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Abstract: This paper deals with the problem of ranking several alternatives on the basis of a valued
preference relation. A system of three independent axioms is shown to characterize a ranking method
based on ‘net flows’ which contains as particular cases the rules of Copeland and Borda and is used in

one of the PROMETHEE methods
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1. Introduction

Suppose that you want to compare a number
of alternatives taking into account different points
of view, e.g. several criteria or the opinion of
several voters. A common practice in such situa-
tions is to associate with each ordered pair (a, b)
of alternatives a number indicating the strength
or the credibility of the proposition ‘q is at least
as good as b’, e.g. the sum of the weights of the
criteria favouring a or the percentage of voters
declaring that a is preferred or indifferent to b.
Since Condorcet, we know that, when the differ-
ent points of view taken into account are conflict-
ual, it may not be easy to compare the alterna-
tives on the basis of these numbers. In this paper
we study a particular method allowing to build a
ranking, i.e. a complete and transitive binary
(crisp) relation !, on a set of alternatives given
such information. In a similar context, Bouyssou
and Perny (1990) envisage more general methods
building partial rankings, i.e. reflexive and transi-
tive binary relations.

Let A be a finite set of objects called ‘alterna-
tives’ with at least two elements. We define a
valued (binary) relation on A4 as a function R
associating with each ordered pair of alternatives
(a, b) € A with a # b an element of [0, 1]. From
a technical point of view, the condition a #b
could be omitted from this definition at the cost
of a minor modification of our third axiom. How-
ever, since it is clear that the values R(a, a) are
immaterial in order to rank the alternatives, we
will use this definition throughout the paper. A
ranking method > is a function assigning a rank-
ing = (R) on A to any valued relation R on A.

An obvious way to obtain a ranking method is
to associate a score S(a, R) with each alternative

1 A (crisp) binary relation S on a set A4 is complete if for all
a, be Aeithera S b or b S a. It is transitive if for all a, b,
c€A,aSbhand b S ¢ imply a §S c. It is connected if for all
a, be A with a+# b, either a S b or b S a. It is asymmetric
if for all a, b€ A, a S b implies Not b S a. It is reflexive if
aSaforall ac A.
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a €A and to rank the alternatives according to
their scores, i.e.

a> (R)b iff S(a, R)>S(b, R). (1)

The purpose of this paper is to present an ax-
lomatic characterization of the ranking method
based on the following score:

Sne(a, R)= X (R(a,c)=R(c,a)). (2)

ceA\{a}

We will refer to the ranking method defined by
(1) and (2) as the Net Flow Method.

When R is crisp, i.e. when R(a, b) can only
take the value 0 or 1, this ranking method amounts
to the well-known Copeland ranking method (see
Goodman, 1954; or Fishburn, 1973). It has been
characterized by Rubinstein (1980) when R is a
tournament (i.e. a connected and asymmetric crisp
binary relation). This result has been extended by
Henriet (1985) to the case of crisp and connected
relations.

When R(a, b) is interpreted as a percentage
of voters considering that « is preferred or indif-
ferent to b, this ranking method is the well-known
method of Borda (see Fishburn, 1973). It has
been characterized by several authors (Young,
1974; Hansson and Sahlquist, 1976; Nitzan and
Rubinstein, 1981) in contexts involving a ‘variable
electorate’.

The Net Flow Method is also used in the
Multiple Criteria Decision Making method
pROMETHEE 11 (Brans and Vincke, 1985).

Our results can be viewed as an extension of
the work of Rubinstein and Henriet to the case of
valued relations or as an alternative partial char-
acterization of the Borda rule.

When crossing the line between crisp and val-
ued relations, it is necessary to take a position on
the nature and the significance of the valuations
R(a, b). Contrary to methods using only the Min
and /or Max operators, it should be strongly em-
phasized that the Net Flow Method makes use of
the ‘cardinal’ properties of the valuations. In fact,
it is obvious from (1) and (2) that we may well
have >(R)#*>(R,), where R, is defined by
Ry(a, b)=¢(R(a, b)) for all a, b€ A and ¢ is a
strictly increasing transformation on the real line
such that ¢(0) = 0 and ¢(1) = 1. Thus this method
does not seem to be appropriate when the com-
parisons of the valuations only have an ordinal
meaning in term of credibility.

