Conjoint Measurement without Additivity and Transitivity

Denis Bouyssou LAMSADE - Paris - France

Marc Pirlot

Faculté Polytechnique de Mons - Mons - Belgium

Outline

- Introduction and Motivation
- **Models**
 - Inter-Attribute Decomposable Models
 - Intra-Attribute Decomposable Models
- **■** Extensions/Applications
- **■** Conclusion and Open Problems

Introduction

Context = Conjoint Measurement

- Set of Objects: $X \subseteq X_1 \times X_2 \times ... \times X_n$
- **■** Binary relation on this set: ≥

Objective = Study/Build/Axiomatise numerical representations of *≥*

Introduction

Interest of Numerical Representations

- Manipulation of \ge
- **■** Construction of numerical representations

Interest of Axiomatic Analysis

- **■** Tests of models
- **■** Understanding models

Examples: Cartesian Product Structure

$$x = (x_1, x_2, ..., x_n) \in X$$

- MCDM
 - x is an "alternative" evaluated on "attributes"

Other examples

- **■** DM under uncertainty
 - x is an "act" evaluated on "states of nature"
- **Economics**
 - x is a "bundle" of "commodities"
- **■** Dynamic DM
 - x is an "alternative" evaluated at "several moments in time"
- **Social Choice**
 - x is a "distribution" between several "individuals"
- \blacksquare x \ge y means "x is at least as good as y"

Additive Transitive Representation

$$x \geqslant y \iff \sum_{i=1}^{n} u_i(x_i) \ge \sum_{i=1}^{n} u_i(y_i)$$

Basic Model = Additive Utility

Examples:

MCDM

Weighted sum, Additive utility, Goal programming, Compromise Programming

DM under uncertainty: SEU

Dynamic DM: Discounting

- **■** Properties (among others!)
- \geq is complete
- **≥** is transitive
- **≥** is independent

Independence

Independence:

A common consequence on attribute i does not affect preference

$$(\mathbf{a}_{-\mathbf{i}}, \mathbf{x}_{\mathbf{i}}) \geqslant (\mathbf{b}_{-\mathbf{i}}, \mathbf{x}_{\mathbf{i}}) \Rightarrow (\mathbf{a}_{-\mathbf{i}}, \mathbf{y}_{\mathbf{i}}) \geqslant (\mathbf{b}_{-\mathbf{i}}, \mathbf{y}_{\mathbf{i}})$$

Necessity:

$$(\mathbf{a}_{-\mathbf{i}}, \mathbf{x}_{\mathbf{i}}) \geqslant (\mathbf{b}_{-\mathbf{i}}, \mathbf{x}_{\mathbf{i}}) \Rightarrow \sum_{\mathbf{j} \neq \mathbf{i}} \mathbf{u}_{\mathbf{j}}(\mathbf{a}_{\mathbf{j}}) + \mathbf{u}_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}}) \geq \sum_{\mathbf{j} \neq \mathbf{i}} \mathbf{u}_{\mathbf{j}}(\mathbf{b}_{\mathbf{j}}) + \mathbf{u}_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}}) \Rightarrow$$

$$\sum_{i \neq i} u_i(a_i) + u_i(y_i) \ge \sum_{i \neq i} u_i(b_i) + u_i(y_i) \Longrightarrow (a_{-i}, y_i) \ge (b_{-i}, y_i)$$

Weak Independence:

Common consequences on attributes other than i does not affect preference

$$(\mathbf{a}_{-\mathbf{i}}, \mathbf{x}_{\mathbf{i}}) \geqslant (\mathbf{a}_{-\mathbf{i}}, \mathbf{y}_{\mathbf{i}}) \Rightarrow (\mathbf{b}_{-\mathbf{i}}, \mathbf{x}_{\mathbf{i}}) \geqslant (\mathbf{b}_{-\mathbf{i}}, \mathbf{y}_{\mathbf{i}})$$

- Independence ⇒ Weak Independence
- Weak Independence allows to define "partial preference relations" \geq_i

Triple Cancellation

$$\begin{aligned} &(x_{i}, a_{-i}) \!\!\geqslant\! (y_{i}, b_{-i}) \\ & \text{and} \\ &(z_{i}, b_{-i}) \!\!\geqslant\! (w_{i}, a_{-i}) \\ & \text{and} \\ &(w_{i}, c_{-i}) \!\!\geqslant\! (z_{i}, d_{-i}) \end{aligned} \Rightarrow (x_{i}, c_{-i}) \!\!\geqslant\! (y_{i}, d_{-i})$$

- possible generalization to subsets of attributes (replace i by J and –i by –J)
- TC and \geq reflexive \Rightarrow Independence
- C_m: Cancellation condition of order m

