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Abstract: It has been shown that Arrow's impossibility result can be avoided when the notion of 
aggregation procedure is extended to include procedures leading to more than one relation on the set of 
alternatives. The purpose of this note is to study the structure of these aggregation procedures, 
generalizing previous results obtained by Phillipe Vincke. Under 'Arrowian' conditions, we prove that 
such procedures lead to oligarchies. The size of these oligarchies is discussed. 
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1. Introduction 

A central theme in Social Choice Theory is to 
study how the preferences of several individuals 
for various alternatives can be aggregated in a 
'reasonable' way (see, e.g., Sen, 1986). Starting 
with the work of Arrow (1963), many results show 
that apparently innocuous conditions relating in- 
dividual preferences to social preferences are in- 
compatible. 

Vincke (1982) proved that the situation is 
somewhat different if we do not try to completely 
aggregate individual preferences, i.e. if we con- 
sider aggregation procedures that may lead to 
more than one preference relation at the aggre- 
gate level, these several preference relations be- 
ing interpreted as potential results of a final 
aggregation. A closely related extension has been 
studied by Weymark (1983) who considers aggre- 

gation procedures leading to a single but not 
necessarily complete preference relation. 

The purpose of this note is to study the struc- 
ture of the aggregation procedures proposed by 
Vincke (1982). We introduce our definitions and 
notations in the next section before presenting 
our results in Section 3. 

2. Definitions and notations 

A binary relation S on a set X is a subset of 
X 2. As usual, we write x S y instead of (x, y) ~ S. 

A binary relation S on X is 
- reflexive if x S x for all x ~ X, 
- complete if x S y  or y S x ,  fora l l  x , y ~ X  

and 
- transitive if x S y and y S z imply x S z, for 

all x , y , z ~ X .  
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A complete and transitive binary relation will 
be called a ranking. We define Px as the set of 
all rankings on a set X. 

Given a binary relation S on a set X, we 
denote by a(S)  its asymmetric part, i.e. a binary 
relation on X defined by x a(S)  y if and only if 
[ x S y and Not(y S x)]. 

Given a (strictly) positive integer k and a set 
X, 9 k ( X )  will denote the set of all nonempty 
subsets of X with at most k elements. 

We formalize our problem as follows. Let A 
be a finite set of objects called 'alternatives' with 
at least three elements, and N a finite set, the 
I NI = n elements of N being interpreted as 'in- 
dividuals' having preferences for the alternatives. 
In this note, it is supposed that the individuals 
express their preferences for the alternatives as 
rankings on A and that any ranking on A can be 
the preference relation of some individual. 

Given a (strictly) positive integer k, we define 
a k-aggregation procedure as a function associat- 
ing at most k rankings to any n-tuple of rankings, 
i.e. a function: 

F ' [ P A ] " ~ 9 , ( P A )  

( R , , R 2 , . . . , R , ) ~ F ( R , , R 2 , . . . , R , ) .  

Thus, if k and k '  are (strictly) positive integers 
such that k ~< k ' ,  any k-aggregation procedure is 
a k'-aggregation procedure. 

Vincke (1982) generalizes the classical condi- 
tions introduced by Arrow (1963) for 1-aggrega- 
tion procedures as follows (for notational conve- 
nience, we abbreviate (R1, R2 , . . .  , R n) as ( (R i ) )  
in the rest of this note). For all ((Ri)) ,  ((Ri))  C 
[PA ]" and all a, b c A, a k-aggregation procedure 
F satisfies: 
Condition P. If [a o~(R i) b for all i c N ] =  
[a a (R)  b for all R c F((Ri))] ,  and 
Condition L If ['di E N, (a R i b ¢* a R_i b) and 
(b R i a ¢* b R i a ) ] ~  [ ' d R c F ( ( R i ) )  , : i R c  
F((R_i)) such that (a R b ¢~ a _13 b) and (b R a ,=, 
bR_a)]. 

Let F be a k-aggregation procedure. An indi- 
vidual j c N is said to be a dictator for F if, for 
all profiles ( (R i ) )  , there is an element of F ( ( R i ) )  , 
reflecting all her strict preferences, i.e. V((R i)) c 
[Phi", :tR c F ( ( R i )  ) such that, Va, b c A ,  
[a a(R/ )  b ~ a a ( R )  b]. 

