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Abstract

This paper studies an extension of bi-semiorders in which a “frontier”
is added between the various relations used. This extension is motivated
by the study of additive representations of ordered partitions and coverings
defined on product sets of two components.
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1 Introduction

Let T be a relation between two sets A and Z, i.e., a subset of A × Z. Biorders
are relations between two sets that lead to a numerical representation in which
there are real-valued functions f on A and g on Z such that, for all a ∈ A and all
p ∈ Z,

a T p⇔ f(a) > g(p).

The name “biorder” comes from Doignon, Ducamp, and Falmagne (1984) and has
gained wide acceptance (see Doignon, Ducamp, and Falmagne, 1987, and Naka-
mura, 2002). This structure was introduced in the literature by Riguet (1951) who
used the term “Ferrers relation”. It was studied by Ducamp and Falmagne (1969)
under the name “bi-quasi-series”. Early work on biorders include Bouchet (1971)
and Cogis (1976, 1982a,b) (see Monjardet, 1978, and Doignon and Falmagne, 1999,
p. 60, for a detailed historical account).
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tel: +32 9 264 63 73, fax: +32 9 264 64 87, e-mail: thierry.marchant@UGent.be.
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Biorders are useful to model Guttman scales (Guttman, 1944, 1950). They
are also an important tool to study various classes of binary relations, most no-
tably interval orders and semiorders (Aleskerov, Bouyssou, and Monjardet, 2007,
Fishburn, 1985, Pirlot and Vincke, 1992). Indeed, when A = Z, an irreflexive
biorder is nothing but an interval order, as defined in Fishburn (1970). Adding
semitransitivity to irreflexivity leads to semiorders (Luce, 1956, Scott and Suppes,
1958).

In Bouyssou and Marchant (2011) (henceforth, BM11), we have studied an
extension of biorders in which there are two relations T and F between the sets A
and Z, leading to what we called biorders with frontier. They lead to a numerical
representation in which there are real-valued functions f on A and g on Z such
that, for all a ∈ A and all p ∈ Z,

a T p⇔ f(a) > g(p),

a F p⇔ f(a) = g(p).

With bi-semiorders, we have two relations T and P between the sets A and
Z. The numerical representation involves a real-valued function f on A and a
real-valued function g on Z such that, for all a ∈ A and p ∈ Z,

a P p⇔ f(a) > g(p) + 1,

a T p⇔ f(a) > g(p).

Necessary and sufficient conditions for the above model were given in Ducamp and
Falmagne (1969, Th. 5) when both A and Z are finite sets (note that the term
bi-semiorder is used in Fishburn, 1997, with a different meaning)1.

Bi-semiorders with frontiers will use four relations P , J , T and F between
the sets A and Z. The numerical representation involves a real-valued function f
on A and a real-valued function g on Z such that, for all a ∈ A and p ∈ Z,

a P p⇔ f(a) > g(p) + 1,

a J p⇔ f(a) = g(p) + 1,

a T p⇔ f(a) > g(p),

a F p⇔ f(a) = g(p).

1The fact that two thresholds, the first one at 1 and the other one at 0, are used in the
numerical representation of bi-semiorders may lead one to think that there is a link with the
study of families of semiorders having a constant threshold representation (see Cozzens and
Roberts, 1982, Roubens and Vincke, 1985, ch. 6, Roy and Vincke, 1987 for the case of a family
of two semiorders and Doignon, 1987, for the general case). This is misleading. Indeed, Ducamp
and Falmagne (1969) have shown that a bi-semiorder is the natural counterpart of a structure
involving a single semiorder when studying relations between two different sets.

2



The purpose of this paper is to establish necessary and sufficient conditions for
the above model when both A and Z are finite sets.

The paper is organized as follows. Section 2 briefly presents our initial motiva-
tion for studying structures with frontiers. Section 3 presents our setting. Results
on biorders, biorders with frontier and bi-semiorders are recalled in Section 4.
Section 5 presents our results on bi-semiorders with frontiers that are proved in
Section 6.

2 Relation to conjoint measurement

2.1 Additive representations of ordered coverings

Our initial motivation for studying biorders and bi-semiorders with frontiers is
linked to the following problem. Let X = X1 ×X2 × · · · ×Xn be a set of objects
evaluated on n attributes.

Suppose that we are given an ordered covering 〈C1, C2, . . . , Cr〉 of the set of
objects. In such a setting, we know that objects belonging to Ck+1 are better
than objects belonging to Ck but we have no information on the way two objects
belonging to the same category compare in terms of preference. The category Ck

can have a nonempty intersection with Ck+1 and Ck−1. Its intersection with other
categories is always empty, reflecting the ordered nature of the covering.

Consider first an ordered partition 〈C1, C2, . . . , Cr〉. In this case, we are in-
terested in finding real-valued functions ui on Xi such that, for all x ∈ X and all
k ∈ {1, 2, . . . , r},

x ∈ Ck ⇔ σk−1 <
n∑

i=1

ui(xi) ≤ σk, (1)

with the convention that σ0 = −∞, σr = +∞ and where σ1, σ2, . . . , σr−1 are real
numbers such that σ1 < σ2 < · · · < σr−1. In the case of an ordered covering
〈C1, C2, . . . , Cr〉, the model becomes

x ∈ Ck ⇔ σk−1 ≤
n∑

i=1

ui(xi) ≤ σk, (2)

so that, if
∑n

i=1 ui(xi) = σk−1, the object x belongs at the same time to Ck−1 and
to Ck, i.e., is at the frontier between these two categories.

The analysis of the above models in the general case requires the use of conjoint
measurement techniques (see Bouyssou and Marchant, 2009, 2010, following initial
results by Fishburn, Lagarias, Reeds, and Shepp, 1991 and Vind, 1991, 2003).

However, as suggested by the results of Levine (1970), there are some particular
cases that can be dealt with in a simpler way. Biorders are useful to study the
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case of a product set with two components and an ordered partition with two
categories. Biorders with frontiers are useful to deal with the case of a product set
with two components and an ordered covering with two categories. We mentioned
in BM11, Sect. 7, that the case of three ordered categories and a product set with
two components was also quite particular. When the three ordered categories
partition the product set, we can indeed use the results on bi-semiorders presented
in Ducamp and Falmagne (1969, Sect. IV) (see also Ducamp, 1978). The results
presented in this paper allows us to deal with the case in which the three ordered
categories are a covering, instead of a partition, of the product set.

2.2 Particular cases with two attributes

Consider first the case of ordered partitions of X = X1 ×X2.
When there are only two attributes and two categories, the additive represen-

tation (1) relates more to ordinal than to conjoint measurement. Indeed, in such
a case, the problem clearly reduces to finding real-valued functions u1 on X1 and
u2 on X2 such that, for all x = (x1, x2) ∈ X,

x ∈ C2 ⇔ u1(x1) + u2(x2) > σ. (3)

It is easy to see that it is not restrictive to suppose that σ = 0. Define the relation
T between the sets X1 and X2 letting, for all x1 ∈ X1 and all x2 ∈ X2,

x1 T x2 ⇔ (x1, x2) ∈ C2.

