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Abstract

Many axiomatic results concerning aggregation procedures in decision
aiding have been obtained in the framework of conjoint measurement or so-
cial choice theory. We show that these frameworks, although they helped
us to better understand some aggregation procedures, are not totally ap-
propriate for decision aiding. We propose a new framework, very general,
in which most aggregation procedures can fit and more appropriate for the
axiomatization of aggregation procedures in decision aiding context. We
present some axiomatic results obtained in this framework and showing
its interest.

1 Introduction

When a decision-maker uses an aggregation procedure (MAUT, ELECTRE, PROMETHEE,
AHP ), most of the time, the following elements are available to him:

e
e a set of alternatives,

e a set of viewpoints or criteria,

e some information about the alternatives with respect to each criterion.

e some information about the role or the relative importance of the criteria

e some a priori or initial preferences.

*The authors wish to thank R.D. Luce for his most helpful comments on an earlier version
of this paper. The research presented in this paper was done while Thierry Marchant was
visiting at University of California, Irvine, thanks to grants from Université Libre de Bruxelles

and NATO.



These elements will be called the primitives. Of course, the set of alternatives
may vary a little bit during the decision process. Some alternatives can be added
or deleted. The same holds for the criteria set. Finally, the information about
the alternatives can also be subject to some modifications.

1.1 Relevance of conjoint measurement

Conjoint measurement (see e.g. [Luce et al. 90] for general conjoint measure-
ment or [Wakker 89] for additive conjoint measurement) is a part of measure-
ment theory and, as such, is intended to study how and when (under what
conditions) some binary relations can be described or represented by a numeri-
cal model. Tt has numerous succesful applications in many fields (e.g. physics,
psychology, ... ).

Conjoint measurement has often been chosen as a framework in which mul-
ticriteria decision aiding methods can be described and, eventually, axiomatised
(see e.g. [Keeney and Raiffa 76]). Even though this approach has led to many
interesting results and has helped us to better understand some aggregation pro-
cedures, we think that it is not totally appropriate to the problem of decision
aiding.

In conjoint measurement, the main primitive is a preference relation over
the alternatives with a lot of “good” properties. Most of the time, it is assumed
to be a weak order.

In decision aiding, the situation is very different: the decision-maker can
have some a priori or initial preferences. These are preferences that the decision-
malker can express with some confidence before using an aggregation procedure.
The a priori preferences can take many different forms: a (very) partial prefer-
ence relation, a set of definitely “bad” alternatives, a set of promising alterna-
tives, ... But the a priori or initial preferences are definitely not a complete and
transitive binary relation! and it is not possible to derive from them a complete
and transitive binary relation. Otherwise no aggregation procedure would be
needed. Let us now distinguish two different ways of considering the axioms in
conjoint measurement : the descriptive and normative approaches.

1.1.1 Descriptive approach

From a descriptive viewpoint, a model (additive or not) can be used to represent
the preferences of a decision-maker only if the axioms characterising that model
are satisfied by the preferences of the decision-maker. The validity of an axiom
can be experimentally studied. Most models that have been characterised in
the framework of conjoint measurement (including the classical additive util-
ity) require that the preference relation be transitive and complete. But the
preferences of a decision-maker resorting to a decision aiding method cannot be
both complete and transitive. Otherwise he would not resort to decision aiding.

LA binary relation R on X is complete iff, for any z and y in X, 2Ry or yRz. Tt is transitive
iff, whenever z Ry and yRz, we also have zRz.



Hence, none of the models implying transitivity and completeness can be used
to describe his preferences.

Let us now turn to the models that are not transitive? and complete. Some
of them have been characterised in the framework of conjoint measurement (see
e.g. [Bouyssou et al. 97, Fishburn and Nakamura 91]). These models have an
advantage over the previous ones: they can be used when the preferences of the
decision-maker are not transitive and complete. Nevertheless, from a decision
aiding viewpoint, these models are not very useful : they allow us to represent
the incomplete and intransitive preferences of a decision-maker but they do not
help the decision-maker to make up his mind. They do not tell him anything
about the pairs of alternatives that are not in his a priori preference relation.

In the two previous paragraphs, we discussed only transitivity and complete-
ness but we could also discuss conditions such as the independence or cancel-
lation conditions. The preference relation of the decision-maker is usually so
incomplete that none of these conditions can be satisfied.

In conclusion, if we consider the axioms characterising an aggregation pro-
cedure in the framework of conjoint measurement from a descriptive viewpoint,
we are not really helped. Let us now turn to the other approach.

1.1.2 Normative approach

Instead of checking if the axioms characterising a particular model are satisfied
(descriptive approach), why not impose them ? Why not consider them as defin-
ing rationality or as a set of conditions ensuring the coherence of the decision
process 7 This is the normative approach.

Then, we can start from the single criterion or single attribute preferences
and try to construct the global preference relation in such a way that it satisfies
the axioms of a particular model, for example additive conjoint measurement.
The problem 1s now that the theory of conjoint measurement does not tell
us how to do this. Most proofs of representation theorems in measurement
theory share a common characteristic : they are constructive. They tell us how
to construct the utility functions, starting from the global preference relation.
From a descriptive perspective, this is most useful but, since we are now in a
normative approach, it doesn’t work any more. We cannot mimic the proof
because the starting point (the global preference relation) is missing.

Since the theory of conjoint measurement does not tell us how to construct
the global preference relation, we can imagine different methods to assess the
single-attribute utility functions. The global preference is then derived by means
of a model (for example, the additive utility model). Such methods have been
proposed by many authors (see e.g. [Keeney and Raiffa 76, Section 3.4.6, 3.4.7
and 3.7]). The problem is that, inside the theory of conjoint measurement, all
methods designed to assess utility functions are equivalent. This should not be a
surprise : measurement theory is descriptive in nature and does not contain any

2When we say that a relation is not transitive or when we speak of a non-transitive model,
we mean that there can be z,vy, z such that zRy,yRz and NOT zRz. We do not mean that
there exists z, ¥, z such that xRy, yRz and zRz.



element that could help us distinguish among assessment methods. To make
this point clear, let us use an example.

Suppose a decision-maker has to choose among three cars : x, y and z. The
decision-maker considers two criteria as relevant to his problem : power and
price (see table 1).

price  power

X 100 4
y 100 5
7 80 4

Table 1: Performances of three cars on two criteria.

A priori, the decision-maker can tell us that he prefers y to x and z to x.
The only pair about which he is undecided is (z,y). Using different methods,
we could arrive at the conclusion that z should be preferred to y or the oppo-
site. The global preference relation can thus be nay of the linear orders yzz or
zyx. The reader will easily check that any of these two linear orders satisfy all
the axioms of additive conjoint measurement. Therefore, inside the framework
of conjoint measurement, it 1s not possible to make a distinction between the
methods that would produce these quite different linear orders. Note that this
has nothing to do with the fact that our alternatives set is discrete. Another
example could be built with infinite sets.

In the next few paragraphs, we use another example to illustrate the fact
that there are actually different assessing methods that could possibly lead to
different conclusions, as in the above example.

Suppose that a decision-maker has to choose among a finite set of alternatives
and he considers the axioms of additive conjoint measurement as particularly
compelling. Therefore, what he needs to do 1s to assess the utility functions.
Once this is done, the problem is completely solved : the best alternative is the
alternative such that the sum of the utilities is maximum. In order to assess
the utility functions, we are now going to use two different assessment methods:
the midvalue splitting technique [Keeney and Raiffa 76, Section 3.4.7] and the
PROMETHEE IT method (see [Brans and Vincke 85] or section 3.1.1, p. 14).

