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Abstract: This paper presents general definitions of compensation and noncompensation in M C D M  within 
the framework of Multiattribute Preference Structures. The interest of using a more or less compensatory 
aggregation procedure is discussed. General aggregation procedures, that allow to mix compensatory and 
noncompensatory features in a consistent way, are introduced. They receive a complete axiomatic 
treatment for the two-attribute case, and it is shown that they contain most currently used aggregation 
procedures as particular cases: 
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Introduction 

Aggregating several dimensions, as this is done 
in MCDM, implies taking a position on the prob- 
lem of 'compensation' .  Surprisingly enough, this 
topic is absent from the subject index of most 
textbooks on M C D M  (see Zeleny (1982), 
Goicochea et al. (1982), Chankong and Haimes 
(1983), Keeney and Raiffa (1976)). When it is 
dealt with explicitely, compensation seems a con- 
troversial topic since, for instance, Hwang and 
Yoon (1981, p. 25) classify ELECTRE I and II  as 
'compensatory ' ,  whereas Bouyssou and Vansnick 
(1985) use them to illustrate 'noncompensatory '  
aggregation procedures. Nevertheless, the litera- 
ture on M C D M  very often appeals to notions such 
as ' weights', ' tradeoffs', ' lexicographic order'  . . .  
which, intuitively are closely related to the prob- 
lem of compensation. 

This paper intends to clarify this notion. Its 
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first section is devoted to the study of possible 
formal definitions of compensation. In a second 
section, we shall analyse some desirable properties 
of M C D M  aggregation procedures (MCDM a.p. 
in the sequel) as regards to compensation. The last 
two sections will analyse a number  of M C D M  a.p. 
in the light of these properties. 

1. On possible definitions of compensation 

The aim of this section is to propose fairly 
general definitions of the notion of compensation. 
We first argue that meaningful definitions of com- 
pensation can only be obtained within the frame- 
work of the preference structures encountered in 
MCDM. The rest of the section is devoted to new 
definitions of noncompensation and compensa- 
tion. 

1.1. Multiattribute preference structures 

Intuitively, compensation refers to the existence 
of ' t radeoffs ' ,  i.e. the possibility of offsetting a 
'disadvantage'  on some attribute by a sufficiently 
large 'advantage'  on another a t t r ibute--whereas  
smaller 'advantages '  would not do the same. Previ- 
ous works on the notion of compensation (e.g. 
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Plott et al. (1975), Fishburn (1976 and 1978), 
Bouyssou and Vansnick (1985)) have concentrated 
on the problem of the 'compensatoriness '  of a 
preference relation on multiattributed alternatives. 
The basic idea used in these papers is simple: A 
preference relation is noncompensatory if no 
tradeoffs occur and is compensatory otherwise. 
The definition of compensation therefore boils 
down to that of a tradeoff. 

In order to arrive at such a definition, it is 
essential to know what is to be considered as an 
'advantage '  or as a 'disadvantage'  on an attribute 
or on a group of attributes. In the general case 
(e.g. when no independence hypotheses are in- 
volved) this is obviously very difficult and of little 
practical interest. In this section, we shall restrict 
our attention to a particular case that seems to us 
representative of the type of situations encoun- 
tered in MCDM.  

Let X, a set of alternatives, be the cartesian 
product  of n nonempty s e t s  X1, X 2 . . . . .  X n. An 
M C D M  a.p. can be seen as a way of building a 
global preference relation ~ on X on the basis of 
a preference relation ~ on each X, and ' some 
other information'.  This is mostly done supposing 
some kind of numerical translation of the ~ and 
the 'other  information' .  Given ~1, ~2 , . . . ,  >~n, 
we expect ~ to satisfy a number of properties, if 
it has been obtained using an M C D M  a.p. We 
shall say that (X, ~ ,  >~1, a2 . . . . .  an)  is a multi- 
attribute preference structure (MPS) if: 

(1) ~ is reflexive and independent (see Krantz 
et al. (1971, p. 301) for a definition); 

(2) for all i ~ {1, 2 . . . . .  n }, ~i is complete and 

Xi ~ i  Yi iff x i ~° i Yi; 
(3) for all x, y ~ X ,  for all i ~ { 1 , 2  . . . . .  n} 

and z~, w, ~ X~, x >-y and z+ >"i Xi imply 
(zj,(x+)j**)>-y; x>'y and y~>-iw i imply x>- 
(wi, (Yi) j , i ) ;  where ~0 is the binary relation on 
I - I ~ , X ,  deduced from a by independence 
(throughout the paper  we shall use >-, - ,  >-,, -1  
in the usual way, i.e. x > - y  iff x>~y and not 
y ~ x ,  x - y i f f x ~ y a n d  y>~x). 

The reflexivity of a is hardly a limitation. The 
independence hypothesis may seem much more 
restrictive. Nevertheless most M C D M  a.p., often 
implicitly, use independence in order to arrive at 

. Part two of the definition requires each ~ to 
be complete, which seems unrestrictive at least in 
the deterministic case. 

It also requires that each ~ ,  is 'preserved'  in 

the global preference relation. This seems plausible 
if ~ is interpreted as a preference relation be- 
tween ' real '  evaluations (as opposed to ' ideal '  one 
- - s e e  Roy and Bouyssou (1985, 1986) or Roy 
(1985) on this point). Therefore, we shall not dis- 
tinguish ~ from ~° in the sequel. The last condi- 
tion is the most important  part  of this definition. 
It  states a monotonicity condition that, in our 
opinion, allows to speak of 'advantages '  and 'dis- 
advantages'  in a consistent way. It is easily seen 
that in a conjunction with (1) and (2), it entails the 
transitivity of each >-~ and that x~ >-~ y~ for all 
i ~ I c  {1, 2 . . . . .  n} implies(xi)i~t> -° (Yi)iei. As 
will become apparent later, a much more demand- 
ing condition is obtained if we replace >'i by a i  
in part  three of the definition. Although these 
conditions may seem too restrictive from a purely 
theoretical point of view, we are not aware of any 
M C D M  a.p. that does not produce MPS. 