Cancellation Condition of Order m (C_m)

$$\begin{split} &x^{1},x^{2},...,x^{m},y^{1},y^{2},...,y^{m}\in X\\ &\text{If for all }i\in\{1,2,...,n\}\\ &(x_{i}^{1},x_{i}^{2},...,x_{i}^{m}) \text{ is a permutation of }(y_{i}^{1},y_{i}^{2},...,y_{i}^{m}) \text{ then }\\ &x^{j}\geqslant y^{j} \text{ for }j=1,\,2,\,...,\,m-1\,\Rightarrow\,y^{m}\geqslant x^{m}\\ &\text{Necessity}\quad \sum_{i=1}^{m}\sum_{i=1}^{n}u_{i}(x_{i}^{j})=\sum_{i=1}^{m}\sum_{i=1}^{n}u_{i}(y_{i}^{j}) \end{split}$$

- $\bullet C_{m+1} \Rightarrow C_m$
- For no finite m, $C_m \Rightarrow C_{m+1}$
- $C_2 \Rightarrow$ Independence
- $C_3 \Rightarrow$ Transitivity
- $C_4 \Rightarrow TC$

Axiomatic Analysis: 2 cases

- X finite (Scott-Suppes 1958, Scott 1964)
- **Necessary and sufficient Conditions**
- **Denumerable Set of "Cancellation Conditions"**
- No nice uniqueness results
- X has a "rich structure" and > behaves consistently in this "continuum" (Debreu 1960, Luce-Tukey 1964)
- (Topological assumptions + continuity) or (solvability assumption + Archimedean condition)
- A finite (and limited) set of "Cancellation Conditions" entails the representation (independence, TC)
- u_i define "interval scale" with common unit

Sample Result on Additive Utility

Theorem(Scott 1964): If X is finite then

 \geq is complete and satisfies C_m for m = 2, 3, ...

<u>iff</u>

the additive utility models holds

- No nice uniqueness result
- Proof rests on the "theorem of the alternative"
- Extension to general sets Jaffray 1974
- Fishburn (1997): bounds on m given |X|

Sample Result on Additive Utility

Theorem(Luce-Tukey 1964):

If $n \ge 3$ (three essential components) and

- ≥ is an independent weak order
- **>** satisfies restricted solvability
- ≥ satisfies an archimedean axiom

then

the additive utility model holds and u_i define interval scales with common unit

- independence may be replaced by Triple Cancellation
- With Triple Cancellation result is valid for n = 2

Problems

- **■** Transitivity and completeness of ≥
 - Experimental violations (May 1954, Luce 1969)
 - Aggregation models in MCDM violating these hypothesis
 - Decision Theory can be conceived without transitivity (Fishburn 1991)
 - ⇒ Find a more flexible framework
- **■** Axiomatic Problems
 - Finite case: Axioms hardly interpretable and testable
 - "Rich case"
 - Respective roles of unnecessary structural conditions and necessary "cancellation" conditions (Furkhen and Richter 1991)
 - Asymmetry n = 2 vs. $n \ge 3$ cases (n = 2 more difficult)
 - Asymmetry Finite vs. "Rich" case
- **■** Few Results outside this case (MCDM contribution ?)

Possible extensions

Additive utility = Additive Transitive Conjoint Measurement

- 1
- **(2)**

- Extensions
- **Drop additivity**
- Drop transitivity and/or completeness

Decomposable Transitive Models

Keep transitivity and completeness – Drop additivity Krantz et al (1971)

$$x \ge y \iff F(u_1(x_1), u_2(x_2), ..., u_n(x_n)) \ge F(u_1(y_1), u_2(y_2), ..., u_n(y_n))$$

F increasing

Advantages

Simple axiomatic analysis

Simple proofs

Allows to "understand" the "pure consequences" of weak independence + transitivity and completeness

Drawbacks

Transitivity and completeness

No nice unicity results

Too general? (F is not specified)

Sample Result on Decomposable Transitive Models

Theorem(Krantz et al 1971):

≥ is a <u>weakly</u> independent weak order (having a numerical representation)

<u>iff</u>

the decomposable transitive model holds

- Necessary and Sufficient conditions for all X
- Simple proof
- No asymmetry "Rich" vs. finite, n = 2 vs. $n \ge 3$
- No nice uniqueness result (u_i are "related" ordinal scales)

Additive Non Transitive Models

Keep Additivity – Drop transitivity and completeness Bouyssou 1986, Fishburn 1990, 1991, Vind 1991

$$x \ge y \Leftrightarrow \sum_{i=1}^n p_i(x_i, y_i) \ge 0$$
 (with additional properties) p_i skew symmetric or $p_i(x_i, x_i) = 0$

