dependent upon the choice of thecpltifunctiong: another
legitimate choice can lead to other comparisons of diffeesnHence, in general, it is
impossible to give a particular meaning to these compasison

Remark2.13 Theorem 2.1 remains true i is countably infinite § is defined by an
easy induction argument). It is clear that the result is noentime in the general case.
Let us illustrate this fact by two examples.

1) Itis well know that the cardinality dP(R) (i.e. the set of subsets B is strictly
greater than that &&. Any total order orf’(R) cannot have a numerical representation
in the sense of Theorem 2.1. A natural question arises: i®fEne 2.1 true when
attention is restricted to sets having at most the cardinality &? This is not so, as
shown by the following famous example.

2) LetA = R x {0,1}. Itis easy to show thatl has the same cardinality &s
Consider the lexicographic order defined, letting:

x >z O0or
x = z andy > w,

(0,9) P (zsw) & {
and

(z,y) I (z,w) & x=zandy = w.

It is easy to show that the structufe= P U [ is a total order. It does not have a
numerical representation in the sense of Theorem 2.1. thdeppose thaf is such
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a representation. We would have € R, (z,1) P (z,0) so thatg(z,1) > g(z,0).
There exists a rational numbgfx) such thatg(x,1) > p(z) > g(z,0). We have
(y,1) P (y,0) P (z,1) P (x,0) & y > x. Hencey > z impliesu(y) > u(x). The
function built above is therefore a bijection betweRrandQ, a contradiction.

Beardonet al. [BEA 02] propose a detailed analysis of the various situregiim
which a total order does not have a numerical representdtfmmnecessary and suffi-
cient conditions ensuring that a total order has a numergaksentation are known
[BRI 95, DEB 54, FIS 70, KRA 71]. They amount to supposing thabn A has a
behavior that is ‘close’ to that of in R.

2.4.2. Weak orders

2.4.2.1. Definition

A preference structur§ is a weak order if:
— S'is complete; and
— S'is transitive.

Weak orders generalize total orders since they do not habe ntisymmetric.
Hence, indifference between distinct elements is allowmesléak orders.

Remark2.14 An equivalent definition of a weak order is th&is complete and any
circuit of S has naP arc.

Itis clear that, ifS is a weak order,

— P is transitive;

— P is negatively transitive;

— I is transitive { is therefore an equivalence);
-I-PCPh;

—P-1CP;and

— the relationS induces a total order on the quotient gitl.

Remark2.15 LetT be an asymmetric and negatively transitive binary relabiont.
LetS =T U (T~ NTY). Itis easy to show thaf is a weak order.

Remark2.16 If the rows and columns of the matrix representation of a waraler
are ordered according to a relation that is compatible Wittthe ordering of the rows
and columns for indifferent elements being unimportang oltain a matrix in which
the 1'’s are separated from the O’s by a stepped frontier sHaelow the diagonal and
touches the diagonal. In a similar way, the graphical regregion of a weak order
generalizes that of a total order.
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Example 2.3.Let A = {a, b, ¢, d, e}. Consider the preference structére (a, a), (a, b),
(a,c), (a,d), (a,¢€), (b,a), (b,b), (b, c), (b,d), (b,e), (¢, c), (¢, d), (c,e€), (d, ), (d, d),
(d,e), (e,e)}. Itis easy to check that this is a weak order, consideringthteix repre-
sentation depicted in Figure 2.8 or the graphical represemtdepicted in Figure 2.9.

Ola b ¢ d e
al|l 1 1 1 1
b1 1 1 1 1
c/0 0 1 1 1
d|0 0 1 1 1
e|0 0 0 0 1

Figure 2.8. Matrix representation of a weak order

Figure 2.9. Graphical representation of a weak order

2.4.2.2.Numerical representation

Remembering that weak order induces a total order on theeqisetA/1, it is
easy to prove the following result.