2. The main result

Throughout the paper, we note =(R) and
> (R) the symmetric and asymmetric parts of
=(R),ie.foralla,beA,[a=(R)biff (a > (R
and b > (R)a)] and [a > (R)b iff (a =(R)b and
not b = (R)a)l.

A ranking method is said to be neutral if and
only if, for all permutation ¢ on A, for all valued
relation R on A and all a, b€ A,

ax>(R)be=o(a)>=(R%)o(b)

where R? is defined by R°(o(a), o (b)) = R(a, b)
for all a, b€ A.

Neutrality expresses the fact that a ranking
method does not discriminate between alterna-
tives just because of their labels. It is a classical
property in this context (see, e.g., Rubinstein,
1980; or Henriet, 1985). The Net Flow Method is
obviously neutral. It is easily checked that neu-
trality implies that if R(a, b) =R(b, a) and for
all ceA\{a, b}, R(a, ¢c)=R(b, ¢) and R(c, a)
= R(c, b), then a = (R)b.

A ranking method is said to be strongly mono-
tonic if the ranking responds ‘in the right direc-
tion’ to a modification of R. More formally, > is
strongly monotonic if and only if for all a, b€ A4
and for all valued relation R on A,

ax=(R)b=a>(R')b

where R’ is identical to R except that [R(a, ¢) <
R'(a, ¢) or R(c, a)>R'(c, a) for some c €A\
{a}].

Suppose that R” is identical to R except that
R(b, d) > R"(b, d) or R(d, b)<R"(d, b) for
some d € A\ {b}. It is easy to prove that strong
monotonicity implies that [a > (R)b = a >
(R")b]. As defined here, strong monotonicity is a
very strong property excluding, in particular, the
use of any threshold in the treatment of the
valuations. However, it is obvious that the Net
Flow Method is strongly monotonic.

An important characteristic of a ranking
method lies in the way it deals with ‘intransitivi-
ties’ of R. In order to formalize this point, let us
recall some well-known definitions used in Graph
Theory.

A digraph consists in a set of nodes X and a
set of arcs U C X2 We say that x is the initial
extremity and y is the final extremity of the arc
u={(x,y)eu.
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A circuit (a cycle) of length ¢ in a digraph is
an ordered collection of arcs (u,, u,,...,u,) such
that for i =1, 2,..., g, the initial extremity of u,
is the final extremity of u,_, and the final extrem-
ity of u, is the initial extremity of u,, , (4, #u,_,,
one of the extremities of u, is an extremity of
u,_, and the other an extremity of u,_ ), where
u, is interpreted as u, and u,,, as u,. A circuit
(a cycle) is elementary if and only if each node
being the extremity of one arc in the circuit (the
cycle) is the extremity of exactly two arcs in the
circuit (the cycle).

Let us consider a digraph which set of nodes is
A and which set of arc U is {(a, b): a, b €4 and
a #b}. It is obvious that there is a one-to-one
correspondence between valued relations on A
and valuations between 0 and 1 of the arcs of this
graph. In the sequel, we identify a valued relation
with its associated valued digraph in which the
valuation vg(u) of the arc u = (a, b) is R(a, b).

A transformation on an elementary circuit
consists in adding a same positive or negative
quantity to the valuations of the arcs in the cir-
cuit. A transformation is admissible if the trans-
formed valuations are still between 0 and 1. When
we apply an admissible transformation to the
graph associated with a valued a valued relation
R, we obtain another valued relation R’ and we
say that R’ has been obtained from R through an
admissible transformation on an elementary cir-
cuit.

A ranking method is independent of circuits if
and only if for all valued relation R and R, [R’
can be obtained from R through an admissibie
transformation on an elementary circuit of length
20r3]=%(R)==(R").

It is obvious that an admissible transformation
on an elementray circuit does not alter the score
of any of the alternatives, when the scores are
defined by (2), so that the Net Flow Method is
independent of circuits.

This axiom has a straightforward interpreta-
tion. Independence of 2-circuits, i.e. of circuits of
length 2, implies that the ranking is only influ-
enced by the differences R(a, b) — R(b, a). Inde-
pendence of 3-circuits implies that intransitivities
of the kind R(a, b) >0, R(b, ¢)> 0 and R(c, a)
> 0 can be ‘wiped out’ subtracting Min(R(a, b);
R(b, ¢); R(c, a)) from the 3-circuit {(a, b); (b, ¢);
(¢, @)). Contrary to neutrality and monotonicity,
this axiom makes explicit use of the cardinal

properties of the valuations. It is obvious that
adding to this axiom a condition on 1-circuits
would allow to consider valued relations for which
R(a, a) is defined.