Advantages

Flexible towards transitivity and completeness

Classical results are particular cases

Interpretation in terms of "preference differences"

Nice unicity results with rich structure: p_i define ratio scales with common unit

Drawbacks

Asymmetry: Finite vs. Rich, $n \ge 3$ vs. n = 2 (n = 2 simpler !) Complex proofs

Cancellation Condition of Order m (S_m)

$$\begin{split} x^1, x^2, ..., x^m, y^1, y^2, ..., y^m &\in X \\ \text{If for all } i &\in \{1, 2, ..., n\} \\ |\{(x_i^j, y_i^j)\}| &= |\{(y_i^j, x_i^j)\}| \\ \text{then} \\ x^j &\geqslant y^j \text{ for } j = 1, \, 2, \, ..., \, m-1 \, \Rightarrow \, y^m \geqslant x^m \end{split}$$

Necessity: $\sum_{j=1}^{m} \sum_{i=1}^{n} p_i(x_i^j, y_i^j) = 0$ if p_i are skew symmetric

- $\bullet S_{m+1} \Rightarrow S_m$
- For no finite m, $S_m \Rightarrow S_{m+1}$
- $S_4 \Rightarrow TC$

Sample Results on Additive Non Transitive Models (with skew symmetry)

Theorem (Fishburn 1991)

If X is finite then

 \geq is complete and satisfies S_m for m = 1, 2, 3, ...

<u>iff</u>

the non transitive additive model holds with p_i skew symmetric

- No nice uniqueness result
- Proof rests on the "theorem of the alternative"

Sample Results on Additive Non Transitive Models (with skew symmetry)

Theorem (Fishburn 1991)

If $n \ge 3$ (three essential components) and

- > satisfies restricted solvability
- \geq complete and satisfies S_4
- ≥ satisfies an archimedean axiom

then

the non transitive additive model holds

(with skew symmetric p_i) and

p_i define ratio scales with common unit (if non extremality)

- n = 2 is a simpler case
- S_4 ⇒ Triple Cancellation on subsets

Cancellation Condition of Order m (T_m)

$$x^{1}, x^{2}, ..., x^{m}, y^{1}, y^{2}, ..., y^{m}, z^{1}, z^{2}, ..., z^{m}, w^{1}, w^{2}, ..., w^{m} \in X$$

If for all $i \in \{1, 2, ..., n\}$

$$[(x_i^1, y_i^1), (x_i^2, y_i^2), ..., (x_i^m, y_i^m)]$$
 is a permutation of

$$[(z_i^1, w_i^1), (z_i^2, , w_i^2), ..., (z_i^m, w_i^m)]$$

Not[
$$x^j \ge y^j$$
 and Not($z^j \ge w^j$)] for $j = 1, 2, ..., m$

Necessity

$$\textstyle \sum_{j=1}^{m} \sum_{i=1}^{n} p_i(x_i^j, y_i^j) = \sum_{j=1}^{m} \sum_{i=1}^{n} p_i(z_i^j, w_i^j)$$

Sample Results on Additive Non Transitive Models (with $p_i(x_i, x_i) = 0$)

Theorem (adapted from Fishburn 1992)

If X is finite then

- **≥** is reflexive and independent
- \geq satisfies T_m for m = 1, 2, 3, ...

<u>iff</u>

the non transitive additive model holds

with
$$p_i(x_i, x_i) = 0$$

- No nice uniqueness result
- Proof rests on the "theorem of the alternative"
- Rich case Vind 1991
- $T_2 \Rightarrow RC1$

Keep additvity Relax Transitivity

Additive Transitive

$$x \geqslant y \iff \sum_{i=1}^{n} u_i(x_i) \ge \sum_{i=1}^{n} u_i(y_i)$$

Keep Transitivity Relax Additivity

Decomposable Transitive

$$x \geqslant y \iff F(u_i(x_i)) \ge F(u_i(y_i))$$

Additive Non Transitive

$$x \geqslant y \Leftrightarrow \sum_{i=1}^{n} p_i(x_i, y_i) \ge 0$$

Keep additvity Relax Transitivity

Additive Transitive

$$x \geqslant y \iff \sum_{i=1}^{n} u_i(x_i) \ge \sum_{i=1}^{n} u_i(y_i)$$

Keep Transitivity
Relax Additivity

Decomposable Transitive

$$x \geqslant y \iff F(u_i(x_i)) \ge F(u_i(y_i))$$

Additive Non Transitive

$$x \geqslant y \Leftrightarrow \sum_{i=1}^{n} p_i(x_i, y_i) \ge 0$$

Non Transitive Decomposable

Non Transitive Decomposable models

Trivial model: $x \ge y \Leftrightarrow F(x, y) \ge 0$

$$F(x,y) = \begin{cases} 1 \text{ if } x \ge y \\ -1 \text{ otherwise.} \end{cases}$$