It is clear that asking for a representation in model (3) is equivalent to asking for
the existence of two functions f on X1 and g on X2 such that

x1 T x2 ⇔ f(x1) > g(x2).

This explains the link with biorders.
Similarly, when there are only two attributes and three categories, building an

additive representation (1) reduces to finding real-valued functions u1 on X1 and
u2 on X2 such that, for all x ∈ X,

x ∈ C3 ⇔ λ < u1(x1) + u2(x2),

x ∈ C2 ∪ C3 ⇔ ρ < u1(x1) + u2(x2),
(4)

where ρ, λ are two thresholds such that ρ < λ. As detailed in Ducamp and
Falmagne (1969), it is not restrictive to suppose that ρ = 0 and λ = 1.

Define the relations P and T between the sets X1 and X2 letting, for all x1 ∈ X1

and all x2 ∈ X2,
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x1 P x2 ⇔ (x1, x2) ∈ C3.

x1 T x2 ⇔ (x1, x2) ∈ C2 ∪ C3.

It is clear that asking for a representation in model (4) is equivalent to asking for
the existence of two functions f on X1 and g on X2 such that

x1 P x2 ⇔ f(x1) > g(x2) + 1,

x1 T x2 ⇔ f(x1) > g(x2).

This explains the links with bi-semiorders.
We now turn to the case of ordered coverings of X = X1 ×X2.
Suppose first that there are only two categories C2 and C1. Allowing for an

hesitation between C2 and C1 leads to a model in which it is no more true that
C2 ∩ C1 = ∅. Objects belonging to C2 ∩ C1 are at the frontier between C2 and
C1. Define C2

> = C2 \ C1.
The additive representation (2) can be written as

x ∈ C2
> ⇔ u1(x1) + u2(x2) > σ,

x ∈ C2 ∩ C1 ⇔ u1(x1) + u2(x2) = σ,
(5)

for all x ∈ X. As before, it is not restrictive to suppose that σ = 0.
Define the relations T and F between the sets X1 and X2 letting, for all x1 ∈ X1

and all x2 ∈ X2,

x1 T x2 ⇔ (x1, x2) ∈ C2
>,

x1 F x2 ⇔ (x1, x2) ∈ C2 ∩ C1.

It is clear that asking for a representation in model (5) is equivalent to asking
for the existence of two functions f on X1 and g on X2 such that

x1 T x2 ⇔ f(x1) > g(x2),

x1 F x2 ⇔ f(x1) = g(x2).

This explains the link with biorders with frontier.
Suppose finally that there are three ordered categories C3, C2 and C1 and that

we allow hesitations between two consecutive categories. Define C3
> = C3 \C2 and

C2
> = C2 \ C1.

The additive representation (2) can be written as

x ∈ C3
> ⇔ u1(x1) + u2(x2) > λ,

x ∈ C3 ∩ C2 ⇔ u1(x1) + u2(x2) = λ.

x ∈ C2
> ⇔ ρ < u1(x1) + u2(x2) < λ,

x ∈ C2 ∩ C1 ⇔ u1(x1) + u2(x2) = ρ,

x ∈ C1 \ C2 ⇔ u1(x1) + u2(x2) < ρ,

(6)
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for all x ∈ X, where ρ, λ are two thresholds such that ρ < λ. Again, it is not
restrictive to suppose that ρ = 0 and λ = 1.

Define the relations P , J , T and F between the sets X1 and X2 letting, for
all x1 ∈ X1 and all x2 ∈ X2,

x1 P x2 ⇔ (x1, x2) ∈ C3
>,

x1 J x2 ⇔ (x1, x2) ∈ C3 ∩ C2,

x1 T x2 ⇔ (x1, x2) ∈ C3 ∪ C2
>,

x1 F x2 ⇔ (x1, x2) ∈ C2 ∩ C1,

It is clear that asking for a representation in model (6) is equivalent to asking
for the existence of two functions f on X1 and g on X2 such that

x1 P x2 ⇔ f(x1) > g(x2) + 1,

x1 J x2 ⇔ f(x1) = g(x2) + 1,

x1 T x2 ⇔ f(x1) > g(x2),

x1 F x2 ⇔ f(x1) = g(x2).

This explains the link with bi-semiorders with frontiers, which are the subject of
this paper.

3 Definitions and Notation

We follow the definitions and notation presented in BM11.

3.1 Binary relations between two sets

Let A = {a, b, . . . } and Z = {p, q, . . . } be two sets. Following Ducamp and
Falmagne (1969), we define a binary relation V between A and Z to be a subset
of A × Z. We often write a V p instead of (a, p) ∈ V . A binary relation on a set
X is a binary relation between X and X.

Let V be a relation between A and Z. Define the left trace of V as the binary
relation %`

V on A defined letting, for all a, b ∈ A,

a %`
V b⇔ [b V p⇒ a V p, for all p ∈ Z].

Similarly, define the right trace of V as the binary relation %r
V on Z defined letting,

for all p, q ∈ Z,
p %r

V q ⇔ [a V p⇒ a V q, for all a ∈ A].

By construction, the relations %`
V and %r

V are reflexive and transitive.
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A binary relation V between A and Z is said to be a biorder if it is Ferrers,
i.e., for all a, b ∈ A and all p, q ∈ Z, we have:

[a V p and b V q]⇒ [a V q or b V p].

A simple check shows that V is Ferrers if and only if (iff) %`
V is complete iff %r

V
is complete (see Doignon et al., 1984, Proposition 2, p. 78).

Let V be a relation between A and Z. Its complement is the relation Vc

between A and Z such that for all a ∈ A and p ∈ Z, a Vc p ⇔ Not [a V p]. The
dual of V is the relation Vd between Z and A such that, for all a ∈ A and p ∈ Z,
p Vd a⇔ a V p. Its codual Vcd is the relation between Z and A such that, for all
a ∈ A and p ∈ Z, p Vcd a⇔ Not [a V p]. It is easy to check that if V is Ferrers iff
Vcd (or Vc, or Vd) is Ferrers.

Suppose that V is a relation between A and Z and that W is a binary relation
between Z and K. We define the product of V and W as the binary relation VW
between A and K such that, for all a ∈ A and all k ∈ K, a VW k iff [a V p
and p W k, for some p ∈ Z]. The Ferrers property can therefore be expressed
compactly as VVcdV ⊆ V .

For our purposes, when studying a relation betweenA and Z, it is not restrictive
to suppose that the sets A and Z are disjoint: if they are not, we may build a
disjoint duplication of these sets as done in Doignon et al. (1984, Definition 4,
p. 79). We will suppose so, without explicit mention, whenever needed.