Theorem 2.2. A preference structur® on a finite setd is a weak order if and only if
(iff) there is a functiony : A — R such thatva,b € A

aSbsgla)>gb).
Remark2.17. As above, the numerical representation of a weak order igetkfip
to an increasing transformation. The functigrs an ordinal scale and most of the
assertions that can be obtained using arithmetic opegatinrihe values of have a
truth value that depends on the functipthat was chosen: they are not meaningful in
the sense of [ROB 79].
Remark2.18 It is clear that the above result remain true whéis countably infi-
nite (since in this case a total order structure always haswerical representation).
As was the case with total orders, extending this result bitrary sets implies the
introduction of additional conditions.
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2.4.3. Classical problems

In most studies involving preferences, the weak order mizdeded: the function
g representing the weak order is the function that should beémiaed. Depending on
the context, it is referred to as the value function, obyectiinction, criterion or value
function. It is striking that decision problems have beealtsith so often in this way
without much investigation on the adequatenesgas a model of preference.

We discuss here a few classical questions that have bedmdlgalising the weak
order model.

2.4.3.1.Choosing on the basis of binary relation

Suppose that we have a weak ordeon a setd and consider the situation (com-
mon in Economics) in which a choice must be made in a suBsgetA. How should
the information contained ifi be used to guide such a choice? A natural way to define
the setC'(B, S) of chosen objects (note that since we do not reqdif&, S) to be
a singleton, it would be more adequate to speak of objectsatieasusceptible to be
chosen) inB on the basis of is to let

C(B,S)={be B: Not[a Pb] foralla € B}.

An objecta belongs to the choice set as soon as there is no other ob@dsth
strictly preferred tau. It is not difficult to show that” (B, S) is always non-empty as
soon asB is finite (the general case raises difficult questions, s&R[B5]) andsS is
a weak order. Let us observe that, whets finite, imposing thab' is a weak order is
only a sufficient condition for the non-emptyness 4B, S).

A classic result [SEN 70] states that, wh8nis finite, C'(B, S) is non-empty as
soon asP is acyclic in B (it is never true that, for alty,as,...,ar in B, a1 P
as,as P as,...,ap_1 P a; andag P a1). The use of structures that are more
general than the weak order also allows a simple answer fortiidem to be derived.

We note that there are situations (e.g. a competitive examhich it is desirable
to rank order all elements in a subgetC A and also to define the choice $&tB, S5).
The weak order model allows a trivial answer to this problerbe derived since the
restriction of a weak order oA to a subseB C A is a weak order oti3.

2.4.3.2. Aggregating preferences

Suppose that you have collected> 2 preference structures o, for example
because the objects are evaluated according to varioutspdiview (voters, criteria
or experts). In such a situation, it is natural to try to bualdcollective’ preference
structureS that aggregates the information contained$n, So, ..., S,).
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In general, one looks for a mechanism (e.g. an electoraksystr an aggrega-
tion method) that is able to aggregatay n-tuple of preference structures oh
into a collective preference structure. When the weak onttedel is used, defining
such a mechanism amounts to defining an aggregation fungtivom WQO(A)" in
WO(A), whereWWO(A) is the set of all weak orders ot

The work of Arrow [ARR 63] has clearly shown the difficulty aich a problem.
Imposing a small number of apparently reasonable condit@mn/’ (unanimity, in-
dependence with respect to irrelevant alternatives anenalesof dictator) leads to a
logical impossibility: it is impossible to simultaneoudstisfy all these principles (for
a rich synthesis of such results, see [CAM 02, SEN 86]). Timpk majority method
can be used to illustrate the problem uncovered by ArrovgsiteThis method con-
sists of declaring that:'is collectively at least as good &sif there are more weak
orders in which & is at least as good @& than weak orders for whichb'is at least
as good as’. Such a method seems highly reasonable and in line withrduitive
conception of democracy.

It does not always lead to a collective weak order; it may dgad to a collective
relation having a cycle in its asymmetric part. This is thedais Condorcet paradox:
A = {a,b,c},n = 3,a PL b P, ¢c,c P, a P, bandb P; ¢ Ps; a gives the
simplest example of such a situation. Using a collectivéguemce structure in which
strict preference may be cyclic in order to choose and/ortk rorder is far from
being an easy task. Many works have investigated the questig. LAS 97, MOU 86,
SCH 86].