■ Inter-attribute Decomposability

Decompose F along the various attribute

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{F}(\mathbf{p_i}(\mathbf{x_i}, \mathbf{y_i}))$$

■ Intra-attribute decomposability Decompose $p_i(x_i, y_i)$ to build "criteria"

$$\mathbf{p_i}(\mathbf{x_i}, \mathbf{y_i}) = \mathbf{\phi_i}(\mathbf{u_i}(\mathbf{x_i}), \mathbf{u_i}(\mathbf{y_i}))$$

Inter-Attribute Decomposability

General Model

$$x \geqslant y \iff F(p_i(x_i, y_i)_{i=1,2,...,n}) \ge 0$$

Problems

- This model is trivial (under a mild cardinality assumption)
- ≥ is not independent
- ≥ is not reflexive !!

Care should be taken in the definition of the models !!

Inter-Attribute Decomposable Models

(M)
$$x \ge y \Leftrightarrow F(p_1(x_1,y_1), p_2(x_2,y_2), ..., p_n(x_n,y_n)) \ge 0$$

(M0) (M) with
$$p_i(x_i, x_i) = 0$$
 and $F(0) \ge 0$

- (M1) (M0) with F non decreasing in all arguments
- (M1') (M0) with F increasing in all arguments
- (M2) (M1) with p_i skew symmetric
- (M2') (M1') with p_i skew symmetric
- (M3) (M2) with F odd
- (M3') (M2') with F odd

- $(Mk') \Rightarrow (Mk-1'), (Mk) \Rightarrow (Mk-1)$
- All Models are particular cases of (M0)

Intuition

- \blacksquare p_i captures "preference differences" between levels of X_i
- **■** F combines these "differences" in a consistent way
- F increasing and odd brings it "closer" to addition
- Skew symmetry of p_i ⇒

 the TM difference $\int (x_i, y_i)$ is linked to the TM opposite difference $\int (y_i, x_i)$

Basic Properties

- (i) If \geq satisfies model (M0) then it is reflexive and independent.
- (ii) If \geq satisfies model (M1) or (M1') then:
- (iii) If \geq satisfies model (M2) or (M2') then:
- $\blacksquare \ge_i$ is complete,
- (iv) If \geq satisfies model (M3) then it is complete
- (v) If \geq satisfies model (M3') then:

Axioms: RC1

$$\begin{array}{ll} RC1_{i} & (x_{i}, a_{-i}) \geqslant (y_{i}, b_{-i}) \\ & and \\ (z_{i}, c_{-i}) \geqslant (w_{i}, d_{-i}) \end{array} \Rightarrow \begin{cases} (z_{i}, a_{-i}) \geqslant (w_{i}, b_{-i}) \\ or \\ (x_{i}, c_{-i}) \geqslant (y_{i}, d_{-i}) \end{cases}$$

Interpretation

 (x_i, y_i) is either larger or smaller than (z_i, w_i)

Consequence

$$(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}) \geqslant_{\mathbf{i}}^{*} (\mathbf{z}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}) \Leftrightarrow$$

$$[(\mathbf{z}_{\mathbf{i}}, \mathbf{a}_{-\mathbf{i}}) \geqslant (\mathbf{w}_{\mathbf{i}}, \mathbf{b}_{-\mathbf{i}}) \Rightarrow (\mathbf{x}_{\mathbf{i}}, \mathbf{a}_{-\mathbf{i}}) \geqslant (\mathbf{y}_{\mathbf{i}}, \mathbf{b}_{-\mathbf{i}})]$$

is complete and therefore a weak order

Axioms: RC2

$$\begin{array}{ll}
RC2_{i} & (x_{i}, a_{-i}) \geq (y_{i}, b_{-i}) \\
 & \text{and} \\
 & (y_{i}, c_{-i}) \geq (x_{i}, d_{-i})
\end{array} \Rightarrow \begin{cases}
(z_{i}, a_{-i}) \geq (w_{i}, b_{-i}) \\
 & \text{or} \\
 & (w_{i}, c_{-i}) \geq (z_{i}, d_{-i})
\end{cases}$$

Interpretation

 (x_i, y_i) is "linked" to (y_i, x_i)