We are now in position to state our main
result.

Theorem. The Net Flow Method is the only ranking
method that is neutral, strongly monotonic and
independent of circuits.

We already noticed that the Net Flow Method
is neutral, strongly monotonic and independent
of circuits. The proof that it is the only one
appears in the next section. Let us first notice
that the three axioms characterizing the Net Flow
Method are independent as shown by the follow-
ing examples:

(i) Let :A—>{1,2,...,| A} be a one-to-
one function. Define > as

a» (R)b iff S,(a, R)>S,(b,R)

where for all c €4, S{(c, R) = Syr(c, R) X ®(c).
This ranking method is strongly monotonic and
independent of circuits but not neutral.

(ii) Define > as
ax>(R)b iff S,(a, R)S,(b, R)

where for all c € 4, S,(c, R) = —Syg(c, R). This
ranking method is neutral and independent of
circuits but not strongly monotonic.

(iii) Define > as
a>(R)b iff S;(a, R) = 84(b, R)
where for all c € A4,
Si(c,Ry= Y R(c,d) -

deA\{c}

Y R(d,c).
deA\{c}
This ranking method is neutral and strongly
monotonic but not independent of circuits.

3. Proofs

Before proving the main theorem we shall go
through a number of lemmas. Some of them are
interesting on their own given the proximity of
this problem with some aspects of the theory of

flows on networks (see Ford and Fulkerson
(1962)).

Lemma 1. For all valued relations R and R’ on A,
if [R' can be obtained from R through an admissi-
ble transformation on an elementary circuit), then
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[R’ can be obtained from R through a finite num-
ber of admissible transformations on elementary
circuits of length 2 or 3].

Proof. The proof is by induction on the length g
of the elementary circuit. If g =2 or 3, then the
lemma is proved. Suppose now that the lemma is
true for all g <k with k > 3 and let us show that
it is true for g =k + 1. Consider an elementary
circuit of length &+ 1, u, =(ay, a,), u,=
(ay, a3),...,u,=(ay, a1, Up,q=ap,p, ap),
and suppose that R’ has been obtained from R
adding & on the arcs of that circuit. If 6 =0,
there is nothing to prove. Suppose that § > 0 (the
proof is similar for § < 0). We define r = (a;, a,)
and s=1(a,, a;). If vg(r)<1—-48 and vg(s) <1
— 8, then we have two circuits (i, u,,...,U;_;, 5)
and (u,, u, ., r) of respective length k and 3 on
which adding & is an admissible transformation.
Now, subtracting & from the 2-circuit (r, s) is an
admissible transformation which leads to R'. If
vgp(r)>1—38 and vg(s) <1 — 8 (the case vg(r) <
1 — & and vg(s) > 1 — & is symmetric), then adding
8 on (uy, uy,...,u,_y, §)is an admissible trans-
formation. Since now the valuations of s and r
are strictly positive, we can find a sufficiently
large integer n so that subtracting 6 /n from the
2-circuit (r, s) is an admissible transformation.
Adding 6/n on (u,, u,,,, r) is now an admissi-
ble transformation. Repeating n times these op-

erations leads to R’ (see Figure 1). If vg(r)>1—
& and vg(s) > 1 — 8, both of vg(s) and vg(r) are
strictly positive and we can find a sufficiently
large integer n so that subtracting 6 /# from the
2-circuit (r, s) is an admissible transformation.
Adding &/n on (u,, u,,,, r) and on
(uy, Uy, ..., uy_,, s) are now admissible transfor-
mations. Repeating this »n times leads to R’.
This completes the proof of lemma 1, because
since A4 is finite, the maximum length of an
elementary circuit is finite as well. O

Consider an elementary cycle in the graph
associated with a valued relation. An arc u, in a
cycle is forward if its common extremity with u,_,
is its initial extremity and backward otherwise. A
transformation on a elementary cycle consists in
adding a positive or negative quantity to the
valuation of the forward arcs in the cycle and
subtracting it from the valuation of the backward
arcs. A transformation on a cycle is admissible if
all the transformed valuations are still between 0
and 1. It is obvious that an admissible transfor-
mation on an elementary cycle does not alter the
score of any of the alternatives when the scores
are defined by (2).