2.4.3.3. Particular structure of the set of objects

In many situations, it is natural to suppose that the set @fat®A has a particular
structure. This will be the case in:

— decision with multiple criteria in which the elementsAfare vectors of evalu-
ations on several dimensions, attributes or critedia{ A; x Ay x --- x A, where
A; is the set of possible evaluations of the objects ontiheimension);

— decision under risk in which the elements drare viewed as probability dis-
tribution on a set of consequence$ € P(C) whereP(C) is a set of probability
distributions on a set of consequenc¢&s or

— decision under uncertainty in which the elementg @fre characterized by con-
sequences occurring contingently upon the occurrenceevkfal states of nature’
(A C C™ whereC'is a set of consequences, supposing thdistinct states of nature
are distinguished).

In all these cases it is tempting to add to the weak order madi@itional con-
ditions that will allow us to take advantage of the particidaucture of the sed.
Among these condition, let us mention the following.
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1) Preference independeni€EE 76, KRA 71, WAK 89]: In the case of decision-
making with multiple criteria, this implies that the comjsan of two objects differing
only on a subset of criteria is independent from their comenaiuations:

(a],c_[) S (b[,c_]) = (a[,d_[) S (b[,d_[)

wherel is a subset of criterid1, 2,...,n} and where(ay, c—_) denotes the object
e € Asuchthak; = a; if i € I ande; = ¢; otherwise.

2) Independence with respect to probabilistic mifFI& 70, FIS 88]: In the case
of decision-making under risk, this implies that the prefere relation between two
probability distributions is not altered when they are bmoiked with a common prob-
ability distribution:

aSb< (aac) S (bac)

where(aab) denotes the convex combination of the probability distidns« andb
with the coefficientr € (0; 1).

3) The sure-thing principlg¢FIS 70, SAV 54, WAK 89]: In the case of decision-
making under uncertainty, this implies that the preferdmeteen two acts does not
depend on common consequences obtained in some statesi@, nat

(a;,c,l) S (b[,C,I) <~ (a[,d,[) S (b[,d,[)

wherel is a subset of states of nature afad, c_;) denotes the act € A such that
e; = a; if i € I ande; = ¢; otherwise.

When these conditions are applied to sets of objects thaudfieiently ‘rich’ (and
when it is required thas' behaves coherently with this richness [FIS 70, WAK 89]),
we obtain some famous models based on that of the classeaiyth

— The model ofadditive value functions the case of decision with multiple cri-
teria:

n

aSbe Y uila) > ui(b)
=1

i=1
wherew; is a real-valued function od; and the evaluation of objeet on theith
criterion is denoted by,;.
— Theexpected utilitynodel in the case of decision making under risk:

aSbe Y pa(c)u(c) =Y po(c)ulc)

ceC ceC

whereu is a real-valued function o6 andp,(c) is the probability to obtain conse-
guence: € C with objecta.
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— Thesubjective expected utilityodel in the case of decision-making under un-
certainty:

aShe ipm(ai) > zn:piu(bi)
i=1 i=1

whereu is a real-valued function off and thep;’s are non-negative numbers summing
to 1 that can be interpreted as the subjective probabitifidee various states of nature.

One of the major aims of these models is to allow a numerigaibisentatior of S
that is much more specific than that given by Theorem 2.2. Tdéianal conditions
mentioned above imply that, whehis adequately rich (e.g. that= A; x Ao x - - - X
A,, in the case of decision making with multiple criteria, andttbachA; has a rich
structure [WAK 89]),¢g can be additively decomposed. The numerical representatio
obtained is an interval scale (unique up to the choice ofimégd unit). It is then
possible to use sophisticated elicitation techniquesgesss and, therefore, structure
a preference model [KEE 76, KRA 71, WAK 89].

These additional conditions were subjected to many engbiiésts. In the fields of
decision making under risk and uncertainty, it was showttietonditions at the heart
of the expected utility model (independence axiom and #hirez principle) were fal-
sified in a predictable and reproducible way [ALL 53, ELL 61AK 79, MCC 79].
This has generated numerous studies investigating modiglg only weakening of
these additional conditions (see [FIS 88, MAC 82, QUI 82, QB] YAA 87] for de-
cision underrisk and [DUB 01, GIL 87, GIL 89, SCH 89, WAK 89t}ftecision under
uncertainty).