The midvalue splitting technique. This technique is very classical in MAUT.
For each attribute, the utilities 0 and 1 are given to the worst and best
performances on that attribute. The analyst presents a pair of hypo-
thetical alternatives to the decision-maker. On at least one attribute, one
alternative has the worst possible performance while the other one has the
best possible performance. The decision-maker must find a single value on
that dimension such that substituting it for the original values produces
two alternatives that are indifferent to the original ones. This allows us
to determine the attribute value with a utility 0.5. Then a new pair of
alternatives is presented in order to determine other points of that utility
function. The same process is used for all attributes.



The Promethee IT method. This method is usually presented as an out-
ranking method, in the same family as the ELECTRE method but, in our
opinion, it is much closer to MAUT than to outranking methods. We
briefly discuss how this method works. For a given attribute, the decision-
maker must assess his indifference threshold, i.e. the largest difference on
that attribute such that he is still indifferent between two almost identi-
cal (and hypothetical) alternatives, differing only on one criterion by that
value. The decision-maker must also assess his preference threshold, i.e.
the smallest difference on that attribute such that he definitely prefers
one of two almost identical (and hypothetical) alternatives, differing only
on one criterion by that value. Then, between these two alternatives,
the preference intensity is said to be equal to 1. Between the indiffer-
ence and preference threshold, it 1s assumed that the preference intensity
varies from 0 to 1 according to some non decreasing function. The same
process is repeated for each attribute. Then, using the so called net flow
method, a real valued function on the set of alternatives is built for each
attribute :the so-called single-criterion net flow. These single-criterion net
flows can then be combined using a weighted additive model, just like
utility functions. And 1t 1s precisely what the PROMETHEE method does.

The two above-described method-weighted addition of utilities obtained
through the midvalue splitting technique and weighted addition of single-criterion
net flows—satisfy all the axioms of additive conjoint measurement. To be more
precise, we should say that the global preference relations obtained by means
of the two methods satisfy the axioms of additive conjoint measurement. This
is more precise because conjoint measurement is concerned with relations, not
with methods. In fact, all methods based on a weighted additive model will lead
to a global preference relation satisfying the axioms of additive conjoint mea-
surement. That is why it is not possible to distingish among different methods
in the framework of conjoint measurement.

Nevertheless, it is clear that the two above-described methods are very dif-
ferent : the questioning and construction process are so different that, in most
decision problems, it 1s very likely that the global preference relations will be
different. And, actually, the global preference relation can differ greatly, as
shown in the following example.

Suppose we have a problem with two dimensions (criteria, attributes). The
set of levels on the first dimension is A = {a, b, c}; and on the second dimension,
Y = {2,y,z}. Suppose also that we know the preferences of the decision-maker
on each dimension.

arcab>aa

and
Y Z >y Y-y T.

The set of available or feasible alternatives 1s

X = {az,ay, az,bx, by, ca}.



If the complete cartesian product (A x V) would be available, then ¢z would
clearly dominate all other alternatives and there would be no decision problem
at all. But this almost never happens in real life. Suppose also that the a priori
preference relation of the decision-maker, call it >, is given by

> = {(az,ay), (az,az), (ay, ax), (by, bx), (by, ay), (cx,ax), (cx,bzx), (bx,ax), (by, ax)}.

The situation 1s depicted in Fig. 1.

A
z 4
y .
X - .
a i) C o

Figure 1: The six available alternatives in the A, Y space.
Define
1= U {(ex, by), (cx,az), (by, az), (cx, ay), (bx, ay), (az, bx)}.

=1 1s an additive conjoint structure, with maximal element cx. To check this,
use the following values for the two utility fucntions f and ¢: f(a) =0, f(b) =
3,f(c) =6,9(x) =0,9(y) = 2,9(2) = 4.

Define

=a= D U {(by, ex), (az, cx), (az, by), (ay, cx), (ay, bx), (bx,az)}.

=5 1s an additive conjoint structure, with maximal element az.
Define

=s3= D> U {(by, ex), (by, az), (az,cx), (az, bx), (cx,ay), (ay, bx)}.

>3 1s an additive conjoint structure, with maximal element by. To check this,
use the following values for the two utility fucntions f and ¢: f(a) =0, f(b) =
3,f(c)=5,9(x) =0,9(y) = 4,9(z) = 6.

There are therefore at least three different preference relations compatible
with [> (containing >), all satisfying the axioms of additive conjoint measure-
ment and with three different maximal elements.

Let us now consider a more constrained version of this example: let>' = >U
{(bz, ay), (by, az), (az, bx), (cx,ay)}. =1 is still compatible with >’ (it contains
>’).
Define

=a= ' U {(by, cx), (az,cx)}.



=4 18 an additive conjoint structure, with maximal element by. To check this,
use the following values for the two utility fucntions f and ¢: f(a) =0, f(b) =
4,f(c) =5,9(x) =0,9(y) = 3,9(z) = 6.

In the case of ', we have at least two different preference relations com-
patible with >* (containing '), all satisfying the axioms of additive conjoint
measurement and with two different maximal elements.

Note that, in the case of [>/, the a priori relation is almost complete. Only two
couples are missing. But if we take the axioms of additive conjoint measurement
as normative, then, actually, only one pair is missing, because the second one
automatically derives, by transitivity. Yet, on this highly constrained case,
additive conjoint measurement doesn’t tell us which alternative wins. It can be
cx (in =1) or by (in =4).

Note that if the decision-maker can a priori have a preference relation richer
than >, then > is uniquely and completely determined. Therefore, no decision
aiding is required.

This shows that conjoint measurement is not an appropriate framework for
describing decision aiding methods. It can not tell us anything about different
methods that would lead to different outcomes and yet would be consistent with
conjoint measurement.

Remark: our examples are based on additive conjoint measurement but
other examples could be built for other conjoint measurement.

Let us answer to a possible objection : some people claim that PROMETHEE
is not a MAUT method because it doesn’t satisfy the condition of independance
of irrelevant alternatives. We do not agree nor disagree. In fact, inside the
framework of measurement theory, this claim doesn’t really make sense. There
are many different forms of independence of irrelevant alternatives (TTA), origi-
nating in social choice theory, but they all share a common characteristic: they
consider what happens if the set of alternatives changes or if we focus our atten-
tion to some subset of the alternatives. But, in all measurement theory studies
that we are aware of| the set of alternatives doesn’t change. The set of alterna-
tives is a complete cartesian product and the theory doesn’t contain any element
that would allow to describe a change. If we could develop a measurement the-
ory working with a "universal” set of alternatives and all possible subsets, with
a possibly different preference relation for each subset and conditions linking
these preferences, then an ITA condition could be formulated in the framework
of measurement theory. But, nowadays, this seems rather chimerical.

Before concluding this section, we want to make clear that we do not sup-
port any aggregation method against another one. We are just looking for a
framework allowing us to meaningfully describe various aggregation procedures.
We do not criticize measurement theory : it is a fascinating theory that lead to
deep and enlightening results. Our aim is just to show that measurement theory
leaves many questions unanswered in the field of decision aiding because it is
not intended to describe decision aiding, even though it has allowed generations
of researchers to deepen their understanding of some aggregation procedures.