Lemma 2. For all valued relations R and R' on A,
if [R' can be obtained from R through an admissi-
ble transformation on an elementary cycle] then

R - |+
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Figure 1. Transformation on a 4-circuit via a number of transformations on 2 or 3-circuits. When R(b, d) <1- 8 and R(d, b)>1- 4,

a transformation of & on the 4-circuit [(a, b), (b, ¢), (c,d), (d, a)] is obtained after adding & on the 3-circuit [(a, b), (b, d), (d, a)]

and performing # times a transformtion of — & /n on the 2-circuit [(b, d), (d, b)] and a transformation of 8 /n on the 3-circuit
(b, ¢), (c, d), (d, b)]
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[R’ can be obtained from R through a finite num-
ber of admissible transformations on elementary
circuits].

Proof. Consider an elementary cycle in the graph
associated with R and suppose that R’ has been
obtained from R by adding & to the forward arcs
of the cycle and subtracting 8 from the backward
arcs. We respectively note Uy and Up the set of
forward and backward arcs in the cycle. If 6 =0,
there is nothing to prove. Suppose that § > 0 (the
proof is similar for § < 0). Define

Max wvg(b, a).
(a,b)ely

amax =
If a,, <1- 6, then adding & on the elementary
circuit obtained by considering the arcs in U and
the set {(b, a) € U: (a, b) € Uy}, is an admissible
transformation. Now, subtracting & from all the
2-circuits of the type ((a, b), (b, a)) with (a, b) €
Uy are admissible transformations which lead to
R If a,, >1- 28, define

Up={(a, b) € Ug: vg(b, a) >1-8}.

For all (a, b) € Up, we have vg(a, b)>6 and
vg(b, a) > 0. Since 8 >0, we can find a suffi-
ciently large integer n such that subtracting 8/n
from all the 2-circuits ((a, b), (b, a)) with (a, b)
€ Up are admissible transformations. Then
adding 8 /n to the circuit obtained by considering
the arcs in Ug and the arcs (b, a), if (a, b) is in
Uy, is an admissible transformation. It is easily

O—=® |

R —_—

O="—-10

D=0

seen that it is possible to repeat these operations
n times. We thus obtain R’ after subtracting &
from the 2-circuits ((a, b), (b, a)) with (a, b) €
U\ Up, all these transformations being admissi-
ble by construction (see Figure 2).

This completes the proof of Lemma 2, because
since A is finite, the maximum length of an
elementary cycle, is finite as well. O

Lemma 3. For all valued relations R and R' on A,
[Sye(e, R)=Syglc, R') forall c€ A)=[R' can
be obtained from R through a finite number of
admissible transformations on elementary cycles].

Proof. The < part is obvious. In order to prove
the = part, suppose that for some R and R’ and
for all ¢ €4 we have Syg(c, R) = Syelc, R'). If
R =R’ the lemma is proved. If R+# R’, then
R(a, b)+ R'(a, b) for some a, b€ A with a+b
and we suppose further for definiteness that
R(a, b) > R'(a, b), since the other case is sym-
metric. We claim that either R(c, a) > R'(c, a) or
R(a, d) < R'(a, d) for some ¢, de< A\ {a};
since [R(c, a) < R'(c, a), R(a, d) = R'(a, d)
for all ¢, d €A\{a, b}, R(a, b) > R'(a, b)
and R(b, a) < R'(b, a)] would contradict
Sne(a, R) =Sye(a, R’'). In either case, we can
repeat the same argument and therefore, since
the number of alternatives is finite, this process
will lead to an elementary cycle in the graph
associated with R. Let A be the minimum over
the arcs (e, f) in the cycle of |R(e, f) -

f® ®\
ofl
. @J

JT n times N
O—7=0

( ) +in @ )