Dutch book-like arguments (adhering to these generalizedets may transform
an individual into a ‘money pump’) have often been used tticise these models
[RAI 70]. The validity of such arguments nevertheless midificult questions (see
[MAC 89, MCC 90] for a criticism of such arguments for decisimaking under risk).

Finally, let us mention that other structures fbrcan be usefully studied. For in-
stance, whem is endowed with a topological structure, it is natural toestigate
numerical representation having continuity propertie®©$02a, BRI 95, JAF 75].
Similarly, if A is endowed with a binary operation allowing the combinatdrits
elements (this is the case in decision under risk using ‘ghdistic mixing’ of two
objects), a numerical representation is sought that is komeompatible (most often
through addition) with this operation [KRA 71].

2.5. Semi-orders and interval orders

In weak orders, the indifference relatidnis transitive. This hypothesis is some-
times inadequate since it amounts to supposing a perfextdisation between close
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but distinct objects. Luce [LUC 56] was the first to suggestefgrence structure in
which indifference may be intransitive [PIR 97]. He suggéste following example.

Example 2.4. Consider a sefl consisting of 101 cups of coffee numbered from 0—
100 and identical except that there agrains of sugar in théth cup. It is likely that
an individual comparing these cups will not be able to dedatifference between two
consecutive cups. Hence, it is likely that we obtain:

ao I ai, ay I az, ..., a99 I ai00-

If the relation! is supposed to be transitive, we should hayd a9, which seems
unlikely as the individual is supposed to prefer sugareteeof

The two preference structures introduced in this sectiontaimodel situations in
which indifference is not transitive, while maintainingraher hypotheses (transitiv-
ity of P, no incomparability) made so far.

2.5.1. Semi-order

2.5.1.1. Definition
A preference structur§ is a semi-order if:
— S'is complete;
— S'is Ferrers; and
— S is semitransitive.

Remark2.19 It is easy to check that an equivalent definition of a semeoid to
suppose tha$' is complete and all circuits &f have mord arcs thanP arcs.

Moreover, it is easy to prove thatf is a semi-order:
— P is transitive;

— P is Ferrers;

— P is semi-transitive;

-P-1-PCP;

-P-P-1ICP;

—-I-P-PcC P;and

-P2NI?=0.

As will become apparent later, semi-orders arise when aifféneince threshold
is introduced when comparing objects evaluated on a nuales@ale. As an easy
exercise, the reader may wish to check that any weak ordesémaorder.
Remark2.20 The graphical representation of a semi-order is charaetgby the fact
that the four configurations depicted in Figure 2.10 areittiten (whatever appears on
the diagonal and with the possibility that two indifferefgraents may be identical).
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[[1]
L]

Figure 2.10. Forbidden configurations in a semi-order

2.5.1.2. Weak order associated with a semi-order
Let S is be a binary relation od. The binary relatior5* on A defined by

+ bSc=aSc,
aS b@{ cSa=cSh Vee A

is called the trace of. It is clear that the trace of a relation is always reflexivd an
transitive. We leave the easy proof of the following resuiltite reader.

Theorem 2.3. Let S be a reflexive binary relation od. S is a semi-order if and only
if its trace S* is complete.

Remark2.21 WhenS is a semi-order, the weak ord6F is obtained by ranking the
elements ofA according to their degree if (i.e. number of arcs leaving a vertex
minus the number of arcs entering it). One can check that & weder is always
identical to its trace.

2.5.1.3. Matrix representation [JAC 78]

By ordering the row and columns of the matrix representatioen semi-order, by
using an order that is compatible with the trace of the retatwe obtain a matrix in
which the 1’s are separated from the O’s by frontiers thasteped and located below
the diagonal. This follows immediately from the definitiohtbe trace. In contrast
with what happens with weak orders, the frontier separatiedgl’s and the 0's does
not necessarily touch the diagonal.