1.2 Relevance of social choice theory

Another problem arises when axiomatic results of social choice theory are used
in decision aiding (for a good introduction to social choice theory, see [Kelly 87]).
In social choice theory, the primitives are much like those of decision aiding (if
we replace criteria by voters). But there are some important differences.

o It is usually assumed that the assessment structures are very simple struc-
tures: total orders (e.g. [Pérez and Barba-Romero 95]) or weak orders.
Even when more general structures are considered, it is assumed that the
information provided by each voter is of the same kind (e.g. [Marchant 96]).
But in decision aiding, most of the time, the information along each crite-
rion is very different. For one criterion, we have a weak order, for another
one, we have a real valued function on the set of alternatives and for a third
one, we have linguistic assessments. The information on some criteria may
be uncertain while it is certain for other criteria.

e Most of the time, all voters are treated equally. This is called anonymity.
But in decision aiding, some criteria are more important or more relevant
than some others. The information for some criteria is more reliable than
the information for some other criteria. Therefore, we do not need such a
condition.

e In some axiomatic results (e.g. [Marchant 96]), the number of voters is
allowed to vary without limits (and varies dramatically in the proofs). In
decison aiding, such variations in the number of criteria are not possible.
If a decision maker starts a decision process with 10 criteria, he might, at
some further stage, use 15 or 20 criteria but definitely not several thou-
sands.

e There are no initial preferences. This is probably the most fundamental
difference. We can think of voting theorems that would avoid the three
above mentioned problems but a voting theory with a priori preferences is
hardly thinkable. Yet, the existence of a priori preferences is essential in
decision aiding. When we question a decision-maker in order to determine
the parameters of a model (utility functions, subjective probabilities, in-
difference thresholds, weights, concordance thresholds, ... ), his answers
are mainly based upon his knowledge of the problem, his values, his expe-
rience, ..., all those things that we group under the expression a priori
preferences. Of course, his answers are also influenced by the questioning
process, by the decision-aiding process but the a priori preferences are es-
sential. Otherwise all decision-makers using the same method would have
the same global preferences. Therefore, trying to describe a decision aid-
ing method without speaking of the a priori preferences (as it is the case
in voting theory) seems not adequate.



1.3 Decision aiding in presence of risk or uncertainty

In our discussion, we focused on conjoint measurement and decision in presence
of several attributes but no uncertainty nor risk. But our conclusions apply to
other fields. For example, the axioms of (subjective) expected probability are
not totally adequate for describing a decision aiding method aimed at decision
problems in presence of risk (uncertainty). Here also the axioms are descriptive
and tell us when it is possible to represent a given preference relation by utili-
ties and probabilities. They do not tell us much about procedures that would
construct a preference relation on the basis of the consequences, the states of
the world and the a priori preference relation of the decision-maker.

1.4 Outline

In order to choose and meaningfully use aggregation procedures, we need to bet-
ter understand the intrinsic properties of these procedures ([Bouyssou et al. 93]).
Therefore, decision aiding needs its own framework, in which relevant axiomatic
results can be derived. A framework aiming at the description of outranking
methods has been proposed by Pirlot ([Pirlot 97]). Tt suffers at least two draw-
backs: the information along each criterion is of the same kind and it concerns
only outranking procedures.

In section 2, we present a generalization of Pirlot’s framework that avoids
these two drawbacks. Of course, a framework that allows to describe everything
but does not allow to derive any axiomatic result is of no use. In order to prove
that our framework is useful, we give, in section 3, some examples of results
that we were able derive in this framework. We hope that more results are to
come. We conclude in section 4 and section 5 is devoted to the proofs.

2 A general framework

Let us begin by defining the primitives of our framework. In order to be very
general, we will put very few restrictions on the primitives. Of course, to be
able to derive some results about very specialised aggregation procedures, we
will have to impose other restrictions. These additional restrictions will be
mentionned in the corresponding propositions.

2.1 Alternatives, criteria and assessment structures

The set of criteria is denoted by C' = {1,2,...,4,...,k} and the set of alter-
natives by X = {z,y,...}. For each criterion, some information about the
alternatives is available: we call it an assessment structure. It can be a ranking
of the alternatives, a real valued function on X, a linguistic assessment of the
alternatives (e.g. a mapping from X into the set { “very good”, “good”, “aver-
age”, “bad” }) and so on. Note that an assessment structure can even contain
parameters, utility curves, indifference thresholds, probability distributions, ...



Nevertheless, it 1s more realistic to consider that such parameters are not avail-
able to the decision maker when he turns to aggregation procedures for help.
These parameters, if needed for the aggregation, emerge during the use of the
procedure and should not be included in the axioms. For each criterion ¢, the
set of the possible assessment structures is denoted by F;.

Until now, our definition of an assessment structure is extremely large: it can
be anything. In order to avoid a vacuous definition, we impose four conditions
on the assessment structures.

1. Let e be an element of E;. Considering only this criterion ¢, there is a
function d' that maps e on a reflexive? binary preference relation d(e)
on X. The relation di(e) is interpreted as a preference relation on X,
when criterion i and only that one is taken into account. Therefore, §(e)
will be called a single-criterion preference relation. If e 1s a weak order
representing the preferences of the decision maker along criterion ¢, then
§i(e) = e. If € is a mapping from X to R, then §%(e) could be defined as
follows:

' e(z) > e(y) and 7 is to be maximized
zd'(e)y & or
e(z) < e(y) and 7 is to be minimized.

A single-crtiterion preference relation does not need to be complete. For
example, if e is a mapping from X to R, then ¢°(e) could be defined as
follows:

' e(xz) > e(y) + € and 7 is to be maximized
zd' (e)y & or
e(z) < e(y) — e and i is to be minimized,

where € is a positive constant. In this case, d?(e) is the asymmetric part of
a semiorder. There are cases where the single-criterion preference relation
would probably be almost empty. Suppose that an assessment structure
maps each alternative on a set of real numbers and a probability distribu-
tion over this set. It is very likely that the decision-maker, even when he
considers only that criterion, for most pairs, cannot tell if he prefers z to

Y.

2. Let m be a permutation on X and e an assessment structure. Then m(e)
represents an assessment structure such that the roles of the alternatives
are exchanged according to the permutation w. For example, if e is a
binary relation, then (e) is another binary relation defined by

ey & mw(z)m(e)m(y).

3A binary relation R on X is reflexive iff, for any z in X, zRx.

10



If e is a mapping from X to some set, then m(e) is another mapping from
X into the same set, defined by

e(x) = m(e)(m(x)).

3. Let Y be a subset of X such that Y contains at least two alternatives.
An assessment structure e must be such that ey, its restriction to VY,
is defined. For example, if e is a binary relation, then el|y is the binary
relation defined by ely = {(z,y) : 2 € Y, y € Y and (z,y) € e}. If e
is a quaternary relation, then e|y is the quaternary relation defined by
ely ={(z,y,z,w) 2 €Y, yeY, z€Y, wey, and (z,y,z,w) € e}.
When Y contains only two elements, say z and y, we write e, instead of
Slem!

4. Let e and f be two assessment structures belonging to E; such that
d"(e)ly = & (f)|y. Then, there are ¢’ and f’ in E; such that

o §i(e') =6 (e) and §'(f") = 6i(f)
o ey = flly.

An assessment structure can be anything, provided that it satisfies these four
conditions. The first one tells us that the structure actually contains at least
some minimal preferential information. The three other conditions have a more
practical interest. They allow us to be sure that some manipulations (needed in
the axioms) will be possible. We do not know any aggregation procedure using
assessment structure that would violate one of these conditions. Therefore, we
include them in the definition of an assessment structure.

A profile is defined as a point p = (p1,p2,...,px) in By X Fa X ... x Fy.
When all sets E; contain only mappings from X into some set, the profile is
usually called a performance tableau. Given X and FE4, Es, ..., Ej, the set of
all possible profiles is denoted by P(X, F1, ..., Ey).

