Decisions with multiple attributes A brief introduction Denis Bouyssou CNRS-LAMSADE Paris, France JFRO — December 2006 #### Aims mainly pedagogical - present elements of the classical theory - position some extensions w.r.t. this classical theory | C | Comparing holiday packages | | | | | | | | | |---|----------------------------|------|--------------|--------------------------|----------------------|----------------------|------|----------------------|--| | | | cost | # of
days | $_{ m time}^{ m travel}$ | category
of hotel | distance
to beach | Wifi | cultural
interest | | | | A | 200€ | 15 | $12\mathrm{h}$ | *** | $45\mathrm{km}$ | Y | ++ | | | | B | 425€ | 18 | $15\mathrm{h}$ | **** | $0\mathrm{km}$ | N | | | | | C | 150€ | 4 | $7\mathrm{h}$ | ** | $250\mathrm{km}$ | N | + | | | | D | 300€ | 5 | $10\mathrm{h}$ | *** | $5\mathrm{km}$ | Y | _ | | ## Central problems - helping a DM choose between these packages - helping a DM structure his preferences #### Two different contexts - decision aiding - careful analysis of objectives - careful analysis of attributes - careful selection of alternatives - availability of the DM - 2 recommendation systems - no analysis of objectives - attributes as available - alternatives as available - limited access to the user #### Basic model • additive value function model $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$ x, y: alternatives x_i : evaluation of alternative x on attribute i $v_i(x_i)$: number • underlies most existing MCDM techniques ### Underlying theory: conjoint measurement - Economics (Debreu, 1960) - Psychology (Luce & Tukey, 1964) - tools to help structure preferences # Outline: Classical theory - An aside: measurement in Physics - 2 An example: even swaps - Notation - 4 Additive value functions: outline of theory - **5** Additive value functions: implementation ## Outline: Extensions - 6 Models with interactions - **7** Ordinal models ## Part I Classical theory: conjoint measurement # Aside: measurement of physical quantities ### Lonely individual on a desert island - no tools, no books, no knowledge of Physics - wants to rebuild a system of physical measures ### A collection a rigid straight rods - problem: measuring the length of these rods - pre-theoretical intuition - length - softness, beauty ### 3 main steps - comparing objects - creating and comparing new objects - creating standard sequences # Step 1: comparing objects - experimental to conclude which rod has "more length" - rods side by side on the same horizontal plane # Comparing objects #### Results - $a \succ b$: extremity of rod a is higher than extremity of rod b - $a \sim b$: extremity of rod a is as high as extremity of rod b ### Expected properties - $a \succ b$, $a \sim b$ or $b \succ a$ - \bullet \succ is asymmetric - \sim is symmetric - \bullet \succ is transitive - $\bullet \sim \text{is transitive}$ - \succ and \sim combine "nicely" - $a \succ b$ and $b \sim c \Rightarrow a \succ c$ - $a \sim b$ and $b \succ c \Rightarrow a \succ c$ ## Comparing objects ### Summary of experiments - binary relation $\succeq = \succ \cup \sim$ that is a weak order - complete $(a \succsim b \text{ or } b \succsim a)$ - transitive $(a \succsim b \text{ and } b \succsim c \Rightarrow a \succsim c)$ ### Consequences - associate a real number $\Phi(a)$ to each object a - the comparison of numbers faithfully reflects the results of experiments $$a \succ b \Leftrightarrow \Phi(a) > \Phi(b) \qquad a \sim b \Leftrightarrow \Phi(a) = \Phi(b)$$ - the function Φ defines an ordinal scale - applying an increasing transformation to Φ leads to a scale that has the same properties - any two scales having the same properties are related by an increasing transformation ## Comments #### Nature of the scale - ullet Φ is quite far from a full-blown measure of length... - useful though since it allows the experiments to be done only once ### Hypotheses are stringent - highly precise comparisons - several practical problems - any two objects can be compared - connections between experiments - comparisons may vary in time - idealization of the measurement process # Step 2: creating and comparing new objects - use the available objects to create new ones - concatenate objects by placing two or more rods "in a row" $a \circ b \succ c \circ d$ ## Concatenation - we want to be able to deduce $\Phi(a \circ b)$ from $\Phi(a)$ and $\Phi(b)$ - simplest requirement $$\Phi(a \circ b) = \Phi(a) + \Phi(b)$$ • monotonicity constraints $$a \succ b$$ and $c \sim d \Rightarrow a \circ c \succ b \circ d$ # Example - five rods: $r_1, r_2, ..., r_5$ - we may only concatenate two rods (space reasons) - we may only experiment with different rods - data: $$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$ • all constraints are satisfied: weak ordering and monotonicity ## Example $$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$ | | Φ | Φ' | Φ'' | |------------------|----|---------|----------| | $\overline{r_1}$ | 14 | 10 | 14 | | r_2 | 15 | 91 | 16 | | r_3 | 20 | 92 | 17 | | r_4 | 21 | 93 | 18 | | r_5 | 28 | 100 | 29 | - Φ , Φ' and Φ'' are