1.2. Noncornpensatory MPS 

Within the framework of a MPS, the definition 
of an 'advantage '  and of a 'disadvantage'  is rather 
obvious. When comparing x to y, attributes for 
which x i >-~ Yi favor x and attributes for which 
Yi >'~ x~ favor y. Given part  (3) of our definition, it 
makes sense to partition (1, 2 . . . . .  n} into three 
sets: 

P ( x , y ) = ( i ~ ( 1 , 2  . . . . .  n ) :  xi>-iYi} , 

P ( y , x ) = { i ~ { 1 , 2  . . . . .  n}:  yi>-,x,),  

and 

I (x ,  y ) =  I ( y ,  x)  

= { i ~  (1, 2 , . . . , n ) :  x i - i y i } .  

In this context, it seem legitimate to say that 
P(x, y) represents an 'advantage '  when compar- 
ing x to y and P(y,  x)  a 'disadvantage' .  How- 
ever, the status of attributes in I(x, y) is ambigu- 
ous. In previous definitions of noncompensation, 
it was implicitely assumed that they were neutral 
relatively to the comparison of x and y. When all 
~ are transitive this seems, in general, reasonable. 
However if -~ are not supposed to be transitive 
this is much more open to criticism. In fact our 
definition of a MPS does not exclude cases like: 
Xi~ iY  i for all i ~ I  and ((xi)i~l,(Zj)j~l)>- 
((Y~)i~I,(Zj)/~i), in which the conjunction of 
'non-noticeable '  advantages on some attributes 
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may create an overall effect. If  the non-transitivity 
of - i  is due to perception thresholds we might 
want to exclude this possibility (x i - i  y, would 
mean in this context that it is impossible to dis- 
tinguish x i from Yi). However as argued by Roy 
and Bouyssou (1985), the non transitivity of % is 
much more often due to the fact that it is essential 
to build a convincing preference structure on each 
attribute before aggregating them, a case in which 
attributes in I(x, y)  might not be neutral. (An 
intermediate situation arises when there is a unique 
weak order underlying each ~i, e.g. when ~i is a 
semi-order. In this case, it would be possible, using 
the underlying weak orders, to partition further 
I(x, y) between, neutral, slightly favorable and 
slightly unfavorable attributes.) 

Within this framework we propose the follow- 
ing 

Definition. A MPS (X, ~,  ~a , ~2 . . . . .  ~ n )  is 
(a) totally noncompensatory iff for all x, y, z, 
w~X,  

(x, y )M(z ,w)  ~ [ x B y i f f z ~ w ] ,  

(b) noncompensatory iff for all x, y, z, w ~ X, 

(x, y)M(z,  w) 

[(x>'y ~ N o t w ~ z ) a n d  

( x - y  ~ Not w >- z and Not z >- w)] , 

where M is a binary relation on X 2 that reads 
'have  the same preferential profile than' and is 
defined by 

- either (x ,  y)M(z,  w) 
iff P(x, y )=P(z ,  w) 
and P(y, x)= P(w, z) .(  M~) 

- or (x, y)M(z,  w) 
iff P(x, y ) = e ( z ,  w) 

P(y, x)=P(w, z) 
and xi=Yi ,  zi = wi 

for all i~lr(x, y) ' (M2).  

Using M~, our definition of total noncompensa- 
tion amounts to the ' regular noncompensatory 
preference structures' in Fishburn (1976). From 
the preceding discussion it is clear that this defini- 
tion of M should only b_e used either when all ~ i 
are transitive or when we have good reasons to 

consider that the conjunction of small differences 
remains a small difference. The implications of 
this type of noncompensation (in fact a slightly 
more restrictive one since ~ is not supposed to be 
complete here) have been thoroughly studied by 
Fishburn (1976) and Bouyssou and Vansnick 
(1985). It will suffice to say that it allows the 
definition of a 'more  important than' relation be- 
tween disjoint subsets of attributes ( I  >> J iff x >-y 
for some x, y ~ X such that P(x, y) = I, P(y, x) 
= J ,  I - - - J  iff x - y  for some x, y ~ X such that 
P(x, y) = I, P(y, x) = J) that can be, under cer- 
tain conditions, represented by means of additive 
weights. When this is the case, the model obtained 
is very close to the concordance part  of the ELEC- 
TR[ I and II  methods (Roy, 1968; Roy and Bertier, 
1973). It can be shown that the lexicographic order 
is a particular case of our definition. As noted in 
Fishburn (1978) the conjunctive and disjunctive 
screening models do not fit too well into this 
definition. This is due to the fact that they do not 
aim at constructing a global preference but rather 
at separing acceptable from unacceptable actions. 

Still using M 1, the notion of noncompensation 
introduced here is very close to the idea of 'gener- 
alized noncompensation'  i n  Bouyssou and Vans- 
nick (1985). As total noncompensation, it forbids 
reversals of preference when actions have the same 
preferential profile but introduces the possibility 
of incomparability. (Not w ~ z implies either that 
z >- w or that z and w are incomparable). It allows 
to account for possible discordance effects, as 
introduced in the ELECTRE methods. It is easily 
seen that within this case, it is also possible to 
define an importance relation on disjoint subsets 
of attributes. It has been shown in the aforemen- 
tioned paper that when the discordance effects are 
sufficiently well-behaved, it is possible to define 
some kind of veto thresholds, avoiding to have 
x >~y when there is an attribute in P(y, x) for 
which y is judged ' fa r  better '  than x. The implica- 
tions of noncompensation underlie the ELECTRE I 
and II  methods and have been fully exploited in 
the TACTIC method (Vansnick, 1986). 