2.2 Importance structures

An importance structure is a structure that tells us what is the role or the
relative importance of the criteria. It can be almost anything. It can even
be empty, as in ELECTREIV [Hugonnard and Roy 82]. In some cases, it is a
binary relation over (', as in QUALIFLEX [Paelinck 78], ORESTE [Roubens 81]
and MELCHIOR [Leclercq 84]. In other cases, it is a vector of weights, as in
MAUT or PROMETHEE [Brans and Vincke 85]. Tt could also be a description of
the power indices of each coalition of criteria.
We could impose some conditions on the importance structures so as to be
sure that it is one of the above cited structures (weight vector, binary relation,
. ). In order to derive some axiomatic results, in the next section, we will
have to add some conditions. But we do not want to do it right now, in the
definition of the importance structure for the following reason. In most cases,
when a decision-maker decides that he is going to use an aggregation procedure

11



(to be chosen), he doesn’t know yet if the method that he will use will require
weights or binary relations or ... And if he is going to use weights, will they
be substitution rates or weights as in PROMETHEE (that we don’t know yet
how to interpret). If weights (or other strong structures) are to be used, they
should emerge during the use of the aggregation procedure, like the indifference
thresholds, utility curves, and other parameters.

Therefore, considering the importance structure as a primitive with a strong
structure (weight vector, binary relation, ... ) is not realistic. Obviously, im-
posing some restrictions on the importance structures is necessary. Otherwise
our definition might be useless. But at the time present, we are not able to do
it.

The set of the importance structures used in a given aggregation procedure
is denoted by W and its typical element is w.

2.3 Initial preferences

Our last primitive is an inetial preference, that reflects the knowledge of the
decision-maker about his preferences before entering the aggregation process.
As told earlier, it can take different forms. As we cannot make an exhaustive
list of these possible forms, we are going to assume (as we did for the assessment
structures) that all possible initial preferences share some common characteris-
tics. Let I denote the set of all initial preferences on X.

1. Let m be a permutation on X and > an initial preference. Then 7(>>)
represents an initial preference such that the roles of the alternatives are
exchanged according to the permutation 7. For example, if [> is a binary
relation, then 7(t>) is another binary relation defined by

>y < w(x)r(>)r(y).

If > is a mapping from X to some set, then 7(>) is another mapping from
X into the same set, defined by

>(2) = m(>)(7(2)).

2. Let Y be a subset of X and Y contains at least two alternatives. An initial
preference > must be such that >|y, its restriction to Y, is defined. For
example, if > is a binary relation, then >|y is the binary relation defined
by >y = {(z,y) ;2 €Y, y €Y and (z,y) € >}. When Y contains only
two elements, say  and y, we write [>|,, instead of [y )

2.4 Aggregation procedure

Let R denote the set of all relexive binary relations. An aggregation procedure
is a mapping >=: P(X, Fy,... , Ex) x W x I = R: (p,w,>) = =(p, w,>).

12



3 Some results

In this section, we are going to show some interesting results that we were able
to derive in our framework. There are two groups of results: one is related to
aggregation procedures using weights that are specified a priori; the other group
is related to quite similar procedures, using weights as well, but not specified
a priori. An interesting aspect of these results is that, for some of them, we
do not need to put any additional restrictions on the assessment structures.
A weaknesses of the first group of results is that we put a lot of additional
restrictions on the importance structures. We require that they are weight
vectors. These restrictions are needed in order to be able to formulate some of
the axioms.

3.1 Aggregation procedures with a priori specified weights

A weight vector is a vector w = (wy, ... ,wg) in (RT)C\ {0}, where Rt is the
set of the nonnegative real numbers and 0 = (0,...,0). The weight vector u’
such that ui =1,ul =0, for all i # j will play a special role. In the remainder
of this section, we suppose that each importance structure contains at least a
weight vector and we don’t use any other element that the importance structure
might contain. Therefore, we use the following simplified notation: the symbol
w will denote the weight vector of a particular importance structure, even if
that structure contains more than a weight vector.
Let us now formulate the axioms, before presenting the results.

A 1 TIndependence of initial preferences (ITP). =(p, w, >1) = >(p, w, >2).

This axiom tells us that the initial preference relation will not be used in the
aggregation procedure. The next one imposes that the result of the aggregation
be a complete relation.

A 2 Completeness. For all ¥ # y, x=(p, w,>)y or y=(p, w,>)z.
The next four axioms are about weights.

A 3 Convexity. z=(p,w,>)y and z=(p,w’,>)y implies x=(p,w + w',>)y. In
addition, x>(p, w,>)y and x=(p,w',>)y implies x>(p, w + w’, >)y.

A 4 Monotonicity. z=(p, w,>)y and x=(p,w',>)y implies x>(p, w + w', >)y.

A 5 Archimedeanness. @>(p,w,>)y implies that there is 3 such that, for any
a > f, v-(p,aw+ w' >y, where o and 3 are real numbers.

By Archimedeanness, we know that, if we raise the weight of a criterion, we
can make it a kind of dictator.
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3.1.1 Antisymmetric, additive and non transitive aggregation pro-
cedures

We say that an aggregation procedure 1s additive and non transitive if and only
if, for each criterion ¢ and each pair of alternatives (z,y), there is a mapping
Shy  P(X, Bry ooy By) x T = R (p,>) = sh, (p, ) such that

® siy(p, >) > 0 iff y>=(p, u!, >)z and

i $t(pa w, I>)y <~ Zle S:Z;/x (p, I>)wz Z 0.

If, in addition, siy(p, >) = —séx (p,>>), then we say that the procedure is
antisymmetric.

In [Jacquet-Lagréze82], Jacquet-Lagréze describes a family of aggregation
methods which is very much like ours and he shows that many popular proce-
dures are particular cases of his family. It is very important to remark that,
contrary to what happens in the family considered by Jacquet-Lagreze, séx de-
pends on p and not just on p;; séx corresponds to the i-th criterion but can
be influenced by other criteria as well. Before characterizing the family of all
antisymmetric, additive and non transitive aggregation procedures, let us also
have a look at some important procedures belonging to it.

Promethee Let each assessment structure contain a real valued function v;
on X and a preference function, F;, as defined in [Brans and Vincke 85],
i.e. anon decreasing function from R to [0, 1] such that F;(0) = 0. Let
siy(p, >) be equal to ®;(y) — D, (x), where ®;(y) is the single criterion net
flow of alternative y as defined in [Mareschal and Brans 88], i.e.

®i(y) = D Filviy) —vi(2)] = Y Filvi(z) - vi(y)]-

Ty Ty

Then, the aggregation procedure that we obtain is exactly PROMETHEE
IT.

Additive MAUT Let each assessment structure contain a mapping from X
to some set and a utility function from that set to the reals. Let siy (p,>)
be equal to u;(y) — u;(x), where u;(y) is the single attribute utility of
alternative y (for criterion 7). This is nothing but an additive MAUT
based aggregation procedure.

Weighted sum Let each assessment contain a mapping from X into the reals.
To obtain a weighted sum, we just have to let slxy(p, >) be equal to v;(y)—
vi(x), where v;(y) is the real number on which alternative y is mapped,
for criterion i.

