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Abstract

This paper is devoted to the study of techniques allowing to rank order the elements of a finite set on the basis of

a non-necessarily complete or transitive binary relation. In the area of MCDM, such a problem occurs with

Outranking Methods. We review a number of theoretical results concerning this problem and show how they

may be useful in order to guide the choice of a particular technique.
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I. Introduction.

Suppose that you want to rank order a finite set of alternatives X evaluated on n criteria g1, g2,

É, gn. A common way to do so (see, e.g., Keeney and Raiffa (1976)) is to attach a number

v(a) to each alternative a Î X reflecting its "desirability" and to rank order the alternatives

according to these numbers. The number v(a) attached to alternative a is generally defined on
the basis of its evaluations g1(a), g2(a), É, gn(a) on the n criteria and some "inter-criteria"

information (e.g., weights or tradeoffs) leading to an aggregation function V such that v(a) =
V(g1(a), g2(a), É, gn(a)). Once the aggregation function V is defined, the alternatives are

automatically rank ordered. However, the definition of such an aggregation function is not an

easy task and, in particular, requires very rich inter-criteria information. Furthermore, this

approach is usually implemented in such a way as to:

-allow small "advantages" on a number of criteria to compensate for a large "disadvantage" on

another,

-consider that all differences between the evaluations of the alternatives on the several criteria

are significant regardless of the imprecision, the uncertainty or inaccurate determination that

may affect these evaluations,

which may be open to criticism.
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Using the so-called "Outranking Methods" (see Vincke (1992a) and Roy and Bouyssou (1993)

for a detailed presentation) a similar ranking problem can be addressed in a very different way.

Within these methods it is customary to distinguish two different steps:

-the "construction step" in which one or several "outranking relations" are built,

-the "exploitation step" in which (in this particular problem formulation) outranking relations

are used to derive a ranking of the alternatives.

Starting with a finite set of alternatives evaluated on several criteria, the "construction step"

consists in comparing alternatives by pairs taking all criteria into account. This is usually done

in such a way as to disallow an unlimited compensation of "large disadvantages" and to take

into account the fact that small differences between evaluations are not always significant. This

leads to one or several binary relations Ð the so-called "outranking relations". Outranking

relations, in most methods, are built using a concordance-discordance principle. This principle

leads to declaring that an alternative is "at least as good as" another if:

-a "sufficient majority" of criteria supports this proposition (concordance principle) and

-the opposition of the "minority" is not "too strong" (non-discordance principle).

It is well-known that this principle may lead to binary relations that are intransitive and/or in-

complete (transitivity or completeness can only be obtained in rather exceptional cases Ð see

Bouyssou (1992a) and Perny (1992)). Thus rank ordering alternatives on the basis of such

information is far from being an easy task. This is the raison d'�tre of the exploitation step.

Many techniques for rank ordering alternatives on the basis of a non-necessarily transitive or

complete binary relation have been proposed in the literature. Most of the techniques that have

been proposed in the area of MCDM were justified on an ad hoc basis. To what extent are they

really satisfactoryÊ? How to compare them ? Can we think of "better" techniques ? Such are

some of the questions that are central to this paper. Its aim is twofold. First we review,

omitting technical details, a number of theoretical results connected to the analysis of exploita-

tion techniques in a ranking problem formulation. This review is not exhaustive. Second we

wish to show that such results may prove useful for the practitioner by shedding some light on

the respective strengths and weaknesses of exploitation techniques, therefore illustrating the

type of research advocated in Bouyssou et al. (1993). In our opinion, such theoretical analyses

do not aim at defining the "best" technique for obtaining a ranking on the basis of a binary

relation. More modestly, they should aim at providing guidelines to the analyst when deciding

which exploitation technique to use in a particular situation Ð needless to say that these

guidelines are not the only possible ones and that, in a real-world study, other guidelines, such

as simplicity or acceptability, may be helpful as well. They may also prove useful in suggesting

new techniques having appealing properties.

It should be mentioned that the problem of deriving a ranking on the basis of a non-necessarily

transitive or complete binary relation is far from being specific to outranking methods. It occurs



in a variety of contexts such as voting procedures, inquiries, direct pairwise comparisons of

alternative or stimuli, etc. Though we shall mainly interpret the results presented in this paper in

the context of outranking methods, they may also have an interest in these other settings (some

of the properties we shall use should then be re-interpreted and/or modified accordingly).

This paper will illustrate two approaches to the theoretical analysis of ranking techniques. The

first one consists in defining a list of properties that seem "desirable" for an exploitation techni-

que to possess. Given such a list of properties one may then try:

-to analyze whether or not they are satisfied by a number of techniques,

-to establish "impossibility theorems", i.e. subsets of properties that cannot be simultaneously

fulfilled,

-to determine, given the above-mentioned impossibility theorems, the techniques that satisfy

the greatest possible numbers of properties.

We illustrate this type of analysis in section 4 for ranking techniques based on crisp relations.