Figure 2. Transformation on a cycle via a number of transformations on circuits. When R(b, ¢} > 1+ 8, a transformation of § on
the cycle [(a, b), (c, b), (c, d), (d, a)] is obtained by performing » times a transformation of — 6 /n on the 2-circuit [(b, ¢), (c, b)]
and a transformation of 8 /n on the 4-circuit [a, b), (b, ¢), (¢, d), (d, a))
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R'(e, f)|. It is easily checked that adding A to
the arcs in the cycle such that R(x, y) <R'(x, y)
and subtracting it from the arcs in the cycle such
that R(x, y) > R'(x, y) is an admissible transfor-
mation on the cycle. We thus obtain a valued
relation R,. If R, =R’ the lemma is proved. If
not, we can repeat the same argument starting
with R, instead of R. Because A is finite, there
is only a finite number of arcs such that R(x, y)
# R'(x, y). Since, at each step the number of
arcs on which the current relation and R’ are
different, is decreased by at least one unit, this
process will thus terminate after a finite number
of steps, which completes the proof of Lemma 3.
O

Proof of the Theorem. All we have to prove is
that if > is neutral, strongly monotonic and
independent of circuits, then

[a>(R)b = Sye(a, R) 2 Sne(b, R)],

1.€.
Sxe(a@, R) = Syp(b, R)=a=(R) b and (3)
Sxr(a, R) > Syp(b, R) =a> (R) b. (4)

First, suppose that Syg(a, R)=Syg(b, R) for
some a, beA. We have either a>(R) b or
b>=(R) a. If a =(R) b, define 8 as the permuta-
tion on A transposing @ and b. We have
Sne(e, R) = Syplc, R?) for all ¢ €A4. Given
Lemma 3, we know that R? can be obtained from
R through a finite number of admissible transfor-
mations on elementary cycles. Combining Lem-
mas 1 and 2 we conclude that R® can be obtained
from R through a finite number of admissible
transformations on elementary circuits of length 2
or 3. Thus, using independence of circuits we
obtain > (R) = > (R?%) so that a = (R?) b. Thus,
neutrality implies that b (R) a, which estab-
lishes (3).

Suppose now that Syg(a, R) > Sye(b, R) for
some a, b € 4 and let § = Sy(a, R) — Syg(b, R).
We define the following sets of alternatives:

A,={ceA\{a, b}: R(a, ¢) >0},
A,={de€A\{a, b}: R(b, d) <1},
A;={esA\{a, b}: R(e, a) <1},
A,={f<€A\({a, b}: R(f, b) > 0}.

We denote by B, the complement of A4, in A\
{a, b}.

If
8< ). R(a,c)+ Y. (1-R(b,d))
cEA, d€eA,
+ 2 (1-R(e,a)) + ¥ R(f,b), (5)

ecA, fea,

it is easy to see that it is possible to obtain a
valued relation R identical to R except on the
ordered pairs of alternatives (a, ¢} with c €A,
(e, a) with e € 4;, (b, d) with d € A, and (f, b)
with feA,, such that Syp(a, R) =Sy(b, R).
Thus (3) implies a = (R) b and repeated applica-
tions of strong monotonicity lead to a > (R) b.
Let us show that (5) holds. We have

Snr(a, R) = Z (R(a, c) —R(c, a))
ceA\{a}
= Y R(a,c)— Y. R(e,a)-|B;]
cEA, eEA;
+R(a, b) —R(b, a),
Sne(b, R) = X (R(b,c) —R(c, b))
ceA\(b}
= Z R(b, d) + | B, |
deA,
— L R(f,b) +R(b, a)
feA,
—R(a, b).
Thus

5=2(R(a, b) —R(b, a)) - | B,| - | B, |
+ Y R(a,c)— Y R(e,a)

cEA,| eEA,
— X R(b,d)+ X R(f,b).
deA, feA,

Noticing that | 4,|+|B,| =1 4] -2, it is easy to
see that (5) holds as soon as | 4| = 3. If not, then
A ={a, b}, and define R as R(a, b)=R(b, a) =
R(b, a). Thus a = (R) b by (3) and strong mono-
tonicity leads to a > (R) b which completes the
proof of the Theorem. 0O

Let us finally notice that a similar method of
proof can be used to characterize other ranking
methods based on scores. For instance, a charac-
terization of the ‘leaving flow’ method defined by

ax=(R)biff Y R(a,c)= Y. R(b,c)
ceA\{a} ceA\{b}
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is at hand keeping neutrality unchanged and
modifying monotonicity and independence of cir-
cuit in an obvious way. A similar remark holds for
the method based on (the opposite) of ‘entering
flows’. Other extensions of this method of proof
may be found in Bouyssou and Perny (1990).
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