Simple weighted majority Let siy (p,>) = 1if y6*(p;)= AND NOT x4 (p;)y.
Let siy(p, >) = 0if yd' (p;)x AND z8%(p;)y. We call this procedure simple
weighted magjority because x=(p, w, >>)y iff the sum of the weights of the
criteria such that x is better than y is larger than or equal to the sum of
the weights of the criteria such that y is better than z.
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AHP Let each assessment structure contain a matrix of pairwise comparisons
of the alternatives, evaluated on a ratio scale [Saaty 80]. Let the impor-
tance structure contain a matrix of pairwise comparisons of the criteria,
evaluated on a ratio scale. Let siy(p, >>) be the z coordinate of the eigen
vector of the matrix of assessment structure i minus the y coordinate of
the same eigen vector. Let w; be the i coordinate of the eigen vector of
the matrix in the importance structure. This is AHP.

Note that all above mentioned procedures share an additional characteristic:
Syy (P, >) depends only on p;.

If we drop antisymmetry, we can obtain a procedure that we call simple
weighted majority with threshold, described hereafter.

Simple weighted majority with threshold  Let siy (p,>) = p > 0if
yd' (pi)r AND NOT zd%(p;)y. Let siy(p, >) = 0 if y§' (p;)z AND 28 (p;)y. Let
siy (p,>) = v < —p if 28 (p;)y AND NOT yd'(p;)x. We call this procedure
simple weighted magjority with threshold because x>=(p, w, >>)y iff the sum of the
weights of the criteria such that x is better than y is larger than or equal to
the threshold multiplied by the sum of the weights of the criteria such that y is
better than z. The threshold is equal to —v/p.

This procedure is additive and non transitive. But it is not antisymmetric.
It is worth noting that simple weighted majority is a special case of simple
weighted majority with threshold, where y = —v, i.e. the threshold is equal to
1. Let us remark as well that simple weighted majority with threshold is very
close to the concordance principle of ELECTRE[Roy 68].

Proposition 1 An aggregation procedure = satisfies completeness (A2), con-
vexity (A3), monotonicity (A4) and Archimedeanness (A5) if and only if it is
an antisymmetric, additive and non transitive aggregation procedure. If, in ad-
dition, independence of initial preferences (IIP, Al) is satisfied, then siy (p,>)
doesn’t depend on >.

Note that this proposition and its proof has strong links with a proposition
in [Myerson 95] characterizing scoring rules in social choice.

A possible circumstance under which it could be reasonable to assume in-
dependence of initial preferences is when the decision-maker has no idea about
his preferences.

Compatibility with (>. The initial preferences can take various forms. Some-
times, the decision-maker can state that an alternative 1s strictly better than
another one. We thus have a partial binary relation. In other instances, he
might be able to say that some given alternatives are definitely bad ones, and
so on. The information contained in the initial preference can be used, for ex-
ample, to fix the value of some parameters used by an aggregation procedure
as, for example, in UTA [Jacquet-Lagréze and Siskos 82]. In the case of anti-
symmetric, additive and non transitive aggregation procedures , the parameters
are the mappings siy(p, >).
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It seems reasonable to assume that some consistency should exist between
p,w and >. For example, if d%(p;)y and NOT ydi(p;)z for all criteria, then
it would be strange that the decision-maker considers y as strictly better than
x or that he puts x and not y in the set of the definitely bad alternatives or
... If some degree of consistency exists, then it might be reasonable to expect
that we can find values for the parameters of an aggregation procedure, such
that the final preference relation =(p, w, I>) is compatible (we will give a precise
definition later) with >.

We are going to show that the family of aggregation procedures characterized
by proposition 1 is so large that it contains many aggregation procedures that
are probably not reasonable. It shows that there is almost always an aggregation
procedure compatible with >: the minimum consistency between p and 1> is very
weak.

In order to proceed formally, we suppose that > is a binary relation with
the following meaning.

e x>y and NOT y >z : z is definitely strictly better than y,
e x> yand y> x: xis definitely equivalent to y,

e NOT 2z y and y > z : y is definitely strictly better than x,
e NOT z >y and NOT y > 2 : no opinion.

TIf > is a binary preference relation, we say that a preference relation =(p, w, >)
is compatible with > iff

e r>yand NOT y> x = a>(p,w,>)y and
e r>yand y>x = a~(p,w,>)y.

Let us now introduce a new axiom.
A 6 Faithfulness. =(p,u’,1>) = §(p;).

Thanks to faithfulness, we know that, if only one criterion is considered,
the aggregation procedure will be faithful to the information contained in the
assessment structure for that criterion.

Proposition 2 Let > be a binary preference relation. Given any (p,w,>),
there is an aggregation procedure = satisfying completeness (A2), convexity
(A3), monotonicity (A4) and Archimedeanness (A5) and such that =(p,w,>)
18 compatible with t>.

In addition, let us impose faithfulness (A6). Then, there is an aggregation
procedure »= such that =(p, w, >) is compatible with t> if and only if, whenever x>
y and NOT y>z, we have ' (p;)y and NOT y§* (p;)z, for some i. Furthermore,
for all i, §'(p;) is complete.
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Let us rephrase the second part of proposition 2. When a decision-maker
faces a given problem, i.e. a triplet (p,w,>), the initial preference > can be
as “strange” as we want, with respect to p; as long as x is not dominated by y
whenever the decision maker definitely prefers = to y, there 1s an aggregation
procedure = such that >(p,w,r>) is compatible with >. This (probably to)
wide variety of aggregation procedures 1s due to the fact that the siy (p,>) in
proposition 1 depends on x and y.

Proposition 2 concerns only the case where > is a binary preference relation.
But it can easily be rephrased for other cases.

Independence of the axioms of proposition 1. In order to prove the in-
dependence of our axioms, we present four examples of aggregation procedures.
In each example, three axioms are verified; one is not. As these examples can
help the reader to understand more deeply what an antisymmetric, additive
and non transitive aggregation procedure is, we do not defer the proof of the
independence to the Proofs section.

Completeness Let =(p,w,>) = {(x,2) : 2 € X}, for all p,w and 1>.

Monotonicity We already met an example: simple weighted majority with
threshold (when the threshold is strictly positive).

Archimedeanness Let w be the sum of the weights. For all z and 2’ different
of x and y, z~(p, w,>)z’. For the pair (z,y),
wifw > .5 = z=(p,w, >)y,
wi/w = .5 and wa/w > .5 = z>(p, w, >)y,
wyfw = .5 and wy/w = .5 = x~(p, w, >)y,
wyfw = .5 and wy/w < .5 = y=(p,w, >z,
wyfw < .5 = y=(p,w,>)r.

Convexity If w < 1, then z~(p,w,>)y, for all z and y. If w > 1, then
=(p, w, >) is a given total order.

In the next section, we consider a particular case of proposition 1.

3.1.2 A uniqueness result: simple weighted majority

Let us define some new axioms. The permutation of a profile, 7(p), where 7 is
a permutation on X, is the profile defined by (7(p)); = m(p;), for all .

A 7 Neutrality. =(r(p), w, 7(>>)) = m(=(p, w, >)).

The next two axioms are about the roles of the criteria. Weighted anonimity
tells us that all pairs of criteria and weight play the same role. Let ¢ be a
permutation on C. We denote by o(w) the weight vector such that o(w); =

wg(i) .
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A 8 Weighted anonymity. Let p and q be two profiles. If there is a permutation
o on C such that §(p;) = 5U(i)(qg(i)) for all i, then =(p,w,>) = =(q, o(w),>).

Let D(p,q) ={i € C:p; # ¢; }.

A 9 Tndependence of Trrelevant Criteria (IIC). If w; = 0 for all criteria in
D(p,q), then =(p,w,>) = =(q,w,>).

The restriction of a profile p to a subset Y C X is denoted by p|y and defined
by (ply)s = pily, for all i in C.