equally good to compare simple rods - only Φ and Φ'' capture the comparison of concatenated rods - going from Φ to Φ'' does not involve a "change of units" - it is tempting to use Φ or Φ'' to infer comparisons that have not been performed. . . - disappointing $$\Phi: r_2 \circ r_3 \sim r_1 \circ r_4 \quad \Phi'': r_2 \circ r_3 \succ r_1 \circ r_4$$ # Step 3: creating and using standard sequences - choose a standard rod - be able to build perfect copies of the standard - concatenate the standard rod with its perfects copies $$S(8) \succ a \succ S(7)$$ $\Phi(s) = 1 \Rightarrow 7 < \Phi(a) < 8$ # Convergence #### First method - choose a smaller standard rod - repeat the process #### Second method - prepare a perfect copy of the object - concatenate the object with its perfect copy - compare the "doubled" object to the original standard sequence - repeat the process ## Summary #### Extensive measurement • Krantz, Luce, Suppes & Tversky (1971, chap. 3) ### 4 Ingredients - \bullet well-behaved relations \succ and \sim - 2 concatenation operation o - **3** consistency requirements linking \succ , \sim and \circ - ability to prepare perfect copies of some objects in order to build standard sequences #### Neglected problems • many! ## Question ## Can this be applied outside Physics? • no concatenation operation (intelligence!) ## What is conjoint measurement? #### Conjoint measurement - mimicking the operations of extensive measurement - when there are no concatenation operation readily available - when several dimensions are involved ### Seems overly ambitious • let us start with a simple example # Example: Hammond, Keeney & Raiffa #### Choice of an office to rent - five locations have been identified - five attributes are being considered - Commute time (minutes) - Clients: percentage of clients living close to the office - Services: ad hoc scale - \bullet A (all facilities), B (telephone and fax), C (no facility) - Size: square feet ($\simeq 0.1 \text{ m}^2$) - Cost: \$ per month #### Attributes - Commute, Size and Cost are natural attributes - Clients is a proxy attribute - Services is a constructed attribute ## Data | | a | b | c | d | e | |----------|------|------|------|------|------| | Commute | 45 | 25 | 20 | 25 | 30 | | Clients | 50 | 80 | 70 | 85 | 75 | | Services | A | B | C | A | C | | Size | 800 | 700 | 500 | 950 | 700 | | Cost | 1850 | 1700 | 1500 | 1900 | 1750 | ### Hypotheses and context - a single cooperative DM - choice of a single office - ceteris paribus reasoning seems possible Commute: decreasing Clients: increasing Services: increasing Size: increasing Cost: decreasing - dominance has meaning | | a | b | c | d | e | |----------|------|------|------|------|------| | Commute | 45 | 25 | 20 | 25 | 30 | | Clients | 50 | 80 | 70 | 85 | 75 | | Services | A | B | C | A | C | | Size | 800 | 700 | 500 | 950 | 700 | | Cost | 1850 | 1700 | 1500 | 1900 | 1750 | - \bullet b dominates alternative e - \bullet d is "close" to dominating a - divide and conquer: dropping alternatives - ullet drop a and e | | b | c | d | |----------|------|------|------| | Commute | 25 | 20 | 25 | | Clients | 80 | 70 | 85 | | Services | B | C | A | | Size | 700 | 500 | 950 | | Cost | 1700 | 1500 | 1900 | - no more dominance - assessing tradeoffs - \bullet all alternatives except c have a common evaluation on Commute - \bullet modify c in order to bring it to this level - starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute? - difficult but central question | | c | c' | |----------|------|---------------| | Commute | 20 | 25 | | Clients | 70 | $70 + \delta$ | | Services | C | C | | Size | 500 | 500 | | Cost | 1500 | 1500 | find δ such that $c' \sim c$ ### Answer - for $\delta = 8$, I am in different between c and c' - replace c with c' | | b | c' | d | |----------|------|------|------| | Commute | 25 | 25 | 25 | | Clients | 80 | 78 | 85 | | Services | B | C | A | | Size | 700 | 500 | 950 | | Cost | 1700 | 1500 | 1900 | - all alternatives have a common evaluation on Commute - divide and conquer: dropping attributes - ullet drop attribute Commute | | b | c' | d | |----------|------|------|------| | Clients | 80 | 78 | 85 | | Services | B | C | A | | Size | 700 | 500 | 950 | | Cost | 1700 | 1500 | 1900 | | | b | c' | d | |----------|------|------|------| | Clients | 80 | 78 | 85 | | Services | B | C | A | | Size | 700 | 500 | 950 | | Cost | 1700 | 1500 | 1900 | - check again for dominance - unfruitful - assess new tradeoffs - $\bullet\,$ neutralize Service using Cost as reference | | b | c' | d | |----------|------|------|------| | Clients | 80 | 78 | 85 | | Services | B | C | A | | Size | 700 | 500 | 950 | | Cost | 1700 | 1500 | 1900 | #### Questions • what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c'? • answer: 250 \$ what minimal decrease in monthly cost would you ask if we go from A to B on service for d? • answer: 100 \$ | | b | c' | c'' | d | d' | |----------|------|------|------------|------|-------------------| | Clients | 80 | 78 | 78 | 85 | 85 | | Services | B | C | ${f B}$ | A | В | | Size | 700 | 500 | 500 | 950 | 