An individual j c N is a weak dictator for F if, 
for all profiles ((Ri)) ,  all her strict preferences 
are reflected in F ( ( R i ) )  , i.e. V ( ( R i ) ) C [ P A ]  n, 
"da, b c A ,  3 R  c F ( ( R i ) )  such that [a a(R/ )  b =, 
a a (R)  b]. 

It is obvious that a dictator is also a weak 
dictator, whereas the converse is not true. 

3. Results 

Within the framework described in the preced- 
ing section, it is easy to see that Arrow's theorem 
can be expressed as: 

Proposition 1. There is no Arrowian 1-aggregation 
procedure without dictator. 

Contrasting with this negative result, Vincke 
(1982) proves: 

Proposition 2. There is a positive integer k_ such 
that there is an Arrowian k-aggregation procedure 
without dictator. 

Thus, by taking a sufficiently large integer k, it 
is always possible to find an Arrowian k-aggrega- 
tion procedure without dictator. This apparently 
positive result would however be disappointing if 
the minimal k for which there is an Arrowian 
k-aggregation procedure without dictator were to 
be large compared to n. This would imply that 
the only Arrowian and non-dictatorial k-aggrega- 
tion procedures are very inefficient. It turns out 
that it is possible to strengthen Proposition 2 as: 

It is easy to see that conditions P and I coin- 
cide with the unanimity and independence condi- 
tions introduced by Arrow (1963) when applied to 
l-aggregation procedures. Thus, following Vincke 
(1982), a k-aggregation procedure satisfying P 
and I is called an Arrowian procedure. 

Proposition 3. There is an Arrowian 2-aggregation 
procedure without dictator. 

Proof. We prove Proposition 3 by giving an exam- 
ple of an Arrowian 2-aggregation procedure with- 
out dictator. Let A = {al, a2 , . . .  , a,n} and let R 1, 



D. Bouyssou / Note on "Arrow's theorem is not a surprising result': 429 

R 2, R 3 and R 4 be the rankings defined by (when 
describing a ranking, it is understood that a pre- 
cedes b in the list if a is strictly preferred to b 
and that alternatives between brackets are indif- 
ferent): 
R 1: al, a2, a3 " ' "  a m - l  am ,  

R2: a m a m - I  a m - 2  ' ' '  a 2 a l ,  

R3: a 2 a |  a 3 a 4 ' ' '  a m _  1 a m, 

R4: a m a m - 1  . . .  a 4 a3 a l  a2 .  
Let f be the 2-aggregation procedure defined by: 

f ( R , , R z , . . . , R n )  

I { R } t2 {R'} 

_ _ R 1 and if R 1 = R 2 . . . . .  R,, 1 = 

R,  = R  2, 

{R1} U {R,},  otherwise. 

It is easy to prove that f has no dictator and 
satisfies P and I. [] 

Thus, as soon as k >/2, there is an Arrowian 
k-aggregation procedure without dictator. Let us 
observe however that, in the example used in the 
proof of Proposition 3, both 1 and n are weak 
dictators. This is not surprising since Vincke 
(1982) proves: 

Proposition 4. There is no Arrowian k-aggregation 
procedure without weak dictator. 

Our next proposition shows that Proposition 4 
can be greatly strengthened. Given a k-aggrega- 
tion procedure F, define an oligarchy 0 as a 
subset of N such that for all a, b c A  and all 
( ( R i ) ) ~ [ P A l n :  

a a ( R j )  b f o r a l l j e O  

a a ( R )  b foral l  R e F ( ( R i )  ), 

a a ( R j )  b f o r s o m e j e O  

=, a a ( R )  b forsome R ~ F ( ( R i )  ). 

In the example used in the proof of Proposi- 
tion 3, {1, n} is an oligarchy. By definition, all 
members of an oligarchy are weak dictators. Con- 
versely, it is easy to see that an oligarchy must 
include all weak dictators. We have: 

Proposition 5. Every Arrowian k-aggregation pro- 
cedure has a unique oligarchy. 