3.2 Binary relations on a set

Let V be a binary relation2 on X.
The asymmetric part (resp. symmetric part, symmetric complement) of V is

the binary relation V a (resp. V s, V sc) on X that is equal to V ∩ V cd (resp.
V ∩ V d, V c ∩ V cd). For instance, we have x V sc y ⇔ [x V c y and x V cd y] ⇔
[Not [x V y] and Not [y V x]].

Whenever we use the symbol % to denote a binary relation on a set X, it will be
understood that � (resp. ∼) denotes its asymmetric part (resp. symmetric part).
The same convention will hold if % is subscripted and/or superscripted.

A binary relation that is complete (for all x, y ∈ X, x V y or y V x) and
transitive is said to be a weak order. If V and W are two weak orders on X, we
say that V refines W if V ⊆ W . This implies V s ⊆ W s and W a ⊆ V a.

The trace of a binary relation V on X is the binary relation %V on X that is
equal to %`

V ∩ %r
V . The relations ∼V , ∼`

V and ∼r
V are clearly reflexive, symmetric

2We use the following typographic convention. Relations between two sets will be denoted
using a calligraphic symbol. Relations on a set will be denoted using a non-calligraphic symbol.
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and transitive, i.e., are equivalences. Whenever E is an equivalence on a set X,
we denote by X/E the set of equivalence classes of X under E.

A binary relation V on X is said to be semitransitive if, for all x, y, z, w ∈ X,

[x V y and y V z]⇒ [x V w or w V z],

which can be written more compactly as V cd V V ⊆ V (or, equivalently, as V V V cd ⊆
V ).

A simple check shows that the trace %V of a relation V is complete iff V is Fer-
rers and semitransitive. In this case the left and right traces are not contradictory,
i.e., it is never true that x �`

V y and y �r
V x, for some x, y ∈ X (for more details,

see, e.g., Fishburn, 1985, Monjardet, 1978, Pirlot and Vincke, 1997, or Suppes,
Krantz, Luce, and Tversky, 1989, Ch. 16).

A binary relation V on X is an interval order if it is irreflexive and Ferrers. A
semiorder is a semitransitive interval order.

4 Biorders and Bi-semiorders

This section recalls a number of useful results on the numerical representation
of biorders, biorders with frontier, and bi-semiorders. We follow Ducamp and
Falmagne (1969), Doignon et al. (1984) (for biorders), BM11 (for biorders with
frontier), and Ducamp and Falmagne (1969) (for bi-semiorders).

4.1 Biorders

The main result on the numerical representation of biorders on finite sets is the
following.

Proposition 1 (Prop. 4, p. 79 in Doignon et al., 1984)
Let A and Z be finite sets and T be a relation between A and Z. The following
statements are equivalent.

1. T is Ferrers.

2. There are a real-valued function f on A and a real-valued function g on Z
such that, for all a ∈ A and p ∈ Z,

a T p⇔ f(a) ≥ g(p).

3. There are a real-valued function f on A and a real-valued function g on Z
such that, for all a ∈ A and p ∈ Z,

a T p⇔ f(a) > g(p).
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Furthermore, the functions f and g used in statements 2 or 3 above can always be
chosen in such a way that, for all a, b ∈ A and p, q ∈ Z,

a %`
T b⇔ f(a) ≥ f(b),

p %r
T q ⇔ g(p) ≥ g(q).

This result holds, without modification, when both A and Z are countably
infinite. Doignon et al. (1984) and Nakamura (2002) have presented necessary
order-denseness conditions allowing to extend the result to the general case.

4.2 Biorders with frontier

Consider now two disjoint relations T and F between the sets A and Z. Let
R = T ∪ F . We investigate below the conditions on T and F such that there are
a real-valued function f on A and a real-valued function g on Z such that, for all
a ∈ A and p ∈ Z,

a T p⇔ f(a) > g(p), (7a)

a F p⇔ f(a) = g(p). (7b)

Notice that relations F satisfying (7b) have been studied by Ducamp and Falmagne
(1969) under the name “bi-classificatory systems” and by Doignon and Falmagne
(1984) who call them “matching relations”.

As above, let %`
T (resp. %r

T ) be the trace of T on A (resp. on Z). Similarly, let
%`
R (resp. %r

R) be the trace of R on A (resp. on Z). Define

%`
? = %`

T ∩%`
R and %r

? = %r
T ∩%r

R.

The relations %`
T , %`

R, %`
?, %

r
T , %r

R, %r
? are always reflexive and transitive. We

know that %`
T is complete iff %r

T is complete iff T is a biorder. Similarly, %`
R is

complete iff %r
R is complete iff R is a biorder.

It is clear that (7) implies that both T and R are biorders. The next two
conditions capture the fact that the relation F is “thin” in model (7). Indeed,
suppose that a F p and b F p. This implies f(a) = g(p) and f(b) = g(p), so that
f(a) = f(b). Hence, for all q ∈ Z, we have a F q ⇔ b F q and a T q ⇔ b T q.

We say that the pair of relations T and F is left thin if, for all a, b ∈ A and
p ∈ Z,

[a F p and b F p]⇒ a ∼`
? b.

Similarly, we say that the pair of relations T and F is right thin if, for all a ∈ A
and p, q ∈ Z,

[a F p and a F q]⇒ p ∼r
? q.
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Observe that left thinness (resp. right thinness) may be formulated as FFd ⊆ ∼`
?

(resp. FdF ⊆ ∼r
?). We say that thinness holds if left and right thinness are

satisfied.
The central result on the numerical representation of biorders with frontier on

finite sets is as follows.

Proposition 2 (Prop. 11 in BM11)
Let A and Z be finite sets and let T and F be a pair of disjoint relations between
A and Z. There are real-valued functions f on A and g on Z such that (7) holds
if and only if T is a biorder, R = T ∪ F is a biorder and thinness holds.

Furthermore, the functions f and g can always be chosen in such a way that,
for all a, b ∈ A and p, q ∈ Z,

a %`
? b⇔ f(a) ≥ f(b),

p %r
? q ⇔ g(p) ≥ g(q).

(8)

BM11 have shown that the conditions used in the above result are independent.
As with biorders, the result holds without modification for countably infinite sets.
Adding appropriate order-denseness conditions, it can be extended to cover the
general case (see BM11).

4.3 Bi-semiorders

Let T and P be two relations between the sets A and Z. We consider a model in
which there are a real-valued function f on A and a real-valued function g on Z,
such that, for all a ∈ A and p ∈ Z,

a P p⇔ f(a) > g(p) + 1, (9a)

a T p⇔ f(a) > g(p). (9b)

Pairs of relations T and P admitting such a representation are called bi-semiorders
in Ducamp and Falmagne (1969), who consider the case in which both A and Z
are finite.