950 | | Cost | 1700 | 1500 | 1500 + 250 | 1900 | 1900 - 100 | - replacing c' with c'' - replacing d with d' - dropping Service | | b | c'' | d' | |---------|------|------|------| | Clients | 80 | 78 | 85 | | Size | 700 | 500 | 950 | | Cost | 1700 | 1750 | 1800 | - checking for dominance: c'' is dominated by b - c'' can be dropped • dropping c'' | | b | d' | |---------|------|------| | Clients | 80 | 85 | | Size | 700 | 950 | | Cost | 1700 | 1800 | - no dominance - question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250? • answer: 250 \$ | | b | b' | d' | |---------|------|------------|------| | Clients | 80 | 80 | 85 | | Size | 700 | 950 | 950 | | Cost | 1700 | 1700 + 250 | 1800 | - replace b with b' - drop Size | | b' | d' | |---------|------|------| | Clients | 80 | 85 | | Size | 950 | 950 | | Cost | 1950 | 1800 | | | | | | | b' | d' | | Clients | 80 | 85 | | Cost | 1950 | 1800 | - check for dominance - d' dominates b' ## Conclusion \bullet Recommend d as the final choice ## Summary #### Remarks - very simple process - process entirely governed by \succ and \sim - no question on "intensity of preference" - notice that importance plays absolutely no rôle - why be interested in something more complex? #### Problems - set of alternative is small - many questions otherwise - output is not a preference model - if new alternatives appear, the process should be restarted - what are the underlying hypotheses? # Monsieur Jourdain doing conjoint measurement #### Similarity with extensive measurement - \succ : preference, \sim : indifference - we have implicitly supposed that they combine nicely #### Recommendation: d - we should be able to prove that $d \succ a$, $d \succ b$, $d \succ c$ and $d \succ e$ - dominance: $b \succ e$ and $d \succ a$ - tradeoffs + dominance: $b \succ c'', \ c \sim c', \ c' \sim c, \ d' \sim d, \ b' \sim b, \ d' \succ b'$ $$d \succ a, b \succ e$$ $$c'' \sim c', c' \sim c, b \succ c''$$ $$\Rightarrow b \succ c$$ $$d \sim d', b \sim b', d' \succ b'$$ $$\Rightarrow d \succ b$$ # Monsieur Jourdain doing conjoint measurement ### OK... but where are the standard sequences? - hidden... but really there! - standard sequence for length: objects that have exactly the same length - tradeoffs: preference intervals on distinct attributes that have the same length - $c \sim c'$ - $\bullet~[25,20]$ on Commute has the same length as [70,78] on Client | | c | c' | f | f' | |----------|------|-----------|------|------| | Commute | 20 | 25 | 20 | 25 | | Clients | 70 | 78 | 78 | 82 | | Services | C | C | C | C | | Size | 500 | 500 | 500 | 500 | | Cost | 1500 | 1500 | 1500 | 1500 | [70, 78] has the same length [78, 82] on *Client* # Setting - $N = \{1, 2, \dots, n\}$ set of attributes - X_i : set of possible levels on the *i*th attribute - $X = \prod_{i=1}^{n} X_i$: set of all conceivable alternatives - ullet X include the alternatives under study... and many others - $J \subseteq N$: subset of attributes - $\bullet \ X_J = \prod_{j \in J} X_j, \ X_{-J} = \prod_{j \notin J} X_j$ - $(x_J, y_{-J}) \in X$ - $\bullet \ (x_i, y_{-i}) \in X$ - \succeq : binary relation on X: "at least as good as" - $x \succ y \Leftrightarrow x \succsim y \text{ and } Not[y \succsim x]$ - $x \sim y \Leftrightarrow x \succeq y \text{ and } y \succeq x$ ## Preference relations on Cartesian products #### Applications - Economics: consumers comparing bundles of goods - Decision under uncertainty: consequences in several states - Inter-temporal decision making: consequences at several moments in time - Inequality measurement: distribution of wealth across individuals - Decision making with multiple attributes - in all other cases, the Cartesian product is homogeneous # What will be ignored today ### Ignored - structuring of objectives - from objectives to attributes - adequate family of attributes - risk, uncertainty, imprecision #### Keeney's view - fundamental objectives: why? - means objectives: how? a means-ends objectives network Table I. Preclosure Objectives and Performance Measures | | Objective | | ormance measure | | | | | |---------------------------|--|-------------------------|---|--|--|--|--| | Health-and-safety impacts | | | | | | | | | ١. | Minimize worker health effects from
radiation exposure at the
repository | <i>X</i> ₁ : | repository-worker radiological fatalities | | | | | | 2. | Minimize public health effects from
radiation exposure at the
repository | X ₂ : | public radiological fatalities
from repository | | | | | | 3. | Minimize worker (atalities from
nonradiological causes at the
repository | X_3 : | repository-worker nonradiological
fatalities | | | | | | 4. | Minimize public fatalities from
nonradiological causes at the
repository | X4: | public nonradiological fatalities
from repository | | | | | | 5. | Minimize worker health effects from radiation exposure in waste transportation | X ₅ : | transportation-worker radiological
fatalities | | | | | | 6. | Minimize public health effects from radiation exposure in waste transportation | X ₆ : | public radiological fatalities
from transportation | | | | | | 7. | Minimize worker fatalities from