Example 2.5. Let A = {a,b,c,d, e, f}. Consider the preference structuse =
{(a,a), (a,b), (a.0), (a,d), (a,e). (a,f) (b,a), (b,b), (b,c). (b,d),(b,e), (b, f),
(D), (c,¢), (¢,d), (c,e), (¢, [), (d;c), (d.d), (d,e), (d, [), (e,c), (e,d), (e,e),

(e, f), (f,e), (f,f) }. We obtain the matric representation shown in Figure 2.11.
This relation is not a weak order: we have e.gh c andc S b bute =S b.



68 Decision Making

Ola b ¢ d e f
all 1 1 1 1 1
b1 1 1 1 1 1
c|0 1 1 1 1 1
d{0o 0 1 1 1 1
el0 0O 1 1 1 1
f10 0 0 0 1 1

Figure 2.11. Matrix representation of a semi-order

2.5.1.4. Numerical representation

Theorem 2.4. Let A be a finite set. The following propositions are equivalent.
1) S is a semi-order ord.
2) There is a functiog : A — R and a constang > 0 such thatva, b € A:

aSbsgla)=gb)—q
3) There is functio : A — R and a functiony : R — R such thatva, b € A:

g(a) > g(b) = g(a) + q(g(a)) > g(b) + q(g(b))

and

aSb<e gla) > g(b) —qlg(h)).

Proof: See [FIS 85], [PIR 97, theorem 3.1], [SCO 58] or [SUP 89, chiap6].

This result shows that semi-orders naturally arise wheeatbjevaluated on a
numerical scale are compared on the basis of the scale, kovdifferences that are
less than a constant threshold are not perceived or are nsideged to be significant.
The threshold is not necessarily constant provided thateverhavey(a) > g(b) and
g(b) + q(g(b)) > g(a) + q(g(a)). Let us observe that the generalization of this result
to arbitrary sets raises delicate problems [BEJ 92, CAN 02,73, FIS 85].

Remark2.22 Let us build the numerical representation of the semi-ofdiewhich

we gave the matrix representation earlier. Having chosearbitrary positive value
for ¢, e.g.¢ = 1, the functiong is built associating increasing values to the elements
f,e,d,c,b,a (i.e. considering the lower elements in the weak orglérfirst), while
satisfying the desired numerical representation. In sushy we obtainyg(f) = 0,

g(e) =0.5,g(d) = 1.1, g(c) = 1.2, g(b) = 2.15 andg(a) = 3.

Remark2.23 The numerical representation of a semi-order is not unigliécreas-
ing transformation applied tg gives another acceptable representation provided that
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the same transformation is applied¢oHowever, all representations of a semi-order
cannot be obtained in this way as shown by the following eXanifhe scale that is
built is more complex than an ordinal scale.

Example 2.6. Let A = {a,b, ¢, d}. Consider the preference structufe= {(a, d),
(a,a), (b,b), (¢, ¢), (d,d), (a,b), (b,a), (b,c), (¢,b), (b,d), (d,b), (¢,d), (d,c)}. It

is easy to check, e.g. using a matrix representation, tiesthucture is a semi-order.
Table 2.1 gives two numerical representation$ dhat cannot be obtained from one
another by an increasing transformation.

la b c d|threshold
2111 (1 1.5

9

g2 110 15

Table 2.1. Two numerical representations of a semi-order

2.5.2. Interval order

2.5.2.1. Definition

A preference structur§ is an interval order if:
— S'is complete; and
— S'is Ferrers.

This structure generalized all structures introduced scA&we will later see, it
arises naturally when one wishes to compare intervals omdinad scale.

Remark2.24. Itis easy to check that an equivalent definition of an inteovder con-
sists of saying tha$ is complete and that all circuits i have at least two consecutive
I arcs.

It is easily checked that, i is an interval order,
— P is transitive;
— P is Ferrers; and
-P-1-PCP.
Remark2.25 The graphical representation of an interval order is ctiarezed by the

fact that the three configurations depicted on Figure 2.&Zaxbidden (anything can
appear on the diagonal).
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O

2

Figure 2.12. Forbidden configurations in an interval order

]

2.5.2.2. Weak orders associated to an interval order
Let S be a binary relation orl. Let us define a relatiof™ on A, setting

aSTbebSc=aScVee A
Similarly, we define the relatiof— setting
aS"becSa=cSbVee Al

The relationS™ (respectivelyS™) is called the right trace (respectively left trace) of
S. Itis clear thatS* and S~ are always reflexives and transitives.