Proof. Proposition 5 is a direct consequence of 
Theorem 1 in Weymark (1983) stating that, for all 
functions G associating a reflexive and transitive 
binary relation on A to any n-tuple of rankings 
on A and satisfying conditions I and P, there is a 
nonempty subset O of N such that, for all a, b 
A and all ( ( R i ) ) E [ P A ] n :  

a ot(R.i ) b 

for a l l j ~ O  ~ a a ( S )  b, 

for s o m e j c O  = N o t ( b S a )  

where S = G((Ri)) .  
Consider the function g defined on [PA]n by: 

N R 
R~-F((Ri))  

where F is an Arrowian k-aggregation proce- 
dure. It is easily checked that g satisfies all the 
conditions of the theorem of Weymark. Given the 
definition of an oligarchy, this proves that F has 
an oligarchy. The proof is completed observing 
that there can be at most one oligarchy since if O 
and Q are distinct oligarchies, a a(Rj) b for all 
j ~ O and b a(R t) a for some l ~  Q \ O  would 
imply a a(R) b and b a(R)  a. [] 

From Proposition 5, we know that a k-aggre- 
gation procedure concentrates much power in the 
hands of the members of the unique oligarchy O. 
We conclude this note by some remarks about 
the size [OI of this oligarchy. 

Proposition 1 says that when k = 1, then there 
is a dictator so that IOI  = 1. Apart from this 
degenerate case it is difficult, in general, to evalu- 
ate tO I. Based on well-known results about the 
dimension of a partial order (see, e.g., Dushnick 
and Miller, 1941, or Doignon et al., 1984), it is 
possible to obtain a simple result when it is 
supposed that the set of alternatives is sufficiently 
rich. We have: 

Proposition 6. As soon as I AI  >t 2(k + 1), the size 
of  the oligarchy associated to an Arrowian k-aggre- 
gation procedure is at most k. 

Proof. Let A = {a l, az , . . . , a2 j ,+2 , . . . , am} and F 
be an Arrowian k-aggregation procedure on A. 
Suppose that F has an oligarchy O = 
{Jl, J 2 , " ' ,  Jr} C N with I O I = r > k. Consider the 
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following preferences for the r members of the 
oligarchy: 

J l :  a 2  a 3  " " ' a k +  I --ak+2 _al a k + 3  a t e + 4  ' ' ' a 2 k + 2  [ a 2 k + 3  " • ' a m ] ,  

J2:  a l  a 3  a 4 ~ . . a k  + l _ak+3 -----2 a k  + 2 ak -~4  a k  + 5 " " " a 2 k + 2  [ a 2 k  + 3 . . . a m ] ,  

J3: a l  a2 a4  a s . . - a k  + l _ak+4 _a3 a k  + 2 a k  + 3 a k  + 5 a t +  6 • • • a 2 k + 2  [ a 2 k  + 3 . . . a m ]  , 

J k + l :  a l  a 2  a 3  ' "" a k  a 2 k + 2  a k + l  a k + 2  a k +  3 " " " a 2 k + l  [ a 2 t t + 3 . . . a m ] ,  

J k + 2 ,  J k + 3  . . . . .  Jr:  [a l  a 2 . . . a k  + ~ ][ ag  + 2 a k  + 3 . . . a 2 k  + z ][ a 2 k  + 3 . . . a m ] .  

Since Jx is a member of the oligarchy, we know 
that ak+ 2 a ( R  1) a I for some R 1 ~ F ( ( R i > ) .  For 
all j ~ O, we have: 

a l o ~ ( R ~ ) a  t for l = k + 3 ,  k + 4 , . . . , m ,  and 

a t , a ( R j )  ag+ 2 for l ' = 2 , 3 , . . . , k + 1 .  

Thus, given the definition of an oligarchy, these 
preferences must be part of all the elements of 
F((Ri>) .  Since ak+ 2 a ( R  1) al, it is easy to see 
that R 1 cannot contain any of the k other under- 
lined preferences. Applying a similar argument to 
all the underlined preferences shows that 
J F((R~>)I >~k+ 1, contradicting the fact that F 
is a k-aggregation procedure. [] 

This last result is easily interpreted. When k is 
small, a k-aggregation procedure gives much 
power to a small group of individuals since the 
oligarchy contains at most k individuals. Larger 
values of k allow a fairer distribution of power 
but at the cost of a loss of efficiency. Thus, if the 

reasonableness of conditions P and I is admitted, 
Proposition 6 establishes a tradeoff between effi- 
ciency and democracy for k-aggregation proce- 
dures. In this framework, Arrow's theorem can 
be seen as depicting an extreme aspect of this 
tradeoff: when efficiency is at its maximum, 
democracy is at its minimum. 
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