A 10 Independence of Irrelevant Alternatives (ITA). If ploy = qloy , then =(p,w,>)|oy =
(4, w, ) oy

By ordinality, our next axiom, the result of the aggregation can depend only
on the ordinal information contained in the assessment structures.

A 11 Ordinality. If%(p;) = 0% (i), for all criteria, then =(p, w,>) = (g, w, >).

Proposition 3 For each criterion, let the single-criterion preference relation be
complete. The only aggregation method that satisfies completeness (A2), conver-
ity (A3), monotonicity (A4), Archimedeanness (A5), neutrality (A7), weighted
anonymity (A8), IIC (A9), IIA (A10), faithfulness (A6) and ordinality (A11)

1s the stmple weighted majority.

Note that TIP (A1) doesn’t appear in this characterization though it is satis-
fied by the simple weighted majority. It is easy to see that the simple weighted
majority with threshold violates only one of the axioms of proposition 3: mono-
tonicity. Note also that, because of completeness and faithfulness, (V(pi) 18
complete for all 1.

3.2 Simple weighted majority without weights

A very interesting result can be found in [Fishburn 73]. Tt deals with the problem
of binary choice in a committee. The primitives used by Fishburn are the same
as those used in [May 52] to characterize simple majority; they can easily be
reinterpreted in a decision-aiding context and form a subset of our primitives.
Therefore, it is straightforward to adapt Fishburn’s result to our framework.
Here are, slightly adapted, the axioms used by Fishburn.

A 12 Unanimity. 28" (p;)y and NOT y&(p;)x, for alli in C, implies x>=(p, w, >)y.

The next axiom is a kind of monotonicity axiom. Unlike monotonicity (A4),
it deals with changes in p and not in w.

A 13 Non negative responsiveness. If, for all ¢ in C,
NOT ydi (pi)x = NOT yé'(¢;)x and
z6' (pi)y = ©6'(q:)y,
then
z(p, w, >)y = o>(q, w,>)y and
2 (p, w, >)y = xx(q, w, >)y.
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A 14 Strong duality. Let us consider m profiles Pl P f, for all
criteria, the number of profiles in {p*,...p7,...p™} such that x6'(pl)y and NOT

yéi(p‘g')x is the same as the number of profiles such that y§'(pl)x and NOT
288 (pl)y, then x=(p’, w,>)y for some j and y}(pjl,w, >)x for some j'.

Proposition 4 [Fishburn] Let X = {z,y}. For each criterion, let the single-
criterton preference relation be complete. If an aggregation method satisfies
completeness (A2), ordinality (A11), unanimity (A12), non negative respon-
siveness (A13) and strong duality (A14), then, for all w in W and all > in I,
there are non negative real numbers C;TU’D such that

ee(pw, )y iff Y P> YT P

iwdt(pi)y iwydi(pi)e
and

w, >

¢

> 0 for some i.

Given this proposition, the next one is trivial but, nevertheless, interesting
for it deals with sets containing more than two alternatives.

Proposition 5 Let W contain only one importance structure. For each crite-
rion, let the single-criterion preference relation be complete. If an aggregation
method satisfies independence of initial preferences (A1), completeness (A2),
neutrality (A7), independence of irrelevant alternatives (A10), ordinality (A11),
unanimity (A12), non negative responsiveness (A13) and strong duality (A14),
then, for all > in I, there are non negative real numbers c; such that

z=(p,w, >y iff Z ci > Z ci

and

¢; > 0 for some 1.

The family of aggregation procedures characterized by this proposition looks
very much like our simple weighted majority but there is a tremendous differ-
ence: in proposition 5, the weights ¢; are part of the aggregation procedure
while, in simple weighted majority, they are part of the primitives. In the se-
quel, the aggregation procedures characterized by proposition 5 will be called
stmple unspecified weighted majority, in order to make clear that the weights
are not specified a priori.

In proposition 5, we assume that W contains only one element. If we consider
that this unique importance structure is such that it tells nothing about the
relative importance or role of the criteria, then we have a characterization of
simple unspecified weighted majority when no information is available about
the relative importance of the criteria. Such a case is likely to happen often (see
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section 2.2 about importance structures). Therefore, proposition 5 is of very
practical use.

If we drop the assumption that W contains only one element but impose a
kind of independence of importance structure, we can obtain the same result.
But it is of poor practical use because, when information about the relative
importance of the criteria is available, it 1s rather strange not to use it.

Starting again from the result of Fishburn (proposition 4), we can have a
look at more general families.

Proposition 6 Let W contain only one importance structure. For each cri-
terion, let the single-criterion preference relation be complete. If an aggrega-
tion method satisfies completeness (A2), independence of irrelevant alternatives
(A10), ordinality (A11), unanimity (A12), non negative responsiveness (A13)
and strong duality (A14), then, for all > in I, there are non negative real num-
bers ¥ (x,y) such that

re(pow, )y iff Y. Py > Y P(x),

T8 (py)y i:ydi(pq)e

o (x,y) = 7 (v, )

and

Yo,y € X,V>> € I, there is a criterion such that ¢? (z,y) > 0.

Note that, even if TTA is satisfied, c? (z,y) can depend on z # x,y through

.
The following result, like proposition 2, shows us that the family of aggre-
gation procedures characterized by proposition 6 contains many aggregation
procedures that are probably not reasonable. It concerns only the case where
>> is a binary preference relation. But it can easily be rephrased for other cases.

Proposition 7 Let [> be a binary preference relation. Let W contain only one
wmportance structure. For each criterion, let the single-criterion preference re-
lation be complete. Given any (p,w,t>), there is an aggregation procedure =
satisfying completeness (A2), independence of irrelevant alternatives (A10), or-
dinality (A11), unanimity (A12), non negative responsiveness (A13) and strong
duality (A14) and such that =(p,w,>) is compatible with > if and only if, when-
ever x >y and NOT y > =, we have x8'(p;)y and NOT yd'(p;)x, for some i.

This (probably to) wide variety of aggregation procedures is due to the fact
that the “weights” of proposition 6 depend on = and y. To avoid this, a possible
way 18 to impose neutrality. But the full strength of neutrality can be used only
if we impose also the following condition.

A 15 Extended Independence of Irrelevant Alternatives (EIIA). If ploy = ¢luy
and ©>|py = D>/ |oy , then =(p,w,>)|oy = =(¢, W, >)|ey-
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Proposition 8 Let W contain only one importance structure. For each crite-
rion, let the single-criterion preference relation be complete. If an aggregation
method satisfies completeness (A2), neutrality (A7), ordinality (A11), unanim-
ity (A12), non negative responsiveness (A13), strong duality (A14) and extended
independence of irrelevant alternatives (A15), then, for all 1> in I, there are non
negative real numbers ¢t such that

pe(pw, )y iff Y, E > Y b

iwdt(pi)y iwydi(pi)e

and

V> € I, there is a criterion such that ¢ > 0.

It is worth mentioning a characterization of another kind of simple weighted
majority. Tt can be found in [Nitzan and Paroush 85] and deals also with the
problem of binary choice by a committee. Each member of the committee 1s
supposed to maximize the same utility function. Thus, there is a “correct” choice
but each member has a certain probability to make the wrong choice. Nitzan and
Paroush show that, under some assumptions, the best way to choose is to use a
simple weighted majority, where the weights are function of the probabilities of
incorrect choice. Their primitives are so different from ours that we see no way
to reinterpret their results in our framework.