The proof of the following result is easy and left to the reade
Theorem 2.5. Let .S be a reflexive binary relation oA. The following three proposi-
tions are equivalent:

1) Sis an interval order;

2) ST is complete; and

3) S~ is complete.
Remark2.26 WhenS is an interval order, the weak ordgr (respectivelyS—) can

be obtained ranking the elements4faccording to their out-degree (respectively in-
degree) inS.

2.5.2.3. Matrix representation

Let us rank the rows of the matrix representation in a wayithedmpatible with
St taking care to rank indifferent elements accordingStb using an order that is
compatible withS—. Let us perform a similar operation on the columns of the ixatr
permuting the roles o+ and.S~. We obtain a matrix in which the 1's are separated
from the O’s by a stepped frontier that is below the diagonal.



Binary Relations and Preference Modeling 71

Example 2.7. Let A = {a,b,c¢,d, e, f}. Consider the following structures = {
(a,a), (a,b), (a,c), (a,d), (a,€), (a, f), (b,a), (b,b), (b,c), (b,d), (be), (b, [),
(¢,b), (c.c), (¢,d), (c,e), (¢, f), (d,c), (d,d), (d,e), (d, f) (e,c), (e;d), (ee),
(e; ), (fre), (f, f) }-

We obtain the following matrix representation:

OO O = = o
O R = = R =Q,
i e = e e e

o o |G
OO0 OO~ =
— === = = o
i e s

This structure is an interval order. It is not a semi-ordacsif S ¢ andc¢ S b but
f S dandd —S b. It is therefore impossible to represent this structuregis
stepped matrix with a similar order on rows and columns.

2.5.2.4. Numerical representation
The proof of the following result can be foundin [PIR 97, theym 3.11] or [FIS 85].

Theorem 2.6. Let A be a finite set. The following propositions are equivalent:
1) S'is an interval order om4; and
2) there are two functiong: A — R andq : R — R* such thatva, b € A:

aSb< gla)+qlgla)) > g(b).

We refer to [BRI 95, CHA 87, FIS 73, FIS 85, NAK 02, OLO 98] foethroblems
involved in generalizing this result to arbitrary sets.

Remark2.27. For instance, it is possible to build the numerical represém of the
interval order presented earlier as follows. The valuegafe arbitrarily chosen pro-
vided they increase from the first to the last row of the maffixe values ofy + ¢
are then defined in such a way that they increase from theditsiet last column of
the matrix and they satisfy the desired representationirfstance, we successively
obtain:

g(f) = 0,9(6) = 579(6) = 1079(d) = 15,9(()) = 20,9(&) = 257
(9+a)(f) =12,(g +q)(e) = 17,(g9 + q)(d) = 19,
(9 +q)(c) =23,(9+ q)(b) = 28, (g9 + q)(a) = 30.
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Lettingg = g andg = (g + q), itis clear that the numerical representation of an
interval order amounts to associating an intefyaf] with eacha € A such that:
a Pb< g(a) >g(b),
g(a) <7g(b),
albs

g9(b) <g(a),

which leads to the representation depicted in Figure 2.13.

[ . ] *r—
(& a
r—-=:v r—o00—0
L f d b |
0 30

Figure 2.13. Interval representation of an interval order

2.5.3. Remarks

Remark2.28 Interval orders may be generalized using a threshold depgrah
both objects compared. One then obtains a threshold reptaties of all relations for
which the asymmetric part is acyclic [ABB 93, ABB 95, AGA 93LE 06, DIA 99,
SUB 94]. We do not tackle such models here.

Remark2.29 In an interval order, the relatioR is transitive and hence is acyclic. For
all non-empty finite subset8 C A, C(B, S) is therefore always non-empty. Using
one of the structures introduced in this section does nsémaiajor problems when it
comes to linking preferences and choices.