nonradiological causes in waste
transportation | <i>X</i> ₇ : | transportation-worker nonradiologica
fatalities | | | | | | 8. | Minimize public fatalities from
nonradiological causes in waste
transportation | X ₈ : | public nonradiological (atalities from transportation | | | | | | | Environmenta | I impacts | | | | | | | 9. | Minimize aesthetic degradation | Xa; | constructed scale" | | | | | | 10. | Minimize the degradation of archaeological,
historical, and cultural properties | X10 | : constructed scale" | | | | | | 11. | Minimize biological degradation Socioeconomi | <i>X</i> ₁ , | constructed scale | | | | | | 17 | Minimize adverse socioeconomic impacts | | : constructed scale" | | | | | | | The control of co | | . Constitucted scale | | | | | | | Economic i | mpacts | | | | | | | | Minimize repository costs | | : millions of dollars | | | | | | 14 | Minimize waste-transportation costs | X_{14} | : millions of dollars | | | | | Table 4.1. A constructed attribute for public attitudes | Attribute level | Description of attribute level | | | |-----------------|--|--|--| | 1 | Support: No groups are opposed to the facility and at least one group has organized support for the facility. | | | | 0 | Neutrality: All groups are indifferent or uninterested. | | | | - 1 | Controversy: One or more groups have organized opposition, although no groups have action-oriented opposition. Other groups may either be neutral or support the facility. | | | | -2 | Action-oriented opposition: Exactly one group has action-
oriented opposition. The other groups have organized
support, indifference or organized opposition. | | | | -3 | Strong action-oriented opposition: Two or more groups have action-oriented opposition. | | | #### Scale to Measure Biological Impact - Loss of 1.0 mi² of entirely agricultural or urban "habitat" with no loss of any "native" communities. - Loss of 1.0 mi² of primarily (75%) agricultural habitat with loss of 25% of second growth; no measurable loss of wetlands or endangered species habitat. - Loss of 1.0 mi² of farmed (50%) and disturbed (i.e., logged or new second-growth) (50%) habitat; no measurable loss of wetlands or endangered species habitat. - Loss of 1.0 mi² of recently disturbed (logged, plowed) habitat with disturbance to surrounding (within 1.0 mi of site border) previously disturbed habitat; 15% loss of wetlands and/or endangered species habitat. - Loss of 1.0 mi² of farmed or disturbed area (50%) and mature second-growth or other undisturbed community (50%); 15% loss of wetlands and/or endangered species. - Loss of 1.0 mi² of primarily (75%) undisturbed mature desert community (i.e., sagebrush); 15% loss of wetlands and/or endangered species habitat. - Loss of 1.0 mi² of mature second-growth (but not virgin) forest community; 50% loss of big game and upland game birds; 50% loss of local wetlands and local endangered species habitat. - Loss of 1.0 mi² of mature second-growth forest community; 90% loss of local productive wetlands and local endangered species habitat. - Complete loss of 1.0 mi² of mature virgin forest; 100% loss of local wetlands and local endangered species habitat. | Impact level | Impacts on historical properties in the effected area" | | | | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | 0 | There are no impacts on any significant historical properties | | | | | 1 | One historical property of major significance or 5 historical properties of minor significance are subjected to minimal adverse impacts | | | | | 2 | Two historical properties of major significance or 10 historical properties of minor significance are subjected to minimal adverse impacts | | | | | 3 | Two historical properties of major significance or 10 historical properties of minor significance are subjected to major adverse impacts | | | | | 4 | Three historical properties of major significance or 15 historical properties of minor significance are subjected to major adverse impacts | | | | | 5 | Four historical properties of major significance or 20 historical properties of minor significance are subjected to major adverse impacts | | | | # Marginal preference and independence ### Marginal preferences - $J \subseteq N$: subset of attributes - \succsim_J marginal preference relation induced by \succsim on X_J $$x_J \succsim_J y_J \Leftrightarrow (x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for all } z_{-J} \in X_{-J}$$ #### Independence - J is independent for \succsim if $[(x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$ - ullet common levels on attributes other than J do not affect preference ### Separability - J is separable for \succsim if $[(x_J, z_{-J}) \succ (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$ - ullet varying common levels on attributes other than J do reverse strict preference ## Independence #### Definition - for all $i \in N$, $\{i\}$ is independent, \succeq is weakly independent - for all $J \subseteq N$, J is independent, \succsim is independent ### Proposition Let \succeq be a weakly independent weak order on $X = \prod_{i=1}^{n} X_i$. Then: - \succsim_i is a weak order on X_i - $[x_i \succsim_i y_i, \text{ for all } i \in N] \Rightarrow x \succsim y$ - $[x_i \succsim_i y_i, \text{ for all } i \in N \text{ and } x_j \succ_j y_j \text{ for some } j \in N] \Rightarrow x \succ y$ for all $x, y \in X$ #### Dominance - as soon as I have a weakly independent weak order - dominance arguments apply # Independence in practice ### Independence - it is easy to imagine examples in which independence is violated - Main course and Wine example - it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied - some (e.g., R. L. Keeney) think that the same is true for independence - in all cases if independence is violated, things get complicated - decision aiding vs AI ### May be excessive • much more on independence this afternoon # Outline of theory: 2 attributes #### Question - suppose I can "observe" \succeq on $X = X_1 \times X_2$ - what must be supposed to guarantee that I can represent \succeq in the additive value function model $$\begin{aligned} v_1: X_1 &\to \mathbb{R} \\ v_2: X_2 &\to \mathbb{R} \\ (x_1, x_2) &\succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \geq v_1(y_1) + v_2(y_2) \end{aligned}$$ • \(\sum \) must be an independent weak order #### Method • try building standard sequences and see if it works! ## Why an additive model? #### Answer - v_1 and v_2 will be built so that additivity holds - equivalent multiplicative model $$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow w_1(x_1)w_2(x_2) \ge w_1(y_1)w_2(y_2)$$ $w_1 = \exp(v_1)$ $w_2 = \exp(v_2)$ # Uniqueness ### Important observation Suppose that there are v_1 and v_2 such that $$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \ge v_1(y_1) + v_2(y_2)$$ If $\alpha > 0$ $$w_1 = \alpha v_1 + \beta_1 \quad w_2 = \alpha v_2 + \beta_2$$ is also a valid representation ### Consequences - fixing $v_1(x_1) = v_2(x_2) = 0$ is harmless - fixing $v_1(y_1) = 1$ is harmless if $y_1 \succ_1 x_1$ ## Standard sequences #### Preliminaries - choose arbitrarily two levels $x_1^0, x_1^1 \in X_1$ - make sure that $x_1^1 \succ_1 x_1^0$ - choose arbitrarily one level $x_2^0 \in X_2$ - $(x_1^0, x_2^0) \in X$ is the reference point (origin) - the preference interval $[x_1^0, x_1^1]$ is the unit ### Building a standard sequence on X_2 - find a "preference interval" on X_2 that has the same "length" as the reference interval $[x_1^0, x_1^1]$ - find x_2^1 such that $$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$ $$v_1(x_1^0) + v_2(x_2^1) = v_1(x_1^1) + v_2(x_2^0) \text{ so that}$$ $$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$ • the structure of X_2 has to be "rich enough" # Standard sequences #### Consequences $$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$ $$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$ • it can be supposed that $$v_1(x_1^0) = v_2(x_2^0) = 0$$ $v_1(x_1^1) = 1$ $\Rightarrow v_2(x_2^1) = 1$ ## Going on $$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$ $$(x_1^0, x_2^2) \sim (x_1^1, x_2^1)$$ $$(x_1^0, x_2^3) \sim (x_1^1, x_2^2)$$ $$\cdots$$ $$(x_1^0, x_2^k) \sim (x_1^1, x_2^{k-1})$$ $$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0) = 1$$ $$v_2(x_2^2) - v_2(x_2^1) = v_1(x_1^1) - v_1(x_1^0) = 1$$ $$v_2(x_2^3) - v_2(x_2^2) = v_1(x_1^1) - v_1(x_1^0) = 1$$ $$\cdots$$ $$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$ $$\Rightarrow v_2(x_2^2) = 2, v_2(x_2^3) = 3, \dots, v_2(x_2^k) = k$$ ## Standard sequence #### Archimedean - implicit hypothesis for length - the standard sequence can reach any the length of any object $$\forall x,y \in \mathbb{R}, \exists n \in \mathbb{N} : ny > x$$ - a similar hypothesis has to hold here - rough interpretation - there are not "infinitely" liked or disliked consequences # Building a standard sequence on X_1 $$(x_1^2, x_2^0) \sim (x_1^1, x_2^1)$$ $$(x_1^3, x_2^0) \sim (x_1^2, x_2^1)$$ $$\cdots$$ $$(x_1^k, x_2^0) \sim (x_1^{k-1}, x_2^1)$$ $$v_1(x_1^2) - v_1(x_1^1) = v_2(x_2^1) - v_2(x_2^0) = 1$$ $$v_1(x_1^3) - v_1(x_1^2) = v_2(x_2^1) - v_2(x_2^0) = 1$$ $$\cdots$$ $$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$ $$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$ $$v_1(x_1^k) = 2, v_1(x_1^3) = 3, \dots, v_1(x_1^k) = k$$ ## Thomsen condition $$(x_1, x_2) \sim (y_1, y_2)$$ and $\Rightarrow (x_1, z_2) \sim (z_1, y_2)$ #### Consequence • there is an additive value function on the grid # Summary - we have defined a "grid" - there is an additive value function on the grid - iterate the whole process with a "denser grid" # Hypotheses - Archimedean: every strictly bounded standard sequence is finite - essentiality: both \succ_1 and \succ_2 are nontrivial - restricted solvability ### Basic result #### Theorem (2 attributes) If - restricted solvability holds - each attribute is essential then the additive value function model holds if and only if ≿ is an independent weak order satisfying the Thomsen and the Archimedean conditions The representation is unique up to scale and location ### General case #### Good news - entirely similar... - with a very nice surprise: Thomsen can be forgotten - if n=2, independence