The second one consists in trying to find a list of properties that would "characterize" a given

technique, i.e. a list of properties that this technique would be the only one to satisfy. This

allows to emphasize the specific features of an exploitation technique and, thus, to compare it

more easily with other ones. This is illustrated in section 5 for ranking techniques based on

valued relations. These two types of analysis are not unrelated: ideally they should merge in the

end, the characterizing properties exhibited by the second type of analysis being members of

the list of "desirable" properties used in the first type of analysis. As we shall see much work

remains to be done in order to attain such a result. Let us also mention that both types of

analysis have their own difficulties. In the first one, the main problem consists in defining the

list of "desirable" properties. These properties should indeed cover every aspects of what

seems to be constitutive of an "appropriate" technique. In the second one, the characterizing

properties will only be useful if they have a clear and simple interpretation which may not

always be the case when analyzing a complex technique.

The paper is organized as follows. We present our notations and definitions in section 2. In

section 3, we show why it makes sense, in the context of outranking relations, to separate the

analysis of an exploitation technique from that of a construction technique. Section 4 illustrates

the first type of analysis for exploitation techniques designed to rank order alternatives on the

basis of a crisp relation. Section 5 illustrates the second one for exploitation techniques dealing

with valued relations. We conclude in section 6 and mention some directions for future

research.

II. Definitions and Notations.



Throughout this paper X will denote a finite set. A valued (binary) relation T on X is a

function from XxX into [0, 1]. It is said to be reflexive if T(a, a) = 1, for all aÊÎÊX. If Y Í X

and T is a valued relation on X, we denote by T/Y the restriction of T to Y, i.e. the valued

relation on Y such that for all a, b Î Y, T/Y(a, b) = T(a, b). A valued relation T on X such that

T(a, b) Î {0, 1}, for all a, b Î X, is said to be crisp. We often write a T b instead of T(a, b) =
1 and Not(a T b) instead of T(a, b) = 0 when T is a crisp relation. We denote by X (resp.

X) the set of all valued (resp. crisp) reflexive relations on X.

Let T be a crisp relation on X. This relation is said to be:

Ðcomplete if [a T b or b T a],

Ðtransitive if [a T b and b T c Þ a T c],

Ðasymmetric if [a T b Þ Not(b T a)],

for all a, b, c Î X.

A weak order is a crisp, complete and transitive binary relation. Let T be a crisp relation on X.

We denote by G(T, X) the set of greatest elements of X given T, i.e., G(T, X) = {a Î X: a T

b for all b Î X}. Notice that G(T, X) may well be empty. When T is a weak order on X, it is

easy to see that G(T, X) is always nonempty and consists in the first equivalence class of T.

Consider a particular technique of obtaining a binary relation on the finite set X, e.g. a voting

procedure, a pair comparison method or an outranking method. The characteristics of this

technique will often confer some "structural" properties to the binary relations it produces.
Given a particular construction technique K, we denote by X the subset of all binary relations

that can be obtained on the finite set X using K. A -ranking procedure ³³³X on the finite

set X is a function assigning a weak order ³³³X(R) on X to any R Î X. A -ranking rule ³³³
is a function associating with each finite set X a -ranking procedure ³³³X on X. Thus, a -

ranking rule allows to build a weak order on the basis of any relation that can be obtained with

the construction technique K on a finite set.

We respectively denote by ===X(R) and >>>X(R) the symmetric and asymmetric parts of ³³³X(R),

i..e., the relations such that, for all a, b Î X, [a ===X(R) b iff (a ³³³X(R) b and b ³³³X(R) a)] and

[a >>>X(R) b iff (a ³³³X(R) b and Not b ³³³X(R) a)].

III. The "structural properties" of outranking relations.

In general, it is not possible to analyze a ranking rule without the knowledge of the construction

technique to which it is designed to be coupled. Most properties that are useful for analyzing

ranking rules involve either specifying the result of the rule when applied to relations having

special properties or linking the result obtained with a relation R with the one obtained with a
relation R¢ derived from R. Therefore, without a precise knowledge of the set X of the



relations that can be obtained on a set X, these properties may well be meaningless (e.g.

because they impose a constraint on the result of the rule when applied to a relation that cannot

be obtained with the construction technique K on the set X). In this section, we characterize the
sets X for two well-known construction techniques, generalizing classical results concerning

the method of majority decisions (see McGarvey (1952) or Deb (1976)).

The construction technique of ELECTRE I (Roy (1968)) builds a crisp relation starting with a

set of alternatives evaluated on several "true-criteria" and "inter-criteria information". The con-

struction technique of ELECTRE III (Roy (1978)) builds a valued relation starting with a set of

alternatives evaluated on several "pseudo-criteria" and "inter-criteria information" (on the

notions of true and pseudo-criterion, see Roy (1985)). They both use a concordance/discor-

dance principle in order to build an outranking relation that is interpreted as an "at least as good

as" preference relation. We know that such relations may not possess remarkable properties

such as transitivity or completeness. The following proposition, proven in Bouyssou (1995),

shows more: any (reflexive) relation may be obtained with such techniques.

Proposition 1.