Remark2.30. We saw that wher has a particular structure and ttsais a weak order,
it is interesting to use such a structure to try to arrive atimearical representation
that is more constrained than an ordinal scale. These éatensiake central use of
the transitivity of indifference in order to build these neirical representations. It is
therefore not simple to do similar things on the basis of ais@der or an interval
order [DOM 71, KRA 67, LUC 73, SUP 89].

Remark2.31 Building a collective preference that is a semi-order orderival order
does not significantly contribute to the solution of the aggtion problem of weak
orders uncovered by Arrow’s theorem [SEN 86]. As soop4s> 4, the theorem still
holds if the collective preference is required to be congpéetd Ferrers (or complete
and semi-transitive).
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2.6. Preference structures with incomparability

In all the structures envisaged so far, we supposedSiveas complete. This hy-
pothesis may seem innocuous, in particular when prefeseaeeinferred from ob-
served choices. It is not without problems however. Indéeday well happen that:

— information is poor concerning one or several of the eldmefA;

— comparing elements of implies synthesizing on several conflicting points of
view; and
— the objects are not familiar to the individual.

In such cases, it may prove useful for preference modelingéostructures that ex-
plicitly include incomparability [FLA 83, ROY 85].

2.6.1. Partial order

A preference structur§ is a partial if:
— S is reflexive;

— S'is antisymmetric; and

— S'is transitive.

Intuitively, a partial order is a structure in which, givema distinct objects, either
object is strictly preferred to the other or the two objectsiacomparable, with strict
preference being transitive.
Remark2.32 Itis easy to check that, i§ is a partial order,

— P is transitive; and

— I is limited to loops.

A fundamental result [DUS 41, FIS 85] shows that all parti@ers on a finite set
can be obtained intersecting a finite number of total ordarths set. The minimal
number of total orders that are needed for this is calleddthensionof the partial
order. This easily implies the following result.

Theorem 2.7. Let A be a finite set. The following propositions are equivalent:
1) S'is a partial order onA; and
2) there is a functio : A — R such thatva,b € A:

{ aS8b=g(a) > g(b),
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0S0=050

Figure 2.14. Graphical representation of a partial order

Example 2.8. Let A = {a, b, ¢, d, e}. Consider the preference structuse= { (a, a),
(a,b), (a,c), (a,d), (b,b), (b,d), (b,e), (¢c,c), (¢c,e), (d,d), (d,e), (e,e) }. Agraphi-
cal representation of this structure is depicted in Figuid 2

It is easy to check that the structure is partial order withetisior2, obtained by
intersecting the two total orders (using obvious notation)

a>b>d>c>eand

a>c>b>d>e.

Let us note that the detection of a partial order of dimengaan be done in poly-
nomial time. On the contrary, the determination of the digiem of a partial order is
N P-difficult [DOI 84, FIS 85].

2.6.2. Quasi-order

A preference structurs is a quasi-order if:
— S'is reflexive; and
— S'is transitive.

Quasi-orders generalize partial orders by allowing ird#hce between distinct ele-
ments, the indifference relation being transitive.
Remark2.33 Itis easy to check that, if is a quasi-order,

— P is transitive;

— I is transitive;

—P-1CP;and

-1-PCP.

As with partial orders, it is easy to show that any quasi-oatea finite set can
be obtained intersecting a finite number of weak orders [B&i§ @ON 98]. This
implies the following result.
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Theorem 2.8. Let A be a finite set. The following propositions are equivalent:
1) S is a quasi-order ord; and
2) there is a functio : A — R such thatva,b € A:

aSb= g(a) > g(b).

Remark2.34 Alternatively, one can build a numerical representatioa qtiasi-order
considering a set of numerical representations of weaks{@ 02].

Example 2.9.Let A = {a,b, ¢, d, e, f}. Consider the preference structite {(a, a),
(a,b), (a,c), (a,d), (a,e), (a, ) (b,b), (b,d), (b,e), (b, f), (¢, ¢), (¢, €), (c, f), (d, b),
(d,d), (d,e), (d, f), (e,e), (e, ), (f,e), (f, f)}. Itis easy to check that this is a quasi-
order. Its graphical representation is depicted in Figut& 2

o\

© \\

Figure 2.15. Graphical representation of a quasi-order

Remark2.35 It is possible to extend classical models of decision undérto deal
with quasi-orders [AUM 62, FIS 70]. The multi-attribute easas only studied in the
finite case [FIS 70, SCO 64]. Let us also mention that allowfsrgincomparability
in the collective preference does not significantly coniigbto the solution of the
problem uncovered by Arrow’s theorem [WEY 84].