is identical with weak independence - if n > 3, independence is much stronger than weak independence | | X_1 | X_2 | X_3 | |----------------|-------|--------|-------| | \overline{a} | 75 | 10 | 0 | | b | 100 | 2 | 0 | | c | 75 | 10 | 40 | | d | 100 | 2 | 40 | X_1 : % of nights at home X_2 : attractiveness of city X_3 : salary increase weak independence holds $a \succ b$ and $d \succ c$ is reasonable ### Basic result ### Theorem (more than 2 attributes) If - restricted solvability holds - at least three attributes are essential then the additive value function model holds if and only if \succsim is an independent weak order satisfying the Archimedean condition The representation is unique up to scale and location # Independence and even swaps #### Even swaps technique - assessing tradeoffs... - after having suppressed attributes ### Implicit hypothesis - what happens on these attributes do not influence tradeoffs - this is another way to formulate independence # Assessing value functions #### Standard technique - check independence - build standard sequences - importance has no rôle - do not even pronounce the word!! #### Problems - many questions - questions on fictitious alternatives - \bullet rests on in difference judgments - discrete attributes - propagation of "errors" ## UTA: outline ### Principle - select a number of reference alternatives that the DM knows well - rank order these alternatives - test, using LP, if this information is compatible with an additive value function - if yes, present a central one - interact with the DM - apply the resulting function to the whole set of alternatives - if not - interact with the DM ## UTA: decision variables #### Aim - assess v_1, v_2, \ldots, v_n - normalization - x_{i*} : worst level on attribute i - x_i^* : best level on attribute i - $v_1(x_{1*}) = v_2(x_{2*}) = \ldots = v_n(x_{n*}) = 0$ - $\sum_{i=1}^{n} v_i(x_i^*) = 1$ - if the attribute is discrete - take as many variables as there are levels - if the attribute is not discrete - consider a piecewise linear approximation - discrete attribute - $X_i = \{x_{i*}, x_i^1, x_i^2, \dots, x_i^{r_i}, x_i^*\}$ - continuous attribute - choose the number of linear pieces $r_i + 1$ - $[x_{i*}, x_i^1], [x_i^1, x_i^2], \dots, [x_i^{r_i-1}, x_i^{r_i}], [x_i^{r_i}, x_i^*]$ ## UTA: constraints #### Using these conventions • for all x, $v(x) = \sum_{i=1}^{n} v_i(x_i)$ can be expressed as a linear combination of the $n \sum_{i=1}^{n} (r_i + 1)$ variables $$x \succ y \Leftrightarrow v(x) > v(y)$$ $$v(x) - v(y) + \sigma^{+}(xy) - \sigma^{-}(xy) \ge \varepsilon$$ $$x \sim y \Leftrightarrow v(x) = v(y)$$ $$v(x) - v(y) + \sigma^{+}(xy) - \sigma^{-}(xy) = 0$$ ## UTA: LP minimize $$Z = \sum_{\text{constraints}} \sigma^+(xy) + \sigma^-(xy)$$ s.t. one constraint per pair of compared alternatives normalization constraints # UTA: analyzing results ### If $Z^* = 0$ - there is one additive value function compatible with the given information - there are infinitely many (identically normalized) compatible additive value functions $v \in \mathcal{V}$ - ullet use post-optimality analysis and/or interaction to explore ${\cal V}$ ### If $Z^* > 0$ - there is no additive value function compatible with the given information - interact - increase the number of linear pieces - decrease ε - modify ranking - diagnostic a failure of independence - use approximate function ## UTA: variants #### Possible variants - use a different formulation (e.g., minimize the maximum deviation) - add constraints on the shape of the v_i - decreasing, increasing, convex, s-shaped - post optimality analysis - interaction with the DM - choice of the reference alternatives - dealing with "inconsistencies" - admitting other type of information - \bullet x is "much better" then y - \bullet the difference between x and y is "larger" than the difference between z and w - ullet exploit the whole set $\mathcal V$ to build a recommendation $$x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$ ### Convenient normalization - x_{i*}, x_i^* - $v_1(x_{1*}) = v_2(x_{2*}) = \ldots = v_n(x_{n*}) = 0$ - $\sum_{i=1}^{n} v_i(x_i^*) = 1$ $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_{i}(x_{i}) \geq \sum_{i=1}^{n} v_{i}(y_{i})$$ $$v_{1}(x_{1*}) = v_{2}(x_{2*}) = \dots = v_{n}(x_{n*}) = 0$$ $$\sum_{i=1}^{n} v_{1}(x_{i}^{*}) = 1$$ $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} \lambda_{i} u_{i}(x_{i}) \geq \sum_{i=1}^{n} \lambda_{i} u_{i}(y_{i})$$ $$\sum_{i=1}^{n} \lambda_{i} = 1$$ $$u_{1}(x_{1*}) = u_{2}(x_{2*}) = \dots = u_{n}(x_{n*}) = 0$$ $$u_{1}(x_{1}^{*}) = u_{2}(x_{2}^{*}) = \dots = u_{n}(x_{n}^{*}) = 1$$ $$u_{i} = v_{i}/v_{i}(x_{i}^{*})$$ $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} \lambda_{i} u_{i}(x_{i}) \geq \sum_{i=1}^{n} \lambda_{i} u_{i}(y_{i})$$ $$\sum_{i=1}^{n} \lambda_{i} = 1$$ $$u_{1}(x_{1*}) = u_{2}(x_{2*}) = \dots = u_{n}(x_{n*}) = 0$$ $$u_{1}(x_{1}^{*}) = u_{2}(x_{2}^{*}) = \dots = u_{n}(x_{n}^{*}) = 1$$ #### Most critical mistake - the numbers λ_i do NOT reflect the importance of attribute i - they reflect the width of the interval $[x_{i*}, x_i^*]$ - if this interval is changed, the λ_i MUST be changed ## **MACBETH** #### Conventions $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} \lambda_{i} u_{i}(x_{i}) \geq \sum_{i=1}^{n} \lambda_{i} u_{i}(y_{i})$$ $$\sum_{i=1}^{n} \lambda_{i} = 1$$ $$u_{1}(x_{1*}) = u_{2}(x_{2*}) = \dots = u_{n}(x_{n*}) = 0$$ $$u_{1}(x_{1}^{*}) = u_{2}(x_{2}^{*}) = \dots = u_{n}(x_{n}^{*}) = 1$$ ### Principles - assess the u_i independently on each attribute using "preference differences" - assess the λ_i to fit these functions together ## MACBETH ### Assessing the u_i - ullet compare alternatives only differing on attribute i - rate their difference of attractiveness on a 7-point scale | Categories | Description | | |------------|-------------|--| | C_0 | null | | | C_1 | | | | C_2 | weak | | | C_3 | | | | C_4 | strong | | | C_5 | | | | C_6 | extreme | | ## **MACBETH** $$(a_i, b_i) \in C_k$$ $$(c_i, d_i) \in C_\ell$$ $$\ell > k$$ $$\Rightarrow u_i(a_i) - u_i(b_i) < u_i(c_i) - u_i(d_i)$$ #### Solution - add normalization constraints $u_i(x_{i*}) = 0$, $u_i(x_i^*) = 1$ - add deviation variables - use LP $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} \lambda_{i} u_{i}(x_{i}) \geq \sum_{i=1}^{n} \lambda_{i} u_{i}(y_{i})$$ $$u_{1}(x_{1*}) = u_{2}(x_{2*}) = \dots = u_{n}(x_{n*}) = 0$$ $$u_{1}(x_{1}^{*}) = u_{2}(x_{2}^{*}) = \dots = u_{n}(x_{n}^{*}) = 1$$ #### Scaling constants - once the u_i are known... - ullet comparing alternatives leads to a constraint on the λ_i #### MACBETH Repeat the procedure with the alternatives: $$(x_1^*, x_{2*}, \dots, x_{n*}), (x_{1*}, x_2^*, \dots, x_{n*}) \dots (x_{1*}, x_{2*}, \dots, x_n^*)$$ # Summary #### Conjoint measurement - highly consistent theory - together with practical assessment techniques ### Why consider extensions? - hypotheses may be violated - assessment is demanding - time - cognitive effort ### Part II A glimpse at possible extensions # Summary ### Additive value function model - requires independence - requires a finely grained analysis of preferences ### Two main types of extensions - models with interactions - more ordinal models ## Interactions #### Two extreme models - additive value function model - independence - decomposable model - only weak independence $$x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$ $$x \succsim y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$ # Decomposable models $$x \succsim y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$ F increasing in all arguments #### Result Under mild conditions, any weakly independent weak order may be represented in the decomposable model #### Problem - all possible types of interactions are admitted - assessment is a very challenging task ## Two main directions #### Extensions - work with the decomposable model - rough sets - 2 find models "in between additive" and decomposable - CP-nets, GAI - fuzzy integrals ## Rough sets #### Basic ideas - \bullet work within the general decomposable model - use the same principle as in UTA - replacing the numerical model by a symbolic one - infer decision rules If $$x_1 \geq a_1, \dots, x_i \geq a_i, \dots, x_n \geq a_n \text{ and } \\ y_1 \leq b_1, \dots, y_i \leq b_i, \dots, y_n \leq b_n \\ \text{THEN} \\ x \succsim y$$ - many possible variants - Greco, Matarazzo, Słowiński # GAI: Example #### Choice of a meal: 3 attributes $X_1 = \{ \text{Steak}, \text{Fish} \}$ $X_2 = \{ \text{Red}, \text{White} \}$ $X_3 = \{ \text{Cake}, \text{sherBet} \}$ #### Preferences $$x^{1} = (S, R, C) \quad x^{2} = (S, R, B) \quad x^{3} = (S, W, C) \quad x^{4} = (S, W, B)$$ $$x^{5} = (F, R, C) \quad x^{6} = (F, R, B) \quad x^{7} = (F, W, C) \quad x^{8} = (F, W, B)$$ $$x^{2} \succeq x^{1} \succeq x^{7} \succeq x^{8} \succeq x^{4} \succeq x^{3} \succeq x^{5} \succeq x^{6}$$ - the important is to match main course and wine - I prefer Steak to Fish - I prefer Cake to sherBet if Fish - I prefer sherBet to Cake if Steak # Example $$x^{1} = (S, R, C)$$ $x^{2} = (S, R, B)$ $x^{3} = (S, W, C)$ $x^{4} = (S, W, B)$ $x^{5} = (F, R, C)$ $x^{6} = (F, R, B)$ $x^{7} = (F, W, C)$ $x^{8} = (F, W, B)$ $$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$ ### Independence $$x^1 \succ x^5 \Rightarrow v_1(S) > v_1(F)$$ $x^7 \succ x^3 \Rightarrow v_1(F) > v_1(S)$ ### Grouping main course and wine? $$x^7 \succ x^8 \Rightarrow v_3(C) > v_3(B)$$ $x^2 \succ x^1 \Rightarrow v_3(B) > v_3(C)$ ## Example $$\begin{split} x^1 &= (S,R,C) \quad x^2 = (S,R,B) \quad x^3 = (S,W,C) \quad x^4 = (S,W,B) \\ x^5 &= (F,R,C) \quad x^6 = (F,R,B) \quad x^7 = (F,W,C) \quad x^8 = (F,W,B) \end{split}$$ $$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$ #### Model $$x \gtrsim y \Leftrightarrow u_{12}(x_1, x_2) + u_{13}(x_1, x_3) \ge u_{12}(y_1, y_2) + u_{13}(y_1, y_3)$$ $$u_{12}(S,R) = 6$$ $u_{12}(F,W) = 4$ $u_{12}(S,W) = 2$ $u_{12}(F,R) = 0$ $u_{13}(S,C) = 0$ $u_{13}(S,B) = 1$ $u_{13}(F,C) = 1$ $u_{13}(F,S) = 0$ # Generalized Additive Independence ### GAI (Gonzales & Perny) - axiomatic analysis - if interdependences are known - assessment techniques - efficient algorithms (compactness of representation) #### What