Obviously, much more general definitions of 
noncompensation are obtained using M 2 instead 
of 341. These definitions have not been studied in 
literature for they do not guarantee any more the 
existence of an unambiguous correspondence be- 
tween >~ on X and an importance relation on the 
set of subsets of attributes. 
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1.3. Compensatory MPS 

Considering the fact that noncompensation 
amounts to forbidding tradeoffs, it seems reasona- 
ble to say that a MPS is minimally compensatory 
when it is not noncompensatory. Using M 2, we 
thus obtain a definition of minimal compensation 
that generalizes that of Fishburn (1978): 

Definition. A MPS (X, ~, ~1, ~2 . . . . .  ~ )  is 
minimally compensatory iff P(x, y )=  P(z, w), 
P(y,  x ) =  P(w, z), x i=yi and z i=w i for all i ~  
I(x, y), x ~ y  and w>-z for some x, y, z, w ~ X .  

In this case we say that the attributes in P(x, y) 
minimally compensate those in P(y,  x). 

Though compensation has traditionally been 
associated, often implicitly, with the possibility of 
'matching' exactly some positive difference on I 
by some negative difference on J (this is the idea 
underlying the use of indifference curves), this 
definition appears much too restrictive when X is 
supposed to be finite. This notion of minimal 
compensation can be strengthened in several direc- 
tions. A notion of ' total  minimal compensation' 
can be obtained if we require that given any 
nonempty disjoint subsets of attributes I and J, I 
minimally compensates J. Furthermore, it is possi- 
ble to say that I 'strongly compensates' J requir- 
ing that for all x, y ~ X such that x >-y, P(x, y) 
= J, P(y, x) = I, there is a z ~ X such that z ~ x 
and zi =yi  for all i ~ I. Therefore a notion of 
perfect compensation is at hand if we ask for 
strong compensation to hold both ways between 
any two disjoint (nonempty) subsets of attributes. 
Strong compensation imposes severe structural re- 
strictions on X. The reader may find interesting to 
compare this notion with the solvability assump- 
tions used in the additive conjoint measurement 
(Krantz et al., 1971, Chapter 6). 

1.4. Compensatory and noncompensatory MCDM 
a.p. 

Though, in our opinion, no MCDM a.p. can 
pretend to be able to deal, in a reasonable way, 
with any type of set X and of preferences ~a, ~2 
. . . . .  ~ (the case in which n is large but X 
contains a small number of actions is typically not 
covered by most MCDM a.p.), they generally have 
a domain of application including many types of 
X and of ~ .  

The way each a.p. transforms information in 
order to arrive at ~ can be called its 'aggregation 
convention', which is generally well illustrated by 
the numerical transformation used. In order to 
avoid useless definition, we just propose at this 
point to say that the aggregation convention of an 
a.p. is minimally compensatory if for some set X, 
some ~a, ~ 2  . . . . .  ~ n  (land some other informa- 
tion), it can produce a relation ~ in which I 
minimally compensates J, for some I, J and non- 
compensatory otherwise. Clearly, the convention 
underlying the additive utility model ( x ~ y  iff 

n ~ n Ei=lu i (x i )~ i=lu i (y i ) )  is minimally compensa- 
tory whereas a lexicographic or a concordance-dis- 
cordance convention is noncompensatory. 

From a practical point of view, these definitions 
are far from being completely satisfactory since 
they do not allow to rank a.p. from the most to the 
least compensatory (but from the preceding dis- 
cussion we feel that such an objective will prob- 
ably be very difficult to reach in the general case). 
They nevertheless give a basis to discuss the de- 
sirable properties that an a.p. should exhibit as 
regards to compensation. 

2. The 'compensatoriness' of aggregation proce- 
dures 

The idea that MCDM a.p. should be minimally 
compensatory underlies most of the work that has 
been done in this area, notable exceptions being 
the methods using outranking relations based on a 
concordance-discordance principle. In fact, the ad- 
ditive utility model is certainly the most popular 
a.p. in the field of MCDM. However, non- 
compensatory a.p. do have a number of very inter- 
esting features. First, by definition, they only re- 
quire 'inter-attribute' information in terms of an 
importance relation and discordance set. Within 
the context of highly complex and conflictual deci- 
sion processes, this may prove fruitful since such 
a.p. do not force the decision makers to express 
t radeoffs- -a  highly sensitive information indeed. 
Secondly, noncompensatory a.p., when they ap- 
peal to the idea of a veto effect, tend to ' rank'  
actions with 'well-balanced' evaluations before ac- 
tions that may be well evaluated on a number of 
attributes but are very bad on others (in some 
situations, compensatory a.p. may produce a re- 
verse ranking). Such a tendency appears to be very 
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desirable since it may facilitate negociations be- 
tween actors having strongly conflictual value sys- 
tems (Bouyssou, 1984). It follows from there that 
one may wish to use an a.p. having some noncom- 
pensatory features, without ignoring the fact that 
people do make tradeoffs, but simply because such 
a.p. can prove very efficient to construct a rea- 
sonable global preference relation (for arguments 
favoring the use of some noncompensation in other 
contexts, we refer to Einhorn (1970)). 

As local tradeoffs are generally easily expressed, 
it may thus be interesting in many situations to 
use an a.p. that is sufficiently flexible to admit 
compensation for small 'preference differences' 
and noncompensation elsewhere (see also Luce 
(1978) who emphasizes the interest of such models 
from a descriptive point of view). This idea under- 
lies the next two sections. 