4 Conclusions

We presented a new theoretical framework whose advantage is twofold.

e It allows us to describe many different aggregation procedures in common
terms. Therefore, characterizations of these procedures (when they will
be available in this new framework!) will be comparable.

e The primitives of this framework do not contain elements such as weights,
utility curves, indifference thresholds, ... that, actually, cannot be sup-
posed to exist before using an aggregation procedure.

The results that we derived in our framework show that the concept of
assessment structure, although very vague, is useful. We didn’t need to define
it more precisely. More results like proposition 5, not involving a specialization
of the importance structure, are needed. For example, a characterization of
UTA [Jacquet-Lagréze and Siskos 82], where the weights (or more exactly, the
extrema of each utility function) are derived from > would be very interesting.

Ultimately, a still more general framework is needed: a framework in which
even the set of criteria is not a primitive. Some procedures, taking into ac-
count the interaction between criteria [Grabisch 96], can probably be used with
sets of criteria in which some criteria are correlated and/or dependent (see
[Roy and Bouyssou 93]). Other procedures cannot. Therefore, the construction
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of the set of criteria must be coupled to the choice of an aggregation procedure
and the set of criteria cannot be considered as a primitive.

It is most likely that we could also find some reasons to even reject the set
of alternatives as a primitive. But we think that we are far from being able to
derive any interesting result in such a framework.

Another possible modification to our framework is the following. We could
define > as a mapping from P x W x I into R, where P (resp. W,f) is a
subset of P (resp. W,I). Indeed, there is no reason for a decision maker to
impose that conditions such as IIC be satisfied for all profiles. In the particular
problem that the decision maker faces, only some profiles are possible. Most
profiles have nothing to do with his problem. Therefore, axioms need not to
be satisfied for those irrelevant profiles. The same reasonnig applies to impor-
tance structures and initial preference relations. Obviously, such a framework
1s extremely difficult to handle.

From a purely formal viewpoint, many results of conjoint measurement can
be easily transposed in our framework. Assume the following conditions.

A 16 Independence of profile (IP). =(p, w, >) = =(q, w, >).
A 17 Independence of importance structure (T1S). >=(p, w,>) = =(p,w’, >).

Then > depends only on > and we are back to conjoint measurement. But
this has almost no interest since we are in a decision aiding context.

Last remark: contrary to what happens in conjoint measurement, the em-
phasis is put on the aggregation procedure and not on the preference relation.
We showed that this viewpoint is more appropriate in a decision aiding context.

5 Proofs

The proofs of propositions 1 and 3 are presented in the next two sections. The
other proofs are easy and left as an exercise for the reader.

5.1 Antisymmetric, additive and non transitive aggrega-
tion procedures

Before proving proposition 1, we are going to introduce a new condition and
prove a serie of five lemmas.

A 18 Homogeneity. For any positive real number a, =(p, w,>) = =(p, aw, >).

Note that convexity, together with a continuity condition implies homogene-
ity.

Lemma 1 Let = be an aggregation method satisfying the following conditions:
completeness (A2), convexity (A3) and Archimedeanness (A5). Then it satisfies
homogeneity (A18).
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Proof.  Suppose that homogeneity is not satisfied. Then, by completeness,
there are w,p, >, x,y,v such that z>(p, w,>)y and y=(p, yw,>)z, where = is
a real number. By successive applications of convexity, y=(p,ywr,>)z, for
all positive and rational r. By Archimedeanness, z>(p, cw + yw,>)y, for all
real « larger than some 3. For some large r, there is « > §# and such that
~ywr = aw + yw. Therefore, we obtain a contradiction. a

Lemma 2 Let = be an aggregation method satisfying the following conditions:
completeness (A2), converity (A3) and homogeneity (A18). For all x # vy, there

are real valued mappings sy, i =1...k: (p,>) = sy, (p,>) such that

o (p,w,>)y and y=(p,w',>)x = Y0y by (p, ) [w] — wi] >0,
o x(p,ul,>)y, for all i, implies

= Sy () = 1 if a(p, uf, )y,

— Sye(p,>) = 0 if a~(p, v’ >)y,
o sy (p,>) = —sky (p, D),

o if x(p,uw,>)y or y~(p,uw,>)x, for some j, then there is at least one

criterion i such that sy, (p,>) # 0.

Proof. By completeness, we can distinguish the two following cases.

1. y>(p,w,>)z for some j. Let
Agy(p,>) = {w — v’ : 2(p, w, >)y and y~(p, w’,1>)z}.

Let Bgy(p,>) be the convex hull of Agy,(p,r>). Suppose that the k-

dimensional vector 0 belongs to Bgy(p,>). Then there are weight vectors

wh oo wMoand vt vM ) with zx(p, w™, >)y and y-(p, v™, > )z, m =

1...M, such that the system

M
> An(wt —v) = 0,4,
m=1

has non negative solutions with at least one A, strictly positive. There-

fore,
M M
Z Apw™ = Z A v™.

m=1 m=1

By convexity and homogeneity, y=(p, Z%Il Am 0™ )2 and z-(p, Z%Il Am
This is a contradiction. Hence, 0 does not belong to Bgy (p, >>).

By the Supporting Hyperplane Theorem, we can choose (s, (p,5>), . .. , sf,y(p, >))

in (%"’)C such that
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® siy(p, >) # 0, for some i,
o (p,w,>)y and y-(p, w', >)z = Vi, by (p, ) [w] — wi] > 0,

To satisfy these conditions when the roles of x and y are reversed, we can
simply let szx(p, >) = — Sy (p,>).

2. If z>(p, u', )y, for all i, then we are free to choose

Lemma 3 Let = be an aggregation method satisfying the following conditions:
completeness (A2), converity (A3) and Archimedeanness (A5). Let sy, i =
1...k, satisfy the conditions of lemma 2.

k

y=(p, w,>)x implies Z Siy (p,>)w; > 0.
i=1

Proof. By lemma 1, homogeneity 1s satisfied as well. There are two possible
cases.

1. There is j such that z>(p, u/, >)y. Then, by Archimedeanness, y>(p, aw + /| >)z,
for some real number «. Hence,

2. There is no j such that z>(p,u/,>)y. Then, by lemma 2, siy(p, >) >0,
for all ¢. Therefore, Zle sty (0, >)wi > 0.

Lemma 4 Let > be an aggregation method satisfying the following conditions:
completeness (A2), convexity (A3), monotonicity (A4) and Archimedeanness
(A5). Let sy,,i=1...k, satisfy the conditions of lemma 2.

k

y=(p,w,>)x implies Z siy (p,>)w; > 0.
i=1

Proof. There are two possible cases.
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1. There is j such that y=(p, uj,|>)x. By monotonicity, for any a > 0,
y=(p, ow + w?  >)z. By lemma 3,

k
> sty (p, ) [ow; + ul] > 0.

Hence,

k
Z sty (p, >)w; > 0.

i=1

2. There is no j such that y>=(p,u/, >)z. In other words, z>(p, u’, >)y for all
i in C. Therefore, for all i, z~(p, u’,>)y or w; = 0. If this was not true,
then there would be a criterion j such that z>(p, u/, >)y and w; > 0. By
monotonicity, we would have z>(p, w,>)y. This is a contradiction. By
lemma 2, we know that siy (p,>>) = 0 for all ¢ such that w; # 0. Thus,

P
2oi=1 Sy (P >)wi = 0.