An obvious necessary condition for (9) is that P ⊆ T . As before, the left (resp.
right) trace of T is denoted by %`

T (resp. %r
T ). Similarly the left (resp. right) trace

of P is denoted by %`
P (resp. %r

P). Define %`
◦ = %`

T ∩ %`
P and %r

◦ = %r
T ∩ %r

P .
By construction, the six relations %`

T , %r
T , %`

P , %r
P , %`

◦ and %r
◦ are reflexive

and transitive. We know that imposing that T and P are Ferrers will imply
the completeness of %`

T , %r
T , %`

P and %r
P . It remains to impose conditions that

will ensure that %`
T and %`

P (resp. %r
T and %r

P) are compatible.
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In order to do so, Ducamp and Falmagne (1969) introduce the following pair
of conditions, for all a, b ∈ A and all p, q ∈ Z,

a P p
and
b T q

⇒


b P p
or

a T q.
(10)

a P p
and
b T q

⇒


a P q
or

b T p.
(11)

It is easy to check that (9) implies that the pair of relations T and P satisfies (10)
and (11). Moreover, when T and P are Ferrers and (10) and (11) hold, the two
relations %`

◦ and %r
◦ are complete.

Ducamp and Falmagne (1969, p. 377) have given examples showing that the
following four conditions are independent: T is a biorder, P is a biorder, (10)
and (11). This leads to the central result on the numerical representation of bi-
semiorders on finite sets.

Proposition 3 (Th. 5, p. 377 in Ducamp and Falmagne, 1969)
Let A and Z be finite sets. Let T and P be two relations between A and Z. There
are real-valued functions f on A and g on Z such that (9) holds if and only if P
and T are biorders satisfying conditions (10) and (11) and such that P ⊆ T .

Moreover, the functions f and g can always be chosen in such a way that, for
all a, b ∈ A and p, q ∈ Z,

a %`
◦ b⇔ f(a) ≥ f(b),

p %r
◦ q ⇔ g(p) ≥ g(q).

(12)

Our results below for bi-semiorders with frontiers will heavily rely on the
method of proof used by Ducamp and Falmagne (1969).

5 Bi-semiorders with frontiers

5.1 Definitions

Consider now four relations P , J , T and F between the sets A and Z. We are
interested in a model in which there are a real-valued function f on A and a
real-valued function g on Z such that, for all a ∈ A and p ∈ Z,

a P p⇔ f(a) > g(p) + 1, (13a)

a J p⇔ f(a) = g(p) + 1, (13b)

a T p⇔ f(a) > g(p), (13c)

a F p⇔ f(a) = g(p). (13d)
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This model implies that P ∩ J = ∅. We define S = P ∪ J , so that

a S p⇔ f(a) ≥ g(p) + 1.

Similarly, this model implies that T ∩ F = ∅. We define R = T ∪ F , so that

a R p⇔ f(a) ≥ g(p).

Clearly, we also have that J ∩ F = ∅ and P ∪ J = S ⊆ T .
Our primitives consist in four relations P , J , T and F between the sets A

and Z. Our aim is to establish conditions on these four relations leading to the
existence of a representation defined by (13). We will suppose throughout that
P ∩J = ∅, T ∩F = ∅, J ∩F = ∅, and P ∪J = S ⊆ T . In particular, we have
P ⊆ S ⊆ T ⊆ R. This is summarized below:

P ⊆ S ⊆ T ⊆ R

= =

P ∪ J T ∪ F

The interpretation is that J is at the frontier of P . Similarly, F is at the frontier
of T .

We define the relation %`
� on A letting, for all a, b ∈ A,

a %`
� b⇔


b P r ⇒ a P r,
b S r ⇒ a S r,
b T r ⇒ a T r,
b R r ⇒ a R r,

 for all r ∈ Z,

Similarly, we define the relation %r
� on A letting, for all p, q ∈ Z,

p %r
� q ⇔


c P p⇒ c P q,
c S p⇒ c S q,
c T p⇒ c T q,
c R p⇒ c R q,

 for all c ∈ A,

By construction, both %`
� and %r

� are reflexive and transitive.

5.2 Traces

It is clear that (13) implies that that P , S, T , and R must be biorders. As above,
we also have to impose conditions that ensure that the various traces of these
relations are compatible, so that both %`

� on A and %r
� on Z are complete. We

have to suppose that, for all a, b ∈ A and all p, q ∈ Z,

12



a P p
and
b S q

⇒


b P p
or

a S q,
(14)

a P p
and
b S q

⇒


a P q
or

b S p,
(15)

a T p
and
b R q

⇒


b T p
or

a R q,
(16)

a T p
and
b R q

⇒


a T q
or

b R p,
(17)

a P p
and
b T q

⇒


b P p
or

a T q,
(18)

a P p
and
b T q

⇒


a P q
or

b T p,
(19)

a P p
and
b R q

⇒


b P p
or

a R q,
(20)

a P p
and
b R q

⇒


a P q
or

b R p,
(21)

a S p
and
b T q

⇒


b S p
or

a T q,
(22)

a S p
and
b T q

⇒


a S q
or

b T p,
(23)

a S p
and
b R q

⇒


b S p
or

a R q,
(24)

a S p
and
b R q

⇒


a S q
or

b R p.
(25)

We summarize the consequences of the conditions introduced so far in the
following:

Lemma 4
1. Suppose that there are a real-valued function f on A and a real-valued func-

tion g on Z such that (13) holds. Then conditions (14–25) hold.

2. Suppose that the four relations P, J , T and F are such that, P ∩ J = ∅,
T ∩ F = ∅, J ∩ F = ∅, and S ⊆ T . Suppose furthermore that P, S, T ,
and R are biorders. If conditions (14), (16), (18), (20), (22), and (24) hold,
then the relation %`

� is a weak order.

3. Suppose that the four relations P, J , T and F are such that, P ∩ J = ∅,
T ∩ F = ∅, J ∩ F = ∅, and S ⊆ T . Suppose furthermore that P, S, T ,
and R are biorders. If conditions (15), (17), (19), (21), (23), and (25) hold,
then the relation %r

� is a weak order.

13



Proof
Part 1 is easily shown. Let us prove Part 2, the proof of Part 3 being similar.

Suppose that Not [a %`
� b]. This implies that, for some p ∈ Z, we have:

b P p and Not [a P p] or (26a)

b S p and Not [a S p] or (26b)

b T p and Not [a T p] or (26c)

b R p and Not [a R p]. (26d)

Similarly, Not [b %`
� a] imply that, for some q ∈ Z, we have:

a P q and Not [b P q] or (26e)

a S q and Not [b S q] or (26f)

a T q and Not [b T q] or (26g)

a R q and Not [b R q]. (26h)

There are 16 cases to examine. It is clear that (26a) and (26e) violates the fact
that P is a biorder. Similarly, (26b) and (26f) violates the fact that S is a biorder,
(26c) and (26g) violates the fact that T is a biorder, and (26d) and (26h) violates
the fact that R is a biorder.