Consequence

$$\begin{split} &(x_{i},y_{i}) \geqslant_{i}^{**}(z_{i},w_{i}) \Leftrightarrow \text{for all } a_{-i},b_{-i},\\ &[(z_{i},a_{-i}) \geqslant (w_{i},b_{-i}) \Rightarrow (x_{i},a_{-i}) \geqslant (y_{i},b_{-i})] \text{ and}\\ &[(y_{i},c_{-i}) \geqslant (x_{i},d_{-i}) \Rightarrow (w_{i},c_{-i}) \geqslant (z_{i},d_{-i})] \end{split}$$

is complete and therefore a weak order

Results - Denumerable case

If X is finite or countably infinite:

- (M0) iff reflexivity, independence,
- (M1') <u>iff</u> reflexivity, independence, RC1,
- (M2') iff reflexivity, RC1, RC2,
- (M3) <u>iff</u> completeness, RC1, RC2,
- (M3') iff completeness, TC.

Non Denumerable case

Add a necessary Order Density condition: OD*

- \blacksquare (M1) \Leftrightarrow (M1'), (M2) \Leftrightarrow (M2')
- Necessary and Sufficient conditions for all X
- **■** Axioms are independent
- No nice uniqueness results and Irregular representations
- Allow to study the "pure consequences" of classical cancellation conditions
 - TC vs. Independence
- Adding "rich structure" + axioms on subsets implies F is additive and uniqueness results (Fishburn 1991, Vind 1991)
- Adding transitivity and completeness on M0 implies the Decomposable Transitive Model

More (technical) remarks

■ RC1_i \Leftrightarrow biorder between X_i^2 and X_{-i^2} Adding an order density condition implies

$$x \geqslant y \Leftrightarrow p_i(x_i, y_i) + P_{-i}(x_{-i}, y_{-i}) \ge 0$$

- \blacksquare n = 2 is a very particular case
- \blacksquare TC_i + completeness implies

$$x \ge y \Leftrightarrow p_i(x_i, y_i) + P_{-i}(x_{-i}, y_{-i}) \ge 0$$

with p_i and P_{-i} skew symmetric

- $RC2 \Rightarrow$ Independence
- TC, completeness \Rightarrow RC1, RC2

Remarks

■ RC1 is NS for:

$$x \geqslant y \Leftrightarrow F(p_1(x_1, y_1), p_2(x_2, y_2), ..., p_n(x_n, y_n) \ge 0$$
 with F nondecresing

■ In all models the function p_i can be chosen so as to represent $\geq_i^* (or \geq_i^{**})$

Example: Additive Utility

■ Additive utility

$$x \geqslant y \iff \sum_{i=1}^{n} u_i(x_i) \ge \sum_{i=1}^{n} u_i(y_i)$$

■ Interpretation

$$x \geqslant y \iff F(p_i(x_i, y_i)_{i=1,2,...,n}) \ge 0$$

with
 $F = \sum \text{ and}$
 $p_i(x_i, y_i) = u_i(x_i) - u_i(y_i)$

Example: ELECTRE I (Roy 1968)

$$x \geqslant y \Leftrightarrow \begin{cases} (\sum_{i: x_i \geqslant_i y_i} k_i) / (\sum_{i=1}^n k_i) \ge s & x_i \geqslant_i y_i \Leftrightarrow u_i(x_i) - u_i(y_i) \ge -q \\ \text{and} & x_i V_i y_i \Leftrightarrow u_i(x_i) - u_i(y_i) < v \\ \text{Not}(x_i V_i y_i) & s \ge \frac{1}{2} \end{cases}$$

■ Interpretation

$$\begin{split} x \geqslant y &\Leftrightarrow F(p_i(x_i,y_i)_{i=1,2,\dots,n}) \geq 0 \\ \text{with } F = \sum \text{ and} \\ p_i(x_i,y_i) &= \begin{cases} k_i \text{ if } u_i(x_i) - u_i(y_i) \geq -q \\ -\frac{s}{1-s} k_i \text{ if } -v \leq u_i(x_i) - u_i(y_i) < -q \\ -M \text{ otherwise} \end{cases} \end{split}$$

TACTIC Vansnick 1986 (Adaptation)

$$\begin{split} & \sum_{i:x_i \geq_i y_i} k_i \geq \sum_{i:y_i \geq_i x_i} k_i \\ & x \geqslant y \Leftrightarrow \begin{cases} \rho \sum_{i:x_i \geq_i y_i} k_i \geq \sum_{i:y_i \geq_i x_i} k_i \\ \text{and} \\ & \text{Not}(x_i V_i y_i) \end{cases} \\ & x_i \geq_i y_i \Leftrightarrow u_i(x_i) - u_i(y_i) > q \\ & x_i V_i y_i \Leftrightarrow u_i(x_i) - u_i(y_i) < v \\ & \rho \geq 1 \end{split}$$