It should be emphasized that standard com- 
pensatory a.p. (e.g. the additive utility model or 
the additive difference model) can be used to 
generate preference relations exhibiting only local 
tradeoffs in certain cases (in a 'paramorphic'  sense, 
see Einhorn (1970) on this point). However the 
noncompensatory component (this could be for- 
mally defined saying that the MPS (X, ~, ~1, 
~2 . . . . .  ~n) is minimally compensatory but 
that for some ~ ,  ~ . . . . .  ~ ' )  such that >-" 
c~- i  for all i ~ ( 1 , 2  . . . . .  n}, (X, ~,  ~(, ~ 
. . . . .  ~ ' )  is noncompensatory) of preference re- 
lations exhibited by such compensatory a.p. is not 
truly noncompensatory in that it is only due to the 
particular evaluations of the alternatives and not 
the way they are aggregated. From a practical 
point of view (in a constructive perspective) this is 
essential since, in order to implement such a.p., the 
analyst has to gather inter-attribute information 
with a compensatory scheme in mind. Here we are 
interested in a.p. that are flexible enough to allow 
to gather information using a ' t radeoff  reasoning' 
for small preference differences and a noncom- 
pensatory one elsewhere. 

At this point, it may be worth mentioning that 
a common argument against the use of noncom- 
pensatory a.p. is that they may produce non-tran- 
sitive global preferences ~. As we shall see, this is 
not specific to noncompensatory a.p. As regards to 
the transitivity of >- (that of - is liable to the 
classical criticisms of the transitivity of indif- 
ference), let us only mention that from the descrip- 
tive (May, 1954; Tversky, 1969), normative (Bur- 

ros, 1979) and prescriptive (see the numerous ap- 
plications of the ELECTR~ methods as reported in 
Siskos et al. (1983)) points of view, it does not 
seem to be a compulsory requirement. When in- 
transitivities do exist then, depending on the na- 
ture of the decision problem, one may implement 
a number of methods to use ~ in order to arrive 
at a decision prescription. Since this is out of the 
scope of the a.p. we shall not deal with this 
problem explicitly. Let us only mention here that 
these methods may sometimes obscure the more or 
less compensatory nature of the preference re- 
lation produced by the a.p. 

3. A review of some aggregation procedures 

This section will review a number of a.p. being 
rather flexible as regards to compensation. We will 
identify an a.p. with the numerical translation of 
preferential information it uses. The problem of 
the axiomatic foundations of MCDM a.p. is dif- 
fered to the next section. 

In a recent and illuminating paper Jacquet- 
Lagrrze (1982) has shown how most MCDM a.p. 
derive from the same general and, in fact, very 
intuitive principles. In order to compare x to y, a 
very general procedure consists in weighting the 
pros and cons of the assertion 'x is at least as good 
as y '  and in declaring that 'x is at least as good as 
y '  if the pros clearly outweight the cons. Obvi- 
ously, one may be more or less confident in the 
assertion depending on the difference in 'weights'. 
It should be noticed that, when more than two 
actions are to be compared, this 'weighting' tech- 
nique does not guarantee that comparisons will be 
transitive, since transitivity is essentially a ternary 
property. 

Jacquet-Lagrrze (1982) has shown that most 
MCDM methods evaluate the pros (resp. the cons) 
as the sum of pros (resp. cons) on each attribute, 
and that on each attribute pros and cons are 
evaluated on the basis of a binary relation ~i and 
'some other information' mainly concerning the 
importance of the attribute and evaluation of 
'preference differences'. This general framework 
proves very fruitful for analysing MCDM a.p. 
from the point of view of compensation for it is 
sufficiently general to include compensatory and 
noncompensatory a.p. as particular cases. We shall 
restrict our attention in this paper to a.p. ex- 
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hibiting only one type of global preference rela- 
tion. 

The additive difference model was proposed by 
Tversky (1969) in order to account for intransitive 
~,  using a very natural intra-dimensional informa- 
tion processing strategy perfectly in line with the 
idea of additivity of pros and cons. Stated for- 
mally a preference relation ~ satisfies the ad- 
ditive difference model if there exist real-valued 
functions ul, u 2 . . . . .  u n and increasing functions 
~1, ~2 . . . . .  ~ defined on some real intervals such 
that 

x ~ y  iff ~dP~(u~(x, ) -u , (y~))>~O (1) 
i = 1  

and 

~ i ( - 6 ) = - t ~ i ( 8  ) f o r a l l i ~  (1 ,2  . . . . .  n} ( l 'a)  

and for all 6 ~ R such that 

u i ( x , )  - ui(Yi)  = 6 for some xi,  Yi ~ Xi. 

Keeping in line with the original work of 
Tversky, it has always been understood that the 
difference functions ~ should be strictly increas- 
ing. 

Apart from the fact that (1) and (l 'a) imply that 
is complete, which may not always be realistic 

for decision-aid purposes (see Roy (1985)), the 
additive difference model has two major draw- 
backs that were already noted by Fishburn (1980). 
Eqs. (1) and (l'a), together with the hypothese of 
strictly increasing ~ ,  obviously imply that ~ has 
no truly noncompensatory component and that 
the preference relations on each attribute (which 
are unambiguously defined since (1) and (l 'a) 
imply that ~ is independent) are complete and 
transitive. 

These two severe limitations are absent if we 
suppose that the difference functions are only 
increasing (i.e. 6 > ~ '  ~ ~ i (8 )>~i (~ ' ) ) .  This 
gives rise to what we could call a 'weak additive 
difference model'. Though flat portions of ~ may 
seem strange, they allow to drop the assumption of 
the transitivity of -~ retaining only that of >-~, 
which seems realistic in many contexts. Further- 
more the weak additive difference model allows to 
mix compensatory and noncompensatory aspects 
in the same model, keeping in line with a growing 
literature on this topic (see Luce (1978) and Fish- 

burn (1980)). It is easy to see that a flat ~ around 
0 entails a nontransitive -~ whereas a flat q~, for 
large differences indicates that only local tradeoffs 
o c c u r .  