This leaves 12 cases that are dealt with as follows.
[(26a) and (26f)]
[(26b) and (26e)]

}
are identical and violate (14)

[(26a) and (26g)]
[(26c) and (26e)]

}
are identical and violate (18)

[(26a) and (26h)]
[(26d) and (26e)]

}
are identical and violate (20)

[(26b) and (26g)]
[(26c) and (26f)]

}
are identical and violate (22)

[(26b) and (26h)]
[(26d) and (26f)]

}
are identical and violate (24)

[(26c) and (26h)]
[(26d) and (26g)]

}
are identical and violate (16)

2

Because we are now manipulating four relations, we need a notion of thinness
that is stronger than the one used above for biorders with frontier.

We say that the relations P , S, T , and R satisfy strong thinness for F on A
if, for all a, b ∈ A and p, q ∈ Z,

[a F p and b F p]⇒ a ∼`
� b.

14



Similarly, we say that P , S, T , and R satisfy strong thinness for F on Z if, for all
a, b ∈ A and p, q ∈ Z,

[a F p and a F q]⇒ p ∼r
� q.

We say that P , S, T , and R satisfy strong thinness for J on A if, for all
a, b ∈ A and p, q ∈ Z,

[a J p and b J p]⇒ a ∼`
� b.

Similarly, we say P , S, T , and R satisfy strong thinness for J on Z if, for all
a, b ∈ A and p, q ∈ Z,

[a J p and a J q]⇒ p ∼r
� q.

The main consequences of these conditions are summarized in the following:

Lemma 5
1. The existence of a representation (13) implies that strong thinness for both
J and F holds on both A and Z.

2. If P, S, T , and R are biorders and strong thinness for F and J holds on Z
then (14) and (16) hold.

3. If P, S, T , and R are biorders and strong thinness for F and J holds on A
then (15) and (17) hold.

4. If strong thinness for F and J holds on A then, for all a, b, c ∈ A and all
p ∈ Z,

[a F p and b �`
� a]⇒ b T p, (27a)

[a J p and b �`
� a]⇒ b P p, (27b)

[a F p and a �`
� c]⇒ Not[c R p], (27c)

[a J p and a �`
� c]⇒ Not[c S p]. (27d)

5. If strong thinness for F and J holds on Z then, for all a ∈ A and all
p, q, r ∈ Z,

[a F p and p �r
� q]⇒ a T q, (28a)

[a J p and p �r
� q]⇒ a P q, (28b)

[a F p and r �r
� p]⇒ Not[a R r], (28c)

[a J p and r �r
� p]⇒ Not[a S r]. (28d)

6. In the set of all relations P, J , T and F between the sets A and Z such
that P ∩ J = ∅, T ∩ F = ∅, J ∩ F = ∅, and S ⊆ T , the following 16
conditions are independent: P is Ferrers, S is Ferrers, T is Ferrers, R is

15



Ferrers, strong thinness for J holds on A, strong thinness for J holds on
Z, strong thinness for F holds on A, strong thinness for F holds on Z, and
(18) to (25).

Proof
Part 1 is easily shown. Let us first prove Part 2, the proof of Part 3 being similar.
Suppose that condition (16) is violated, so that, a T p, b R q, Not [b T p] and
Not [a R q], for some a, b ∈ A and some p, q ∈ Z. Because R is a biorder and
T ⊆ R, we know that we must have b R p. Since Not [b T p], this implies b F p.
If b F q, then a T p and Not [a R q] violates strong thinness on Z. Therefore, we
must have b T q, so that, using the fact that T is a biorder, we have either b T p
or a T q, a contradiction.

Similarly, suppose that condition (14) is violated, so that, a P p, b S q,
Not [b P p] and Not [a S q], for some a, b ∈ A and some p, q ∈ Z. Because S is
a biorder and P ⊆ S, we know that we must have b S p. Since Not [b P p], this
implies b J p. If b J q, then a P p and Not [a P q] violates strong thinness on Z.
Therefore, we must have b P q, so that, using the fact that P is a biorder, we have
either b P p or a P q, a contradiction.

Let us now prove Part 4, the proof of Part 5 being similar. Let us show that
(27a) holds. Suppose that a F p and b �`

� a. Since b �`
� a implies b %`

� a, we know
that b R p. Suppose that b F p. Using strong thinness on A, it is easy to see that
a F p and b F p imply b ∼`

� a, a contradiction. Hence, we must have b T p.
Let us now show that (27b) holds. Suppose that a J p and b �`

� a. Since
b �`

� a implies b %`
� a, we know that b S p. Suppose that b J p. Using strong

thinness on A, it is easy to see that a J p and b J p imply b ∼`
� a, a contradiction.

Hence, we must have b P p. The proof of (27c) and (27d) is similar.
Part 6. We provide below the required 16 examples. We indicate, for each

example, which condition among the set of 16 conditions is the only one to be
violated. In each of the matrices below, we only indicate the weakest relation that
is satisfied.

P biorder

p q
a P T
b J P

S biorder

p q
a P T
b T J

T biorder

p q
a T F
b F T

R biorder

p q
a F −
b − F

F thin on Z

p q
a F F
b − T

F thin on A

p q
a F T
b F −

J thin on Z

p q
a J J
b − T

J thin on A

p q
a J T
b J −
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(18)

p q
a T T
b F P

(19)

p q
a P T
b F T

(22)

p q
a T T
b F J

(23)

p q
a J T
b F T

(24)

p q
a F T
b − J

(25)

p q
a J T
b − F

(20)

p q
a F J
b − P

(21)

p q
a P J
b − F

2

5.3 Results

Our main result is the following.

Theorem 6
Let A and Z be finite sets. Let P, J , T , and F be four relations between the sets
A and Z such that P ∩ J = ∅, T ∩ F = ∅, J ∩ F = ∅, and P ∪ J = S ⊆ T .

There are real-valued functions f on A and g on Z such that (13) holds if and
only if P, S = P ∪ J , T , R = T ∪ F are biorders satisfying conditions (18) to
(25) and such that strong thinness holds for both J and F on both A and Z.

Furthermore, these conditions are independent and the functions f and g in
(13) can always be chosen so that, for all a, b ∈ A and p, q ∈ Z,

a %`
� b⇔ f(a) ≥ f(b),

p %r
� q ⇔ g(p) ≥ g(q).

(29)

Theorem 6 is proved in Section 6.
An important limitation of the above result is that it only covers the case

of finite sets A and Z. Extending them to possibly countably infinite sets and to
possibly uncountable sets is an important open problem. The recent breakthrough
on the constant threshold representation of semiorders on general sets (Candeal
and Induráin, 2010) gives some hope to obtain interpretable results. This will
require a proof strategy that is different from the one used here.