Application: Compensation vs. Noncompensation

RC1_i implies $[(x_i, y_i) \sim_i^* (z_i, w_i), \text{ for all i}] \Rightarrow [x \ge y \Leftrightarrow z \ge w]$

Fishburn's 1976 Definition of Noncompensation

$$[(x_i \geqslant_i y_i) \Leftrightarrow (z_i \geqslant_i w_i), (y_i \geqslant_i x_i) \Leftrightarrow (w_i \geqslant_i z_i)] \Rightarrow [x \geqslant y \Leftrightarrow z \geqslant w]$$

Formally very similar definitions

- Fishburn's Noncompensation
 - only at most three distinct equivalence classes of \sim_i^*
 - the comparison of preference differences is only based on \geq_i
- All Methods are "Noncompensatory" in our more general sense
- Clue = number of equivalence classes of \sim_i^*

ELECTRE I

is reflexive, independent and satisfies RC1 and RC2

TACTIC

Additive Utility

$$\mathbf{u_i}(\mathbf{x_i}) - \mathbf{u_i}(\mathbf{y_i}) \in \mathbf{I_1}$$

$$\mathbf{u_i}(\mathbf{x_i}) - \mathbf{u_i}(\mathbf{y_i}) \in \mathbf{I_2}$$

Many Equivalence Classes

$$\mathbf{u_i}(\mathbf{x_i}) - \mathbf{u_i}(\mathbf{y_i}) \in \mathbf{I_{k-1}}$$

$$\mathbf{u_i}(\mathbf{x_i}) - \mathbf{u_i}(\mathbf{y_i}) \in \mathbf{I_k}$$

Difficulty

- In all models the "weight" of the preference difference is computed with respect to an underlying "criterion"
- $\blacksquare \ge_i$ has nice properties (semi order)
- Study "Intra-Attribute Decomposability"

Additive Difference Model (Tversky 1969)

$$\begin{aligned} x \geqslant y &\Leftrightarrow \sum_{i=1}^n \Phi_i(u_i(x_i) - u_i(y_i)) \geq 0 \\ &\Phi_i \text{ increasing and odd} \end{aligned}$$

■ Introduction of Intra-Attribute Decomposability

- **≥** may be intransitive (but is complete)
- \geq_i are weak orders
- Axioms (Fishburn 1992)

Rich Structure

Complex proofs

Nice uniqueness results (u_i define interval scale)

■ Extensions (Bouyssou 1986)

Non decreasing Φ_i (allows for semi orders on each attribute)

 Φ_i not odd but $\Phi_i(0) = 0$ (allows for incomplete \geq)

Inter Additive Inter Additive Intra Decomposable Not Intra Decomposable Additive Difference — Additive Non Transitive Additive Utility — **Non Transitive Decomposable Transitive -Decomposable Inter Decomposable Inter Decomposable Not Intra Decomposable Intra Decomposable**

Additive Transitive Model

ELECTRE I without Discordance

TACTIC without Discordance

TACTIC with Discordance

Conjoint Measurement without Additivity and Transitivity - Bouyssou/Pirlot - - 53

Intra-Attribute Decomposability

■ Idea: Use previous theorems and find conditions such that

$$p_i(x_i, y_i) = \varphi_i(u_i(x_i), u_i(y_i))$$

where ϕ_i is non decreasing in 1st and non increasing in 2nd

- Coming close to the additive difference model without implying subtractivity
- Use of general theorem on numerical representation of valued relations (Doignon et al 1986) (generated by p_i)
- Difficulty = Irregularity of the representations in the previous models

Models

- \blacksquare (D1) (D) with φ_i non decreasing in 1st argument
- \blacksquare (D2) (D) with ϕ_i non increasing in 2nd argument
- **■** (D12) (D1) and (D2)
- (D12=) (D12) with u = v

Preliminary Results

- Model (D) is trivial (under mild cardinality assumptions)
- With (M2'), (M3) and (M3') (D1) \Leftrightarrow (D2) \Leftrightarrow (D12) \Leftrightarrow (D12=)
- **■** Seven models of interest

(M1') with (D1), (D2), (D12) and (D12=)

(M2') with (D12=)

(M3) with (D12=)

(M3') with (D12=)