Remark2.36 Roubens and Vincke [ROU 85] proposed definitions of partahis
orders and interval orders. They allow an intransitiveffiedence relation at the same
time as incomparability situations. We do not detail thi;pbere.

2.6.3. Synthesis

We summarize in Table 2.2 the properties of preferencetsires that have been
introduced so far.
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Structures  Definition
complete
antisymmetric
transitive
complete
transitive
complete
Ferrers
semi-transitive
complete
Ferrers
reflexive
antisymmetric
transitive
reflexive
transitive

Total order

Weak order

Semi-order

Interval order

Partial order

Quasi-order

NN nnninnninininn

Table 2.2. Common preference structures

2.7. Conclusion
2.7.1. Other preference structures

In all the structures introduced so far, the relatiBrwas transitive and, hence,
was acyclic. This seems a natural hypothesis. Abandoningites reconsidering the
links existing between ‘preference’ and ‘choice’ as weadtyesaw. Nevertheless, it is
possible to obtain such preferences in experiments [MAYTME 69] when subjects
are asked to compare objects evaluated on several dimen3ioey are also common
in social choice due to Condorcet’s paradox. Indeed, a famesult [MCG 53] shows
that with a simple majority, any complete preference stmecttan be be obtained
as the result of the aggregation of individual weak orderghWther aggregation
methods, all preference structures may occur [BOU 96].

The literature on Social Choice abounds with studies of adegchoice procedure
on the basis of such preferences. The particular caseuohamentgcomplete and
antisymmetric relations) have been explored in depth [LASNOU 86].

More recently, it was shown that it is possible to build nuicedrepresentations of
such relations [BOU 86, BOU 99, BOU 02, FIS 82, FIS 88, FIS #18,91b, FIS 92,
TVE 69, VIN 91]. In the models proposed in [BOU 02], we havesséteing Carte-
sian products (as in decision under uncertainty or in decigiith multiple attributes):

aSb<s F(pi(ar,br),p2(az,b2),...,pn(an,bn)) >0
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wherep; are functions from4? to R, F is a function from[]""_, p;(A?) to R and
where, for examplel’ can be increasing in all its arguments. This model genesiliz
the classical additive difference model proposed in [TVEi6®vhich:

aSbe Z%(u?(az) —u;(b;)) >0

i=1

whereu,; are functions fron¥; to R andyp; are odd increasing functions @

Similarly, in the models studied in [FIS 82, FIS 88] for theseaf decision-making
under risk, the numerical representation is such that:

aSbe Y D pale)pp(c)ple,c) >0

ceCc'eC

where¢ is a function fromC? to R andp,(c) is the probability to obtain the conse-
guence: € C with objecta.

A common criticism of such models is that cycles leave the dpen to apparently
‘irrational’ behavior and makes an individual vulneralddéxutch books [RAI 70]. As
in the case of decision under risk mentioned earlier, it tsohear that the arguments
are actually convincing [FIS 91b].

2.7.2. Other problems

This brief survey of classical preference structures usegréference modeling
will hopefully give the reader enough clues to tackle a vast @omplex literature.
This chapter has neglected many important questions,dimgdu

— the question of the approximation of preference strudhyranother one, e.g.
the search for a total order at minimal distance of a tourmarfi2AR 89, BAR 81,
BER 72, CHA 92, HUD 96, MON 79, SLA 61];

—the way to collect and validate preference information imgieen context
[WIN 86];

— the links between preference modeling and the questioneafningfulness in
measurement theory [ROB 79];

— the statistical analysis of preference data [COO 64, GRE23&!

— deeper questions on the links between value systems afedlgarees [BRO 91,
COW 88, TSO 92, WRI 63].
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