Lemma 5 Let = be an aggregation method satisfying the following conditions:

completeness (A2), converity (A3) and Archimedeanness (A5). Let siy,i =

1...k, satisfy the conditions of lemma 2. If y=(p, ui*,|>)x for some i*, then
there 1s a weight vector wY such that

k

y(p,w?, )z and Y st (p,>)w! > 0.
i=1

Proof. By lemma 2, there is a criterion j such that S%y(p,l>) #+ 0. By
homogeneity and Archimedeanness, there is a positive real number « such that

y>_(pa O[Ui*,|>)l‘, y>_(pa aui* +Uj,|>)l‘, y>_(pa aui* +2U‘7,|>)$
By lemma 3,

k
> shy (v >)oul +mul] >0, me{0,1,2}.
=1

Let us rewrite this expression:

Zsiy(p, >)aul + msiy(p) >0, me{0,1,2}.

i=1

But s‘iy(p, >>) # 0. This is possible only if
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siy(p, I>)ozu§* + siy(p, >) > 0.

i=1
The proof is complete if we let w¥ = aul” + mud. O
Proof of proposition 1, part 1. We need to prove that, if siy, t=1...k,

satisfy the conditions of lemma 2, then

Z siy (p,>)w; > 0 implies y=(p, w, >>)z.
i=1

There are two cases.

1. There is j such that y>=(p,u/,>)z. Let wY be as in lemma 5. For any
positive real number «,

siy (p,>)[aw; + wf] > 0.
i=1

By lemma 2,

séx (p,>)[ow; + wi] < 0.

-

i=1
By lemma 4, for all & > 0, y=(p, ow + w¥,>)xz. Consequently, it is not
the case that x>(p, w,>)y. By completeness, y=(p, w, >)z.

2. There is no j such that y>=(p, u/, >)z. Hence, z>(p, w, >)y and, by lemma
4

bl

séx(p, >)w; > 0.
i=1
For all i such that x~(p, u’, >)y, we know by lemma 2 that séx(p, >) = 0.
Let @ C C, be the set of all criteria j such that z>(p,u’,>)y. For all
jin @, six(p,l>) > 0. If, for all j in @, w; = 0, then, by convexity,
e~(p,w,>)y. If, on the contrary, w; > 0 for some j in @, then, by
monotonicity, £>(p, w, I>)y. But

k

Z séx(p, >)w; > 0.
i=1
This is a contradiction. Hence, w; = 0 for all j in @ and the proof is
complete.
O
Proof of proposition 1, part 2. If independence of initial preferences

(TTP) is satisfied, it is obvious that séx(p, >>) depends only on p and not on .
O
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5.2 Simple weighted majority

Two more lemmas will be necessary before proving proposition 3.

Lemma 6 Let = be an aggregation method satisfying the following conditions:
e (AQ), ITA (A]O)'and ordinality (A11). If w; = 0 for all i such that
t(pa uz’ |>)|xy 3& E(Qa uz’ |>)|xy; then t(pa w, |>)|xy = E(Qa w, |>)|xy

Proof. Let p’ and ¢’ be profiles such that
o §i(pl) = & (p;) for all i in C,
o §(q}) = 8%(q;) for all i in C and
o Diloy = llay for all i such that =(p, u,>)|ny = =(q, v, 1) ]ay.

These two profiles necessarily exist because of the fourth condition that we
impose on the assessment structures. By ordinality, >(p, w,>) = =(p/, w, >)
and >(q,w,>) = =(¢’, w,>) for any w.

Let p” and ¢" be profiles such that

o pi! = pi and ¢ = ¢} for all i such that p}|yy = ¢}|zy and

2
e '|oy = ¢"|uy for all i in C.

By ITA, =(p", w,>)|ey = =(¢"",w,>)|sy. Let W be the set of all weight vec-
tors such that w; = 0 if plley # ¢iley. By IC, =(p',w,>) = =(p", w,>)
and =(¢’,w,>) = =(¢",w,>>), for all w € W. Therefore, (p, w,>)|sy =
=0 w, D)oy = =0, 0, ) oy = (g7, w, D)oy = =0 w0, ) oy = =g, w0, ) [ay
for all w € W. a

Lemma 7 Let = be an aggregation method satisfying the following conditions:
weighted anonimity (A8), IIC (A9), ITA (A10) and ordinality (A11). If there

1s a permutation o on C' such that, for each criterion 1,
=, ul ) oy = (g, w7 ) [y or W = ws(;) =0,
then =(p, w,>)|ey = =(q, 0 (W), )|y
Proof. Let p’ be a profile such that
o =(p,u', ) |oy = =(p', u”D, >)|4y for all i such that w; > 0 and
o §(p}) =070 (pl, ;) for all i.

Such a profile p’ necessarily exists, because of the fourth condition that we im-
pose on the assessment structures. By lemma 6, =(p, w,>)|sy = =(p', 0, >)|ay
and by weighted anonimity, =(p', w,>) = =(q, o (w), ). O
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Proof of Proposition 3. To complete the proof, all we need to do is
to show that there are séx satisfying the conditions of lemma 2 and such that
1 if 28" (pi)y and NOT yd" (p;)x,
séx (p,>) = 0 if xéi(pi)y' and yéli (pi)z,
—1 if NOT z6"(p;)y and yé’ (p;)=.
(a) If 8% (p;)y for all i in C, then, by faithfulness, x>(p,u’,>)y for all i. By
lemma 2, we find the following.

. séx(p, >) = 1if z-(p,u’,>)y. By faithfulness, séx (p,>) = 1if zd(p;)y
and NOT yd (p;)z.

. séx(p, |>) = 0 if 2~(p,u’,>)y. By faithfulness, séx(p, >) = 0 if 8% (p;)y
and yd* (p;)x.

(b) If we are not in case (a), then there are j and j* such that NOT yé7 (p;)x and

NOT 67" (pj+)y. By faithfulness, z>(p, u/, >)y and y>(p,u’ ,>)z. Suppose

that s}, (p,>) # —Sé;(p, t>). Then, by proposition 1, NOT z~(p, u/ 4+ u/", >)y.

Let 7 be a permutation on X such that m(z) = y and n(y) = «. By neutrality,

=(m(p), w, m(>>))|zy is the converse of =(p, w,>)|ey. (1)

In other words, (7 (p), w, 7(>))y < y=(p,w,>)z and y=(7(p), w, 7 (>>))zr <
z(p, w, >)y.

Let ¢ be a profile such that §7 (Pi)ley = 57" (¢j+) |y and §i° (p;+)
By faithfulness, t(p’ u’, '>)|xy = E(Qa uf*, |>)|xy and t(pa uj*’ |>)
By lemma 7,

vy = 5j(qj)|xy~
Ty — E(Qa U], |>)|xy

(0w 4w D) |y = (g, 0w )|y (2)

Let us remark that =(q,u’,>)|sy = =(m(p), u?, 7(>)) |2y and =(q, uj*,l>)|xy =
=(m(p), w!”, 7(>))|y- So, by lemma 6,

E(Qa uj + uj* 3 |>)|xy = t(ﬂ'(p), uj + uj*’ﬂ-(D)HM/' (3)

If we combine equations (2) and (3), we obtain a contradiction with respect
to equation (1), due to the fact that NOT z~(p,u’ + v/ ,>)y.

Because of this contradiction, we know that s (p,>>) = —sy;(p, >). For
any criterion ¢ such that x>=(p, u?,>)y, we can use j* to find that s‘g/x(p, >) =
9. (p,>) = —5‘;;(1), ). And for any criterion g* such that y>=(p,u?",>)z, we
can use j to find that s] (p,>) = —sg; (p,>) = —5‘37/; (p,1>). Hence, s, (p,>) is
either 0, a constant or the opposite of that constant. It is clear that the value
of this constant is not important and we can choose it equal to 1. a
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