Axioms

$$\begin{array}{c} \text{AC1}_{i} \text{ if } & \text{and} \\ & \text{(}z_{i},c_{-i}) \!\!\geqslant\! (w_{i},d_{-i}) \end{array} \Rightarrow \begin{cases} (z_{i},a_{-i}) \!\!\geqslant\! (y_{i},b_{-i}) \\ \text{or} \\ & \text{(}z_{i},c_{-i}) \!\!\geqslant\! (w_{i},d_{-i}) \end{cases} \Rightarrow \begin{cases} (z_{i},a_{-i}) \!\!\geqslant\! (y_{i},b_{-i}) \\ & \text{(}x_{i},c_{-i}) \!\!\geqslant\! (w_{i},d_{-i}) \end{cases} \Rightarrow \begin{cases} (x_{i},a_{-i}) \!\!\geqslant\! (w_{i},b_{-i}) \\ \text{or} \\ & \text{(}z_{i},c_{-i}) \!\!\geqslant\! (y_{i},b_{-i}) \\ & \text{AC3}_{i} \text{ if } \\ & \text{(}z_{i},c_{-i}) \!\!\geqslant\! (x_{i},d_{-i}) \end{cases} \Rightarrow \begin{cases} (w_{i},a_{-i}) \!\!\geqslant\! (y_{i},b_{-i}) \\ \text{or} \\ & \text{(}z_{i},c_{-i}) \!\!\geqslant\! (w_{i},d_{-i}) \end{cases}$$

Axioms

$$\begin{array}{c} AC1_{i} \text{ if } & (x_{i}, a_{-i}) \geqslant (y_{i}, b_{-i}) \\ \text{ and } \\ \text{Upward Dominance } & (z_{i}, c_{-i}) \geqslant (w_{i}, d_{-i}) \\ \end{array} \Rightarrow \begin{cases} (z_{i}, a_{-i}) \geqslant (y_{i}, b_{-i}) \\ (x_{i}, c_{-i}) \geqslant (w_{i}, d_{-i}) \\ \end{array}$$

$$\begin{array}{c} (x_{i}, a_{-i}) \geqslant (y_{i}, b_{-i}) \\ \text{ or } \\ (z_{i}, c_{-i}) \geqslant (y_{i}, d_{-i}) \\ \end{array} \Rightarrow \begin{cases} (x_{i}, a_{-i}) \geqslant (w_{i}, b_{-i}) \\ \text{ or } \\ (z_{i}, c_{-i}) \geqslant (y_{i}, d_{-i}) \\ \end{array}$$

$$\begin{array}{c} AC3_{i} \text{ if } \\ \text{ Not incompatible } & (z_{i}, c_{-i}) \geqslant (x_{i}, d_{-i}) \\ \end{array} \Rightarrow \begin{cases} (w_{i}, a_{-i}) \geqslant (y_{i}, b_{-i}) \\ \text{ or } \\ (z_{i}, c_{-i}) \geqslant (w_{i}, d_{-i}) \\ \end{array}$$

Consequences

 $\begin{aligned} &AC1_i \Leftrightarrow \geqslant_i^* \text{ is right linear } \Leftrightarrow [Not(y_i, z_i) \geqslant_i^* (x_i, z_i) \Rightarrow (x_i, w_i) \geqslant_i^* (y_i, w_i)] \\ &AC2_i \Leftrightarrow \geqslant_i^* \text{ is left linear } \Leftrightarrow [Not(z_i, x_i) \geqslant_i^* (z_i, y_i) \Rightarrow (w_i, y_i) \geqslant_i^* (w_i, x_i)] \\ &AC1_i, AC2_i, AC3_i \Leftrightarrow \geqslant_i^* \text{ is strongly linear } \Leftrightarrow \geqslant_i^{**} \text{ is strongly linear} \end{aligned}$

• In all Inter-Attribute Models these axioms are independent

Remark

Results - Denumerable case

If X is finite or countably infinite

- (M1'-D1) iff reflexivity, independence, RC1, AC1,
- (M1'-D2) <u>iff</u> reflexivity, independence, RC1, AC2,
- (M1'-D12) iff reflexivity, independence, RC1, AC12,
- (M1'-D12=) <u>iff</u> reflexivity, independence, RC1, AC123

Non Denumerable case:

Add necessary Order Density conditions:

OD* and (**ODT**R* or **ODT**L* or **ODT***)

Results - Denumerable case

If X is finite or countably infinite

- **■** (M2′-D12=) <u>iff</u> reflexivity, RC12, AC123
- (M3-D12=) <u>iff</u> completeness, RC12, AC123,
- (M3'-D12=) <u>iff</u> completeness, TC, AC123.