R. L. Keeney would probably say • the attribute "richness" of meal is missing #### GAI - interdependence within a framework that is quite similar to that of classical theory - powerful generalization of recent models in Computer Science ## Fuzzy integrals ### Origins - decision making under uncertainty - homogeneous Cartesian product - mathematics - integrating w.r.t. a non-additive measure - game theory - cooperative TU games - multiattribute decisions - generalizing the weighted sum ## Example | | Physics | Maths | Economics | |---|---------|-------|-----------| | a | 18 | 12 | 6 | | b | 18 | 7 | 11 | | c | 5 | 17 | 8 | | d | 5 | 12 | 13 | $a \succ b \quad d \succ c$ #### Preferences a is fine for Engineering d is fine for Economics ### Interpretation: interaction - having good grades in both - ullet Math and Physics or - Maths and Economics - better than having good grades in both - Physics and Economics # Weighted sum | | Physics | Maths | Economics | |----------------|---------|-------|-----------| | \overline{a} | 18 | 12 | 6 | | b | 18 | 7 | 11 | | c | 5 | 17 | 8 | | d | 5 | 12 | 13 | $$a \succ b \Rightarrow 18w_1 + 12w_2 + 6w_3 > 18w_1 + 7w_2 + 11w_3 \Rightarrow w_2 > w_3$$ $d \succ c \Rightarrow 5w_1 + 17w_2 + 8w_3 > 5w_1 + 12w_2 + 13w_3 \Rightarrow w_3 > w_2$ # Choquet integral ## Capacity $$\mu: 2^N \to [0,1]$$ $$\mu(\varnothing) = 0, \mu(N) = 1$$ $$A \subseteq B \Rightarrow \mu(A) \le \mu(B)$$ # Choquet integral $$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$ $$x_{(1)} - x_{(0)} \quad \mu(\{(1), (2), (3), (4) \dots, (n)\})$$ $$x_{(2)} - x_{(1)} \qquad \mu(\{(2), (3), (4) \dots, (n)\})$$ $$x_{(3)} - x_{(2)} \qquad \mu(\{(3), (4) \dots, (n)\})$$ $$\dots$$ $$x_{(n)} - x_{(n-1)} \qquad \mu(\{(n)\})$$ $$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$ $$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$ # Application | | Physics | Maths | Economics | |----------------|---------|-------|-----------| | \overline{a} | 18 | 12 | 6 | | b | 18 | 7 | 11 | | c | 5 | 17 | 8 | | d | 5 | 12 | 13 | $$\mu(M) = 0.1, \mu(P) = 0.5, \mu(E) = 0.5$$ $$\mu(M, P) = 1 > \mu(M) + \mu(P)$$ $$\mu(M, E) = 1 > \mu(M) + \mu(E)$$ $$\mu(P, E) = 0.6 < \mu(P) + \mu(E)$$ $$C_{\mu}(a) = 6 \times 1 + (12 - 6) \times 1 + (18 - 12) \times 0.5 = 15.0$$ $$C_{\mu}(b) = 7 + (11 - 7) \times 0.6 + (18 - 11) \times 0.5 = 12.9$$ $$C_{\mu}(c) = 5 + (8 - 5) \times 1 + (17 - 8) \times 0.1 = 8.9$$ $$C_{\mu}(d) = 5 + (12 - 5) \times 1 + (13 - 12) \times 0.5 = 12.5$$ # Choquet integral in MCDM ## Properties - monotone, idempotent, continuous - preserves weak separability - tolerates violation of independence - contains many other aggregation functions as particular cases ## Capacities Fascinating mathematical object: - Möbius transform - Shapley value - interaction indices # Questions ### Hypotheses - I can compare x_i with x_j - attributes are (level) commensurable #### Classical model • I can indirectly compare $[x_i, y_i]$ with $[x_j, y_j]$ ## Central research question • how to assess $u: \bigcup_{i=1}^n X_i \to \mathbb{R}$ so that the levels are commensurate? # Choquet integral ### Assessment • variety of mathematical programming based approaches ### Extensions - Choquet integral with a reference point (statu quo) - Sugeno integral (median) - axiomatization as aggregation functions - \bullet k-additive capacities ## Observations #### Classical model - deep analysis of preference that may not be possible - preference are not well structured - several or no DM - prudence ### Idea - it is not very restrictive to suppose that levels on each X_i can be ordered - aggregate these orders - possibly taking importance into account #### Social choice • aggregate the preference orders of the voters to build a collective preference # Outranking methods #### ELECTRE $x \succeq y$ if Concordance a "majority" of attributes support the assertion Discordance the opposition of the minority is not "too strong" $$x \succsim y \Leftrightarrow \left\{ \begin{array}{l} \sum_{i:x_i \succsim_i y_i} w_i \geq s \\ \\ Not[y_i \ V_i \ x_i], \forall i \in N \end{array} \right.$$ # Condorcet's paradox $$x \succsim y \Leftrightarrow |\{i \in N : x_i \succsim_i y_i\}| \ge |\{i \in N : y_i \succsim_i x_i\}|$$ $$1: x_1 \succ_1 y_1 \succ_1 z_1$$ $$2: z_2 \succ_2 x_2 \succ_2 y_2$$ $$3: y_3 \succ_3 z_3 \succ_3 x_3$$ $$x = (x_1, x_2, x_3)$$ $$y = (y_1, y_2, y_3)$$ $$z = (z_1, z_2, z_3)$$ ## Arrow's theorem ## Theorem The only ways to aggregate weak orders while remaining ordinal are not very attractive... - dictator (weak order) - oligarchy (transitive ≻) - veto (acyclic ≻) # Ways out ## Accepting intransitivity - find way to extract information in spite of intransitivity - ELECTRE I, II, III, IS - PROMETHEE I, II ## Do not use paired comparisons - ullet only compare x with carefully selected alternatives - ELECTRE TRI - methods using reference points ## Conclusion ## Fascinating field - theoretical point of view - measurement theory - decision under uncertainty - social choice theory - practical point of view - rating firms from a social point of view - evaluating H_2 -propelled cars