Keeping in line with the idea of additivity of 
pros and cons, it is possible to envisage a much 
more general MCDM a.p. requiring the existence 
of real valued functions p~ or Xi 2 such that 

x ~ y  iff ~ p ~ ( x  i, yi)>~O (2) 
i=1  

and 

p i ( x i ,  Y i )= - P i ( Y i ,  x i )  

for all i = 1, 2 . . . . .  n and for all x~, Yi ~ X~. 

(2'a) 

Conditions (l 'a) and (2'a) impose a strong ra- 
tionality requirement on the weights of pros and 
cons implying that ~ is necessarily complete. 
Much more general models can be obtained re- 
spectively replacing these conditions by: 

* i ( 8 ) . d P i ( - 8 ) < ~ O  f o r a l l i ~ ( 1 , 2  . . . . .  n} 

and for all 8 ~ R such that 

u i ( x , )  - u i (y i )  = 8 for some x,, Yi ~ Xi ( l 'b)  

and 
p i ( x , ,  Yi)"Pi(Yi ,  x , )  <~ 0 

for all i ~ { 1, 2 . . . . .  n } and for all x,, Yi ~ X~. 

(2'b) 

Using these conditions, (1) and (2) allow incom- 
parability and take into account possible discor- 
dance effects that imply that some cons are 'in- 
tolerable'. The price to pay for the generality of 
these models is that discordance is introduced 
additively, which may be open to criticism. 

All these models imply that ~ is independent 
and, denoting by ~ the relation induced on X, 
by independence, we have the following 

Prolmsition. (1) I f  ~ on X satisfies (1) with either 
(l 'a) or (l'b), then (X ,  ~,  ~2 . . . . .  ~ n )  is a MPS.  

(2) I f  ~ on x satisfies (2) with either (2'a) or 
(2'b) then ( X, ~,  ~1, ~2 . . . . .  ~ , )  is a M P S  if  

x, >-, Yi '~ p i ( x i ,  zi)  >~ P,(Y~, z ,)  and 

P(Zi ,  Yi) >~Pi(Zi, x i )  f o ra l l i  ~ {1, 2 . . . . .  n )  

and for all x i , Yi, zi ~ Xi. 

(3) 
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Proof. Left to the reader. 

The additive utility model or the TACTIC method 
(as presented in Bouyssou and Vansnick (1985)) 
obviously are particular cases of these models. 
This is not the case for ELECTRE I and II due to 
their treatment of attributes in l(x, y). Taking 
them into account would require a reformulation 
of ( l 'b)  and (2'b). 

The link between these models and methods 
building a valued global preference relation (such 
as ELECTRE II I - -see  Roy (1978) or PROME- 
THEE--see Brans and Vincke (1982), and also the 
pioneering work of Goodman (1951)) is more sub- 
tle since, in general, these methods directly use the 
valued preference relation to arrive at a prescrip- 
tion without building, as an intermediate step, a 
non-necessarily transitive ~, which could be 
analyzed in our framework. However, if we inter- 
pret the valued preference relation by declaring 
x ~ y  iff the value attached to the arc (x, y)  is 
greater or equal than the value attached to (y,  x) 
- - a n d  we feel that this interpretation is in line 
with the 'flow' technique used in PROMETHEE--the 
link becomes obvious. On the contrary, i f - -as  the 
distillation algorithm of ELECTRE III suggests--we 
declare that x ~ y iff the value attached to the arc 
(x, y)  exceeds some threshold, our model would 
require some more sophistication to encompass 
this case. 

A rather unpleasant feature of these a.p. is that 
they imply the neutrality of attributes in I(x, y). 
As discussed earlier, this is probably too restric- 
tive. The addition of a threshold in the formula- 
tion of (1) and (2) would overcome this difficulty 
but, since this was not critical for our purposes, we 
did not analyse this point further. 

The a.p. presented in this section may seem 
exceedingly general and are compatible with many 
different interpretations, some of which being ob- 
viously out of the scope of MCDM. Their interest 
nevertheless lies in the fact that they contain many 
methods as particular cases and remain completely 
flexible from the point of view of both transitivity 
and compensation. 

4. On the axiomatization of MCDM aggregation 
procedures 

In the preceding section we introduced a variety 
of rather flexible a.p. and it may be interesting to 

know whether they can be axiomatized from a 
measurement theoretic point of view. Though it 
would be illusory to think that such an axiomatic 
analysis can give a justification to those a.p. (see 
Roy and Bouyssou (1986)), it surely allows a de- 
eper understanding of the methods using them. 

All the structures we introduced fall into what 
Krantz et al. (1971) called nondecomposable con- 
joint structures. Until recently this kind of struc- 
tures received little attention, most of the axiomatic 
work dealing with multiattribute preferences hav- 
ing been done within the framework of classical 
utility theory. However, beginning with the work 
of Tversky (1969), there seems to be a growing 
interest in this topic as shown by the works of 
Fishburn (1978, 1980, 1985), Luce (1978), Huber 
(1979), Roy (1985), Croon (1984), Bouyssou and 
Vansnick (1986). 