Non Denumerable case:

Add necessary Order Density conditions: OD*, ODT*

Remarks

- **■** Necessary and sufficient conditions
- **■** Independent axioms
- $AC3_i + (AC1_i \text{ or } AC2_i) \Rightarrow \ge_i \text{ is a semi order}$
- With all Inter-Attribute Models $AC1_{i}$, $AC2_{i}$, $AC3_{i}$ \Rightarrow
 - \geqslant_{i}^{*} defines an homogeneous family of semi orders

Summary of Results (Denumerable case)

		(D1)	(D2)	(D12)	(D12=)
		AC1	AC2	AC12	AC123
(M1')	ref+indep+RC1	X	X	X	X
(M2')	ref+RC12				X
(M3)	RC12+comp.				X
(M3')	TC+comp.				X

Non denumerable case: add necessary order density conditions

Extensions: Rough Sets

- Greco-Matarazzo-Slowinski: Nontransitive Conjoint Measurement is the theoretical framework for rough approximations of outranking relations
 - formal definition of "preference differences"
 - relation \ge is build through rules combining preference differences

Extensions: Particular Cases

- Nontransitive Decomposable Conjoint Measurement models contain as particular cases:
 - MCDM methods aiming at building a crisp preference relation (MAUT, ELECTRE I, TACTIC, etc.)
 - rules of thumb put forward by experimental psychologists
 - » lexicographic semiorder
 - » conjunctive
 - » disjunctive
 - » etc.

Extensions: Valued relations

■ Non Transitive Decomposable models can easily be extended to the valued case

$$f(x,y) = F(p_1(x_1, y_1), p_2(x_2, y_2), \dots, p_n(x_n, y_n))$$

$$x \ge \alpha y \Leftrightarrow f(x, y) \ge \alpha$$

■ Example: PROMETHEE

$$f(x,y) = \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i))$$

Sample Model for (ordinal) Valued Relations

$$\begin{split} &(\geqslant_{\alpha})_{\alpha\in A}\\ &x\geqslant_{\alpha}y\Leftrightarrow F(p_{1}(x_{1},y_{1}),p_{2}(x_{2},y_{2}),...,p_{n}(x_{n},y_{n})\geq\alpha\\ &\text{with }F\text{ nondecreasing, }p_{i}(x_{i},y_{i})=0 \end{split}$$

Similar models corresponding to (M2), (M3) (M3') + D12=

Sample Result on valued relations

■ The preceding models obtains when X and A are finite iff $(\geq \alpha)_{\alpha \in A}$ is a nonincresaing family of independent relations (A is a well - ordered set of indices) satisfying $RC_{\alpha\alpha'}$

$$\begin{array}{ll} RC\alpha\alpha' & (x_{\mathbf{i}}, a_{-\mathbf{i}}) \geqslant {}_{\alpha}(y_{\mathbf{i}}, b_{-\mathbf{i}}) \\ & \text{and} \\ (z_{\mathbf{i}}, c_{-\mathbf{i}}) \geqslant {}_{\alpha'}(w_{\mathbf{i}}, d_{-\mathbf{i}}) \end{array} \} \Rightarrow \begin{cases} (z_{\mathbf{i}}, a_{-\mathbf{i}}) \geqslant {}_{\alpha}(w_{\mathbf{i}}, b_{-\mathbf{i}}) \\ \text{or} \\ (x_{\mathbf{i}}, c_{-\mathbf{i}}) \geqslant {}_{\alpha'}(y_{\mathbf{i}}, d_{-\mathbf{i}}) \end{cases}$$

for all $i \in \{1, 2, ..., n\}$ and all $\alpha, \alpha' \in A$

■ Add Order Density when X is not denumerable + Lower semi-continuity when A is not finite.

Extensions

■ (Dis)similarity indices

$$\sigma(x,y) = \sigma(y,x) = F(p_1(x_1,y_1), p_2(x_2,y_2), ..., p_n(x_n,y_n))$$

■ Perny (1998) : Filtering by indifference

Summary

Non Transitive Decomposable models

- \blacksquare imply substantive requirements on \ge
- may be axiomatised in a simple way avoiding the use of a denumerable number of conditions in the finite case and of unnecessary structural assumptions in the infinite case
- allow to study the "pure consequences" of cancellation conditions in the absence of transitivity, completeness and structural requirements on X
- are sufficiently general to include as particular cases most aggregation rules that have been proposed in the literature
- **■** provide insights on the links and differences between methods

Future Work

- **■** Many technical Open Problems
 - Additive non transitive
 - Rich Structure
 - Intra-Attribute Decomposability and increasingness
 - Other interesting models ?
 - Specific form of F (Min, Max, OWA, etc.)
- **■** Aggregation Theory of Homogeneous families of semi orders
 - valued relations
 - difference measurement
 - conjoint measurement
- "Model-free" tests of MCDM: RC12, AC123