6 Proof of Theorem 6

6.1 Lemmas on semiorders and semiorders with frontier

We begin by a simple lemma on semiorders that is almost identical to Ducamp
and Falmagne (1969, Lemma 6, page 380).
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Lemma 7
Let T be a binary relation on a set X.

1. If there is a weak order % on X such that, for all x, y, z ∈ X,

x T y and y % z ⇒ x T z,

x % y and y T z ⇒ x T z,
(30)

then T is Ferrers and semitransitive and % refines %T .

2. If T is irreflexive and there is a weak order % on X such that (30) holds,
then, when X is finite, there are a real-valued function u on X such that,
for all x, y ∈ X,

x T y ⇔ u(x) > u(y) + 1,

x % y ⇔ u(x) ≥ u(y).

Proof
Part 1 is straightforward. Part 2 is Ducamp and Falmagne (1969, Lemma 6,
page 380). Let us simply outline the proof. An irreflexive, semitransitive Ferrers
relation is a semiorder. Scott and Suppes (1958) have shown that a semiorder on
a finite set always has a constant threshold representation. The classical proof
(Scott and Suppes, 1958) of the existence of a constant threshold representation
for finite semiorders leads to a function u that represents the weak order %T and
is such that it is never true that u(x)− u(y) = 1. Using the fact that X is finite,
we can therefore modify u in such a way that any two elements x and y such
that x ∼T y will be assigned distinct (but close) values in the modified numerical
representation. Since % refines %T , we can modify u in such a way that it will
represent %. 2

The proof of Proposition 3 given in Ducamp and Falmagne (1969) consists,
starting with the relations T and P between A and Z, in building two relations
T and % on A ∪ Z such that T and % satisfy the conditions of Lemma 7 and the
restriction of T (resp. %) to A× Z is P (resp. T ).

Let us now consider a pair of disjoint relations T and F on a set X. Let
R = T ∪F . As before, let %T = %`

T ∩%r
T and %R = %`

R ∩%r
R. Let %? = %T ∩%R.

We say that F is strongly upper thin for the pair T and F if, for all x, y, z, w ∈
X,

x F z

y F z

}
⇒


x T w ⇔ y T w

x F w ⇔ y F w

w F x⇔ w F y

w T x⇔ w T y

 .
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Similarly, we say that F is strongly lower thin for the pair T and F if, for all
x, y, z, w ∈ X,

z F x

z F y

}
⇒


x T w ⇔ y T w

x F w ⇔ y F w

w F x⇔ w F y

w T x⇔ w T y

 .

We say that strong thinness holds if we have both strong lower thinness and strong
upper thinness.

Lemma 8 (Prop. 19 in BM11)
Let T and F be a pair of disjoint relations on a finite set X. Let R = T ∪ F .
There is a real-valued function u on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > u(y) + 1,

x F y ⇔ u(x) = u(y) + 1,
(31)

iff T is a semiorder, R is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , and strong
thinness holds. Furthermore the function u can always be chosen so that, for all
x, y ∈ X,

x %? y ⇔ u(x) ≥ u(y). (32)

The following lemma generalizes Lemma 7 to cope with a frontier.

Lemma 9
Let T and F be a pair of disjoint irreflexive relations on a set X.

1. If there is a weak order % on X such that, for all x, y, z ∈ X,

x T y and y % z ⇒ x T z,

x F y and y � z ⇒ x T z,

x F y and y ∼ z ⇒ x F z,

x % y and y T z ⇒ x T z,

x � y and y F z ⇒ x T z,

x ∼ y and y F z ⇒ x F z,

(33)

then T is a semiorder, R = T ∪ F is a semiorder, TFRsc ⊆ T , RscFT ⊆ T ,
F is strongly upper thin, and F is strongly lower thin

2. Under the conditions of Part 1, when X is finite, there is a real-valued func-
tion u on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > u(y) + 1,

x F y ⇔ u(x) = u(y) + 1,

x % y ⇔ u(x) ≥ u(y).

(34)
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Proof
Part 1. By hypothesis, we know that T and F are disjoint. Using Lemma 7 and
(33), it is clear that both T and R are Ferrers and semitransitive. Since we have
supposed that T and F are irreflexive, both T and R are semiorders.

Suppose that a T b, b F c and c Rsc d, for some a, b, c, d ∈ X. If b % d,
then a T b and (33) imply a T d. If d � b, then b F c and (33) imply d T c, a
contradiction. Hence, we have TFRsc ⊆ T . The proof that RscFT ⊆ T is similar.

Suppose now that a F c and b F c. If a � b then b F c and (33) imply a T c,
a contradiction. Similarly if b � a, a F c and (33) imply b T c, a contradiction.
Hence, we must have a ∼ b, so that strong upper thinness holds. The proof for
strong lower thinness is similar.

Part 2. When X is finite, we may use Proposition 8 to obtain a numerical
representation of the pair T and F in model (34), except that u is a numerical
representation of the weak order%?. It remains to show that it is possible to modify
this numerical representation in such a way that u will represent %. Observe that
(33) implies that % refines %?. We may therefore use here the same construction
as the one used in Lemma 7, provided that it never happens that [x F z, y F z
and x � y] or [z F x, z F y and x � y]. This is implied by (33). 2

For proving Theorem 6, our strategy will be as follows. Starting with the four
relations P , J , T , and F between the sets A and Z, we will build three relations
T , F and % on A ∪ Z such that T and % satisfy the conditions of Lemma 9. The
restriction of T (resp. F , �, ∼) to A×Z will be P (resp. J , T , F). This will lead
to the desired representation.

6.2 Lemmas on biorders and biorders with frontier

The first lemma on biorders is taken from BM11.

Lemma 10 (Lemma 1 in BM11)
Suppose that T is a biorder between A and Z. Let %`

[ be a weak order on A and
%r

[ be a weak order on Z. Suppose that, for all α, β ∈ A and all γ, δ ∈ Z,

α %`
[ β and β T γ ⇒ α T γ,

γ %r
[ δ and β T γ ⇒ β T δ.

Then:

1. %`
[ refines %`

T ,

2. %r
[ refines %r

T ,
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3. the binary relation Q on A ∪ Z that is defined letting , for all α, β ∈ A ∪ Z,

α Q β ⇔


α ∈ A, β ∈ A, and α %`

[ β,

α ∈ Z, β ∈ Z, and α %r
[ β,

α ∈ A, β ∈ Z, and α T β,

α ∈ Z, β ∈ A, and Not[β T α].

is a weak order.

The following lemma generalizes Lemma 10 to cope with a frontier.

Lemma 11 (Lemma 3 in BM11)
Let T and F be a pair of disjoint relations between A and Z. Let R = T ∪ F
Suppose that %`

[ is a weak order on A and %r
[ is a weak order on Z. Suppose that,

for all α, β ∈ A and all γ ∈ Z,

β T γ and α %`
[ β ⇒ α T γ,

β F γ and α �`
[ β ⇒ α T γ,

β F γ and α ∼`
[ β ⇒ α F γ.