With the emphasis on compensation, an im- 
portant problem is the choice of appropriate 
structural assumptions in order to obtain the de- 
sired representation, since those structural as- 
sumptions may render void some interpretations 
of the a.p.. For instance if we need to use unre- 
stricted solvability (see Krantz et al. (1971, p. 256) 
for a precise definition) in our axioms then any 
kind of noncompensation is obviously excluded. 
In order to maintain the flexibility of the interpre- 
tation of these models, one is bound to use re- 
stricted solvability--see Krantz et al. (1971)--or a 
density condition. Thus the choice between two 
sets of structural assumptions is much more criti- 
cal here than it is for standard additive conjoint 
measurement. This problem is not purely technical 
since it is well-known that unicity results vitaly 
depend on structural assumptions. One possible 
way to avoid this problem has been taken by Luce 
(1978). In order to combine a two-component 
additive utility model for small differences and a 
lexicographic ordering elsewhere, he explicitly 
states in his axioms where compensation is sup- 
posed to take place (the notion of 'small' dif- 
ferences is captured through the definition of 'in- 
difference intervals'), i.e. where structural assump- 
tions can be safely imposed. A similar step has 
been taken by Fishburn (1980), though his use of 
topological concepts renders difficult the interpre- 
tation of his structural assumptions (that Croon 
(1984) attempted to recast into an algebraic format 
using extremely strong solvability conditions), in 
order to axiomatize a two-component additive dif- 
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ference model for 'small '  differences together with 
a lexicographic ordering. It  should also be men- 
tioned tlaat Beals et al. (1968) and Tversky and 
Krantz  (1970) have proposed in the context of 
similarity judgements models resembling (1) and 
(2). However their axioms are not easily transposa- 
ble into a preferential context. 

Throughout the rest of the paper  we shall re- 
strict our attention to the n = 2 case. As will 
become apparent,  this case is fundamentally dif- 
ferent from the n >/3 case for it is strongly related 
to ordinal rather than conjoint measurement (and 
this explains why we will not state unicity results 
here). We have the following Theorem. 

Theorem 1. Let  ~ be a binary relation on a finite 
or denumerable set )(1 x X 2. There exist two real- 
valued functions satisfying (2) and (2'a) i f f  
AI:  ~ i s  complete i.e. x ~ y  or y ~ x  for all x, 

y ~ X and 
A2: ~ verifies triple cancellation i.e. for  all x 1, yl,  

Zl, W1 ~ g l ,  x2, Y2, z2, w2 ~ S2, XlX2 ~YlY2 ,  
y~z 2 ~ XlW 2 and zaw 2 ~ w~z 2 --* z~x 2 ~ w l y  2. 

Proof. Necessity is obvious. Sufficiency is 
straightforward. First observe that we can always 
suppose without loss of generality that X~ ~ X 2 = 
~, since we can build a disjoint duplication of 
these sets as this is done in Doignon et al. (1984). 
Let us consider the binary relation B on X 2 tO X 2 
defined by 

aflB2t8 iff a,B~x~,x,8 
a,B~x2, x,~ 
a , B , x , ~ x ~  
a,B,x,8~x2 

X 2 and a6 >- fiX, 

X 1 and 8a >" Aft, 

and aft >'1 ~ ,  

and a/3 >'2 ~k~, 

where x l y  I >'7 ZIW1 iff Xa, Yl, Zl, Wl ~ Xa and 
[XlX2 >'YlYz and w l y  2 ~ ZIX2] or  [XlX 2 ~YlY2 and 
%Y2 >. zlx2] for some x 2, Y2 ~ )(2 and x 2 y  2 >.~ 

ZzW 2 iff x 2, Y2, z2, w2 ~ X2 and [XaX 2 >.YlYz and 
ylwZ ~ XlZ2] or [ x l x z  ~ y l y z  and ylwz >. x lz2]  for 
some x a, y~ ~ X 1. 

Given the definition of B we claim that the 
desired representation exists if B is asymmetric 
and negatively transitive. Indeed, since X12 U X2 2 is 
countable, it admits a numerical representation h 
and we have 

x lx2  >'Y, Y2 iff h ( x  1, Yl) > h(y2 ,  x2) 

iff h ( x 2 ,  Y2) > h ( Y l ,  Xa). 

To obtain the desired representation, it suffices to 
take 

p l ( x l ,  y l ) = h ( X l ,  y l ) - h ( y l ,  x l )  

and 

p2(x2,  Y E ) = h ( x 2 ,  y E ) - h ( y 2 ,  x2).  

The proof that A a and A s imply that B is a weak 
order is long but straightforward and is left to the 
reader. [] 

This very simple result prompts  a series of 
remarks. First, ~ being reflexive by A~, A 2 im- 
plies that it is independent which is not surprising. 
Secondly, it is easily seen that the representation 
obtained is not regular (i.e. Pi(Xi, Yi)=P~(Zi, w~) 
does not imply that p;(x , ,  y i )=p~(z i ,  wi) for all 
other admissible representations p~). Thirdly, using 
an appropriate order density condition, this result 
can be generalized to the non-countable case. 
Fourthly, we conjecture that no such results are 
available for the n >~ 3 case (note that necessary 
and sufficient conditions can straightforwardly be 
obtained using the method of Scott (1964) in the 
finite case). 

We state without proof the following theorem. 

Theorem 1'. Let  ~ be a binary relation on a finite 
or denumerable set X 1 X X 2. There exist two real- 
valued functions satisfying (2), (2'a) and (3) i f f  
- A 1 and A2 ,  
- A3:For all x 1, Yl, x~, y~ ~ X 1, x 2, Y2, x'2, 

y~ E X2; 
x l x z ~ y l y  2 and X~X2>'XlX 2 

x~x2 ~ YlY2; 
x lx2  ~YlY2 and XaX ~> .x l x  2 

x lx~ ~ YaY2; 
x lx2  ~ YlY2 and y lx2  >. y~x 2 

x lx2  ~ Y~Y2; 
XlX2 ~ YlY2 and x l y  2 >. x l y  ~ 

xlx2 ~ YlY~. 

Given a binary relation ~ on X 1 x X 2 we 
define ~1 and ~2 by: x 1 ~ 1 y l  iff x 1, Yl ~X1 
and XlX 2 ~ y a x 2  for all x 2 ~ X  2 and x 2~y2  iff 
x2, Y2 ~ X2 and XlX 2 ~ x l y  2 for all x 1 ~ X 1. We 
use >'1, -1,  >.~ and - 2  in the usual way. We 
have the following theorem. 
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Theorem 2. Let  ~ be a binary relation on a 
countable set X 1 × X 2. There ex&t two real-valued 
functions satisfying (2) and (2'b) iff 

A4: Strong independence. ~1 and ~2 are com- 
plete. 

As: Monotonicity. For all xl ,  Yl ~ X1 and x2, 

)22 E X2,  x I ~1 Yl and x 2 ~2 Y2 ~ XlX2 ~ 

YlY2 and if  either x 1 >'1 Yl or x 2 >'2 Y2 then 

x lx2  >" YlY2. 
A6: Weak cancellation, for  all x 1, Yl, Zl, wl, ~ X1 

and x2, Y2, z2, WE ~)(2:XlXE~YlY2 and 
zlz  z ~ WlW 2 imply either XlZ 2 ~ ylw2 or z l x  2 

%Y2. 

Proof. Necessity. Since (2'b) implies pi(x i ,  x i )  = 0, 
we have x i ~i Yi ¢* pi(x i ,  Yi)>-O. Thus Not  x i 
~i Yi and Note y, ~i x, imply p~(x~, y~). pj(y~, x~) 
> 0 which shows the necessity of A 4. The necess- 
ity of the first part of A 5 is obvious. Suppose that 

xl ~1 Yl and x2 >'2 Y2. Thus, Pl(Xl ,  Yl)>1 O, 
p2(X2, Y2) >/0, and P2(Y2, x2) < 0. From (2'b) we 
have Pl(Yl ,  xl)~<0, so that x l x  2 ~YlY2 and Not 
Y~Y2 ~ XlX2 which show the necessity of A 5. Sup- 
pose now that x l x  2 ~ YlY2, zlz2 ~ WlW2, Not XlZ 2 
~ylw2 and Not z l x  2 ~ way 2. Thus p l ( x l ,  Yl) + 

p2(X2, Y2) >/ 0, p1(21, Wl) +pE(Z2, W2) >/ 0, 
pl(Xl, Yl) +P2(Z2, W2) < 0, and pl(Zl, Wl) + 
Pz(X2, Y2) < 0 which leads to Pl(Xl ,  Yl) < 
p l ( z l ,  Wl) and Pl(Zl ,  W l ) < p l ( x l ,  Yl), a con- 
tradiction. Hence A 6 is necessary. 

Sufficiency. As before we shall unrestrictively 

suppose that X ( N X 2 = 0- We define a relation D 
between X 2 and X 2 by: x ly lDy2x2  iff x l x  2 
YlY2. A6 implies that D is a biorder in the sense of 
Doignon et al. (1984). Thus, as all sets are counta- 
ble, their proposition 7 implies the existence of a 
real-valued function h defined up to a strictly 
increasing monotone transformation such that 

x l Y 2 ~ y l x  2 iff h ( x  1, y l ) > ~ h ( x 2 ,  Y2), 

for all x 2, Y2 ~ X2, [zlx2 ~ wly2 ~ XlX2 ~Y~Y2] 

iff h ( x l ,  e l )  >~ h ( z l ,  wl), 

for all x 1, Yl ~ X1 [xlY2 ~ y l x 2  = XlW2 ~YlZ2] 

iff h(x2,  y2)>~h(z2 ,  WE), 

foral l  z 1, % ~ X 1, z 2, WE ~ X 2, [ ZlYE ~ %X 2 

and XlW 2 ~ YlZ2 ~ z i w  2 ~ WlZ2] 

iff h ( x 2 ,  Y2)>th(x~ ,  e l ) .  

We know from A~ that x 1 - 1 y l  and x 2 - 2 y 2  

imply X l Y 2 ~  y l X  2 SO that h(x l ,  y l ) > ~ h ( x 2 ,  Y2)" 
Suppose now that for some z 1, w 1 ~ X 1 and z:,  
w 2 ~ X z we have z l y  2 ~ wlx2, x lw 2 ~YlZ2 and Not  
ZIW 2 ~W1Z 2. Form A 4 and A s we have either 
W1 >'1 Z1 or z 2 >'2 w2 for otherwise z I ~1 wl and 
W2 ~2 Z2 would imply zlw 2 ~ wiz 2. But using A 5 
again we see that w 1 >'1 zl and x 2 ~2 Y2 imply 
wlx  2 >" zly 2, a contradiction. Similarly z 2 >'2 W2 is 
impossible since Yl ~1 xl and A 5 would imply 
YlZ2 >" XlW 2. Thus h(x2, Y2) >~ h(Xl, Yl)- Therefore 
xl -1 Yl, x2 - 2  Y2 imply h ( x  1, Yl)  = h(x2 ,  Y2) = 8 
and we can always choose h so that 8 = 0. 

We now claim that taking 

pl(X1, Y l ) = h ( x l ,  Y l )  for all xl, Yl ~X1 

and 

pE(x2, Y2) = - h ( y 2 ,  x2) for all x2, Y2 ~ X2 

gives the desired representation. Indeed, we have 

XlXE~YlY2 iff pl(Xl,  Yl) +pE(x2, Y2)>/0. 