(35)

Suppose furthermore that, for all α ∈ A and all β, γ ∈ Z,

α T β and β %r
[ γ ⇒ α T γ,

α F β and β �`
[ γ ⇒ α T γ,

α F β and β ∼`
[ γ ⇒ α F γ.

(36)

Then %`
[ refines %`

?= %
`
T ∩ %`

R and %r
[ refines %r

? = %r
T ∩ %r

R. Furthermore, the
binary relation L on A ∪ Z that is defined letting , for all α, β ∈ A ∪ Z,

α L β ⇔


α ∈ A, β ∈ A, and α %`

[ β,

α ∈ Z, β ∈ Z, and α %r
[ β,

α ∈ A, β ∈ Z, and α R β,

α ∈ Z, β ∈ A, and Not[β T α].

is a weak order.

6.3 Proof of Theorem 6

Necessity follows from Lemmas 4 and 5, together with Proposition 1. The inde-
pendence of the conditions was shown in Part 6 of Lemma 5. We show sufficiency.
We know from Lemmas 4 and 5 that %`

� is a weak order on A and that %r
� is a

weak order on Z.
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Step 1.
We define the relation Q� on A ∪ Z letting, for all α, β ∈ A ∪ Z,

α Q� β ⇔


α, β ∈ A and α %`

� β,

α, β ∈ Z and α %r
� β,

α ∈ A, β ∈ Z and α R β,

α ∈ Z, β ∈ A and Not [β T α].

Using Lemmas 5 and 11, we know that Q� is a weak order.

Step 2.
Define the relation H� on A ∪ Z letting for all α, β ∈ A ∪ Z,

α H� β ⇔


α, β ∈ A and [α J δ, β F δ] for some δ ∈ Z
α, β ∈ Z and [γ J β, γ F α] for some γ ∈ A
α ∈ A, β ∈ Z and α J β,

α ∈ Z, β ∈ A and [β F δ, γ J δ, γ F α] for some γ ∈ A, δ ∈ Z

Since J and F are disjoint, it is easy to see that H� is irreflexive.

Step 3.
Define the relation K� on A ∪ Z letting for all α, β ∈ A ∪ Z:

α K� β ⇔

α, β ∈ A and


α S δ,Not [β R δ],

or
α P δ,Not [β T δ],

 for some δ ∈ Z,

α, β ∈ Z and


γ S β,Not [γ R α],

or
γ P β,Not [γ T α],

 for some γ ∈ A,

α ∈ A, β ∈ Z and α P β,

α ∈ Z, β ∈ A and


Not [γ R α], γ S δ,Not [β T δ],

or
Not [γ T α], γ P δ,Not [β T δ],

or
Not [γ T α], γ S δ,Not [β R δ]

 for some γ ∈ A, δ ∈ Z.

Since P ⊆ S ⊆ T ⊆ R, it is easy to see that K� is irreflexive.

Step 4.
Let us show that K� and H� are disjoint.
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If α ∈ A and β ∈ Z, the conclusion follows from the fact that J and P are
disjoint.

If α ∈ A and β ∈ A, α H� β implies that α J δ and β F δ, for some δ ∈ Z.
Similarly α K� β implies either α S ρ, Not [β R ρ] or α P ρ, Not [β T ρ], for some
ρ ∈ Z. In the first case, β F δ and Not [β R ρ] implies ρ �r

� δ. Hence, α S ρ
implies α P δ, a contradiction. In the second case, α J δ and α P ρ imply δ �r

� ρ.
Hence, β F δ implies β T ρ, a contradiction.

The case α ∈ Z and β ∈ Z is dealt with in a similar way.
Suppose now that α ∈ Z and β ∈ A. By definition, α H� β implies that β F δ,

ρ J δ, ρ F α, for some ρ ∈ A, δ ∈ Z.
Similarly α K� β implies either Not [ω R α], ω S τ , Not [β T τ ], or Not [ω T α],

ω P τ , Not [β T τ ], or Not [ω T α], ω S τ , Not [β R τ ] for some ω ∈ A, τ ∈ Z.
In the first case, because β F δ and Not [β T τ ], we must have τ %r

� δ. Because
ρ F α and Not [ω R α], we must have ρ �`

� ω. Therefore ω S τ implies ρ P τ and,
hence, ρ P δ, a contradiction.

In the second case, β F δ and Not [β T τ ], we must have τ %r
� δ. Because

ρ F α and Not [ω T α], we must have ρ %`
� ω. Therefore ω P τ implies ρ P τ and,

hence, ρ P δ, a contradiction.
In the third case, β F δ and Not [β R τ ], we must have τ �r

� δ. Because ρ F α
and Not [ω T α], we must have ρ %`

� ω. Therefore ω S τ implies ρ S τ and, hence,
ρ P δ, a contradiction.

Our plan is now to apply Lemma 9 to the relations K� (playing the role of T )
and H� (playing the role of F ) with Q� playing the role of %.

We have already observed that Q� is a weak order and that H� and K� are
disjoint and both irreflexive. It remains to show that, for all α, β, γ ∈ A ∪ Z,

α K� β and β Q� γ ⇒ α K� γ, (37a)

α H� β and β Qa
� γ ⇒ α K� γ, (37b)

α H� β and β Qs
� γ ⇒ α H� γ, (37c)

α Q� β and β K� γ ⇒ α K� γ, (37d)

α Qa
� β and β H� γ ⇒ α K� γ, (37e)

α Qs
� β and β H� γ ⇒ α H� γ, (37f)

where Qa
� (resp. Qs

�) denotes the asymmetric (resp. symmetric) part of Q�.

Step 5.
Let us first prove (37c). Observe first that β Qs

� γ means that β ∼`
� γ if

β, γ ∈ A, β ∼r
� γ if β, γ ∈ Z, β F γ if β ∈ A, γ ∈ Z and γ F β if β ∈ Z, γ ∈ A.

Suppose that α H� β and β Qs
� γ. There are eight cases to consider.
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1. Suppose that α, β, γ ∈ A. We have [α J δ, β F δ], for some δ ∈ Z
and β ∼`

� γ. We obtain [α J δ, γ F δ], so that α H� γ.

2. Suppose that α, β, γ ∈ Z.

We have [δ J β, δ F α] for some δ ∈ A and β ∼r
� γ. We have [δ J γ, δ F α],

so that α H� γ.

3. Suppose that α, β ∈ A, γ ∈ Z. We have [α J δ, β F δ], for some δ ∈ Z and
β F γ. This implies γ ∼r

� δ, so that α J γ and α H� γ.

4. Suppose that α, γ ∈ A, β ∈ Z. We have α J β and γ F β, so that α H� γ.

5. Suppose that β, γ ∈ A,α ∈ Z. We have [β F δ, ρ J δ, ρ F α], for some
ρ ∈ A, δ ∈ Z and β ∼`

� γ. We obtain [γ F δ, ρ J δ, ρ F α], so that α H� γ.

6. Suppose that α, β ∈ Z, γ ∈ A. We have [δ J β, δ F α] for some δ ∈ A and
γ F β. We obtain [γ F β, δ J β, δ F α], so that α H� γ.

7. Suppose that α, γ ∈ Z, β ∈ A. We have [β F δ, ρ J δ, ρ F α], for some
ρ ∈ A, δ ∈ Z and β F γ. We obtain γ ∼r

� δ. We obtain ρ J γ and ρ F α, so
that α H� γ.

8. Suppose that β, γ ∈ Z, α ∈ A. α J β and β ∼r
� γ. We obtain α J γ, so that

α H� γ.

Step 6.
Let us now prove (37b). Observe first that β Qa

� γ means that β �`
� γ if

β, γ ∈ A, β �r
� γ if β, γ ∈ Z, β T γ if β ∈ A, γ ∈ Z and Not [γ R β] if β ∈ Z, γ ∈ A.

Suppose that α H� β and β Qa
� γ. There are eight cases to consider.

1. Suppose that α, β, γ ∈ A. We have [α J δ, β F δ], for some δ ∈ Z and
β �`

� γ. We obtain Not [γ R δ] and α J δ, so that α K� γ.

2. If α, β, γ ∈ Z. We have [δ J β, δ F α] for some δ ∈ A and β �r
� γ. We

obtain δ P γ and Not [δ T α], so that α K� γ.

3. Suppose that α, β ∈ A, γ ∈ Z. We have [α J δ, β F δ], for some δ ∈ Z and
β T γ. Because β F δ and β T γ, we have δ �r

� γ. Hence, α J δ implies
α P γ, so that α K� γ.

4. Suppose that α, γ ∈ A, β ∈ Z. We have α J β and Not [γ R β]. Hence, we
have α K� γ.
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5. Suppose that β, γ ∈ A,α ∈ Z. We have [β F δ, ρ J δ, ρ F α], for some
ρ ∈ A, δ ∈ Z and β �`

� γ. We obtain Not [γ R δ], ρ J δ and ρ F α, so that
α K� γ.

6. Suppose that α, β ∈ Z, γ ∈ A. We have [δ J β, δ F α] for some δ ∈ A and
Not [γ R β]. We therefore have Not [δ T α], δ J β and Not [γ R β], so that
α K� γ.

7. Suppose that α, γ ∈ Z, β ∈ A. We have [β F δ, ρ J δ, ρ F α], for some
ρ ∈ A, δ ∈ Z and β T γ. Because β F δ and β T γ, we obtain δ �r

� γ, so
that ρ P γ. Because ρ F α implies Not [ρ T α], we obtain α K� γ.

8. Suppose that β, γ ∈ Z, α ∈ A. We have α J β and β �r
� γ. We obtain

α P γ, so that α K� γ.

Step 7.
Let us prove (37a). Suppose that α K� β and β Q� γ. There are eight cases to

examine.

1. Suppose that α, β, γ ∈ A. We have [α S δ and Not [β R δ]], or [α P δ and
Not [β T δ]], for some δ ∈ Z and β %`

� γ. We obtain either α S δ, Not [γ R δ],
or α P δ, Not [γ T δ], so that α K� γ.

2. Suppose that α, β ∈ A and γ ∈ Z. We have [α S δ and Not [β R δ]], or
[α P δ and Not [β T δ]], for some δ ∈ Z and β R γ. In the first case,
Not [β R δ] and β R γ implies δ �r

� γ. Hence α S δ implies α P γ. In the
second case, Not [β T δ] and β R γ implies δ %r

� γ. Hence, we obtain α P γ,
so that α K� γ.

3. Suppose that α, γ ∈ A and β ∈ Z. We have α P β and Not [γ T β], so that
α K� γ.

4. Suppose that α ∈ Z and β, γ ∈ A. We have [Not [ρ R α], ρ S δ,Not [β T δ]]
or [Not [ρ T α], ρ P δ,Not [β T δ]] or [Not [ρ T α], ρ S δ,Not [β R δ]] for some
ρ ∈ A, δ ∈ Z, and β %`

� γ. Hence, Not [β T δ] implies Not [γ T δ] and
Not [β R δ] implies Not [γ R δ]. In either of these three cases, we therefore
have α K� γ.

5. Suppose that α, β ∈ Z and γ ∈ A. We have [δ S β,Not [δ R α]] or [δ P β,Not [δ T α]],
for some δ ∈ A, and Not [γ T β]. We have either Not [γ T β], δ S β,
Not [δ R α] or Not [γ T β], δ P β, Not [δ T α], so that α K� γ.
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6. Suppose that α, γ ∈ Z and β ∈ A. We have [Not [ρ R α], ρ S δ,Not [β T δ]],
or [Not [ρ T α], ρ P δ,Not [β T δ]], or [Not [ρ T α], ρ S δ,Not [β R δ]], for some
ρ ∈ A, δ ∈ Z, and β R γ.

In the first two cases, β R γ and Not [β T δ] imply δ %r
� γ. Hence, we have

either Not [ρ R α], ρ S γ or Not [ρ T α], ρ P γ.

In the third case, β R γ and Not [β R δ] imply δ �r
� γ. Hence, we have

Not [ρ T α] and ρ P γ.

In either case, we therefore have α K� γ.

7. Suppose that β, γ ∈ Z and α ∈ A. We have α P β and β %r
� γ. This implies

α P γ, so that α K� γ.

8. Suppose that α, β, γ ∈ Z. We have [δ S β,Not [δ R α]] or [δ P β,Not [δ T α]],
for some γ ∈ A, and β %r

� γ. We have either δ S γ, Not [δ R α] or δ P γ,
Not [δ T α], so that α K� γ.

Step 8.
The proof of (37d), (37e) and (37f) is entirely similar.

Step 9.
We are now in position to apply Lemma 9 to the relations K� (playing the role

of T ) and H� (playing the role of F ) with Q� playing the role of %.
Hence, we know that there is a real-valued function F on A ∪ Z such that, for

all α, β ∈ A ∪ Z,
α K� β ⇔ F (α) > F (β) + 1,

α H� β ⇔ F (α) = F (β) + 1,

α Q� β ⇔ F (α) ≥ F (β).

By construction, the restriction of K� to A×Z is P . Similarly, the restriction
of H� to A × Z is J . The restriction of Qa

� to A × Z is T . The restriction of
Qs
� to A × Z is F . Hence, defining f as the restriction of F on A and g as the

restriction of F on Z leads to a representation in model (13). Finally, in view of
the definition of Q�, it is clear that (29) holds. The proof is complete. �
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