Furthermore, x i - i  Yi implies pi(x i ,  Yi)"Pi(Yi, x i )  
= 0 for i = 1, 2. But x i >'i Yi implies pi(x i ,  Yi) >~ 0 
and Pi(Yi, x i )  < 0, so that pi(x i ,  Yi)"Pi(Yi, xi)<~ 
0. This completes the proof. [] 

A 4 and A 5 assert that incomparability only 
occur, when criteria are conflicting and are rather 
unrestrictive within the framework of an MPS. A 6 
is a rather weak cancellation condition, which is 
implied by triple cancellation when ~ is com- 
plete. It amounts to defining a biorder in the sense 
of Doignon et al. (1984) on X 2 × X22 and implies 
on its own the existence of two functions such that 

XlX2 ~ Y l Y 2  iff pl(Xl, y l ) + p 2 ( x 2 ,  y2)>~ 0. Again, 
using an appropriate density condition, this result 
can be generalized to the non-countable case. As 
in the case of Theorem 1, we are not presently 
aware of any satisfactory generalization of this 
result for the n >/3 case. An immediate corrolary 
of Theorem 2 is the next theorem. 

Theorem 2'. Let ~ be a binary relation on a finite 
or denumerable set o f  X 1 × X 2. There exist real-val- 
ued functions satisfying (2), (2'b) and (3) i f f  A3, 
A4, A 5 and m 6. 

The case of the weak additive difference model 
is more difficult in the general case. However in 
the finite case, it is straightforward to give neces- 
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sary and sufficient conditions for (1). As in the 
proof  of Theorem 1 we define x l y  a >-~ zxw 1 iff 

[x lx2  >'YtY2 and wly  2 ~ zlx2] or [xax 2 ~ Y~Y2 and 
w~y 2 >- z~x2] for some x 2, y2 ~ X 2 and x~y  2 >-~ 
z2w 2 iff [x~x 2 >'YaY: and y~w 2 ~ xlz2] or [x~x 2 
YlY2 and yxw 2 ~- x~z2] for some x~, y~ ~ )(1. We 
have the following theorem. 

x~y, >-~* z~y i which  is i m p o s s i b l e  since 
(xi,  x,, z~, y~, zg, y~) is a permutat ion of 

(zi, zi, Yi, xi, Yi, xi). 
The reader will check that, on the basis, of 

Theorem 2, it is possible to obtain a counterpart of 
Theorem 3 using ( l 'b )  instead of (l 'a).  

Theorem 3. Let  ~ be a binary relation on a finite 
set X 1 × X 2. There exist real-valued functions ua, 
u2, 01, • 2 satisfying (1) and ( l ' a )  with • 1 and • z 
increasing, i f f  

A 1 and A2, 
A7:  For i =  1, 2, for  all m = 2, 3 . . . .  and [x~, 

x . . . . .  y ) ,  . . . . .  z ) ,  V . . . . .  
zim, wli ,  Wi 2, . .  . , Wim ] ~ g i ,  [x~ . . . . .  x im,  

yli,. yi m is a permutation of  z~ . . . . .  m • . ,  Z i , 

w2 . . . . .  w;" and w/y~ x/z~ for each / < ml 
Not w~'yff' >5* m m X i Z i . 

Proof. The necessity of A1 and A 2 is obvious. The 
necessity of A 7 is proved observing that w/y/>5* 
x{ z /  implies O ~ ( u i ( w / ) -  u j ( y / ) )  > O ~ ( u ~ ( x { ) -  
u i ( z / )  ). Thus since • i is increasing, u i ( w / ) -  

u i ( y / )  > u i ( x / )  - u ( z { )  and w i . . . .  Yi >'* xi zi con- 
tradicts the permutation hypothesis. 

To show sufficiency it suffices to observe that 
A~ and A 2 implies the existence of real-valued 
functions Pl and P2 satisfying (2) and (2'a) and 
Pi(Xi, yi)>p~(z~, w~) iff x~yi~-* z~w i for i =  1, 2. 
A 7 implies, by Theorem 6.1 in Fishburn (1970), 
the existence of real-valued functions u~ and u 2 
such that 

xiYi >'i* ziwi ~ u i ( x i ) -  ui(Yi) > Ui(Z i )  -- Ui(Wi)" 

We define O i on {A: A E R and u , (x i )  - ui(Yi)  
= A for some xi, Yi ~ Xi} by O i ( u i ( x i ) -  ui(Yi)  ) 
=P~(Xi, Yi). Given the properties of Pi and >'i* , 
O~ is obviously well-defined. To show that it is 
increasing suppose that ui( xi)  - ui( yi) >1 ui( zi) - 
Ui(Wi)  then Not  ZiWi~'i * x i y  i. Thus pi(z i ,  Wi)<~ 
p~(x~, y~) so that O~ is increasing. [] 

Given the nature of A 7, this result is far from 
being satisfactory. It can be shown that A 7 does 
not imply A2 or A1 and that A1, A2 and m 7 

holding for i = 1 (resp. 2) does not imply that A 7 
holds for i =  2 (resp. 1). Though A 7 is rather 
difficult to interpret, it implies that >i is transitive 
for i = 1, 2. In fact suppose that xi >'iYi, Yi >'~ z, 
and z~ ~ x i thus xiYi >'* XiZi ,  YiZi ~i* XiZi and 

Conclusions 

We shall briefly indicate in this section some 
directions that seem to offer good opportunities 
for future research on the subject of this paper. 
First, we restricted our attention throughout the 
paper  to M C D M  a.p. exhibiting only one type of 
preference relation and it would be interesting to 
know if our definitions and results can be ex- 
tended to the case of valued preference relations. 
Secondly, we used a rather restrictive interpreta- 
tion of Jacquet-Lagr~ze's ideas in order to obtain 
simple aggregation models. The validity of this 
interpretation certainly deserves closer scrutiny. 
Thirdly, it seems crucial to know whether there 
exist satisfactory sufficient axiomatizations of 
models (1) and (2) for the n >/3 case using struct- 
ural assumptions that do not exclude the presence 
of noncompensatory components in these models. 
Lastly, one could envisage the definition of a 
'more  compensatory than' relation between a.p. on 
the basis of the numerical representation used in 
(1) or (2). 
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