(a) Any reflexive crisp relation on a finite set X may be obtained as the result of the con-

struction technique of ELECTRE I with a particular choice of criteria and parameters.

(b) Any reflexive valued relation on a finite set X may be obtained as the result of the construc-

tion technique of ELECTRE III with a particular choice of criteria and parameters.

This proposition has a simple interpretation. For the axiomatic investigation of exploitation

techniques to be coupled with ELECTRE I and ELECTRE III, it makes sense to suppose that

they will be confronted to any reflexive preference relation (this is not the case with the

construction technique used in the PROMETHEE method Ð see Brans et al. (1984) Ð as shown

in Bouyssou (1995)). This proposition allows, to some extent, to separate the analysis of

exploitation techniques from that of construction techniques (it should be noticed that the proof

of proposition 1 requires to apply the construction techniques of ELECTRE I and III to

situations involving a large number of criteria; for each of these construction techniques, the

determination of the minimal number of criteria for which proposition 1 is true is an open Ð and

difficult Ð problem).

IV. Ranking alternatives on the basis of a crisp relation.

We shall be interested in this section in -ranking rules, i.e. rules associating a weak order to

every reflexive crisp relation defined on a finite set. Given proposition 1, such rules are clearly

of interest for ELECTRE I. The problem of defining "reasonable" ranking rules for crisp

relations is not an easy one. It has generated numerous studies, in particular in the case of



complete crisp relations (which is the appropriate setting with the method of majority decisions;

see Rubinstein (1980), Henriet (1985), Barth�l�my and Monjardet (1988), Barth�l�my et al.

(1989)). The related problem of defining choice rules has attracted even more attention (see,

e.g., Fishburn (1977), Bordes (1983), Moulin (1986), Laffond et al. (1992)). This difficulty is

largely due to the fact that when a crisp preference relation is not complete and/or has cycles in

its asymmetric part, the very notion of a "good" alternative is not easy to define.

IV-1 Some properties of ranking rules for crisp relations.

A -ranking rule ³³³ is said to be neutral if, for all finite set X and all R Î X,

[s is a permutation on X] Þ [a ³³³X(R) b Û s(a) ³³³X(Rs) s(b), for all a, b Î X],

where Rs is the element of X defined by Rs(s(a), s(b)) = R(a, b) for all a, b Î  X.

Neutrality expresses the fact that a ranking rule does not discriminate between alternatives just

because of their labels.

A -ranking rule ³³³ is said to be:

faithful if [R is a weak order on X] Þ R = ³³³X(R),

data-preserving 1 if [R is a transitive crisp relation on X] Þ R Í ³³³X(R),

data-preserving 2 if [R is a crisp relation on X and its transitive closure R* is complete] Þ
R* = ³³³X(R),

data-preserving 3 if [R is a crisp relation on X and its asymmetric part P is without circuit]
Þ  PÊÍ Ê ³³³ X(R),

covering compatible if [R(a, b) ³ R(b, a) and for all c Î A\{a, b}, R(a, c) ³ R(b, c) and
R(c, a) £ R(c, b)] Þ a ³³³X(R) b,

for all finite set X and all R Î X.

Faithfulness implies that a ranking rule applied to a weak order should preserve it. The three

versions of data preservation are in the same vein. They say that when it is possible to obtain a

weak order on the basis of R without deleting information contained in R, a ranking rule should

do so. Covering compatibility is in the same spirit: when a "covers" b it seems intuitive to con-

sider that b should not be ranked before a.

A -ranking rule ³³³ is said to be:

independent of non-discriminating alternatives if [R(a, b) = k and R(b, a) = k¢ for all
a Î X\Y and all b Î Y] Þ ³³³Y(R/Y) = ³³³X(R)/Y,

independent of the best-ranked elements if ³³³Z(R/Z) = [³³³X(R)]/Z,

where Z = X\G(³³³X(R), X),

for all finite set X and all R Î X.



Independence of non-discriminating alternatives implies that when there is a subset of alter-

natives that are compared similarly (being either preferred, indifferent or incomparable) to all

other alternatives, the ranking of the other alternatives is not affected by the presence of this

subset. Independence of the best ranked alternatives implies that removing from X the

alternatives that were ranked first leaves unchanged the ranking of the other alternatives.

A -ranking rule ³³³ is said to be monotonic if, for all finite set X and all R Î X,

[a ³³³X(R) b Þ a ³³³X(R¢) b] and [a >>>X(R) b Þ a >>>X(R¢) b],

where R¢ is an element of X such that R¢/X\{a} = R/X\{a} and [R(a, c) £ R¢(a, c), R(c, a) ³

R¢(c, a) for all cÊÎÊX\{a}].

Monotonicity says that improving an alternative cannot decrease its position in the ranking (it is

easily seen it also implies the converse property: deteriorating an alternative cannot improve its

position in the ranking).

IV-2 Some ranking rules and their properties.

We first introduce three basic ranking rules that correspond to simple rules introduced in the

literature. The first two are based on the "Net Flow score" of the alternatives, defined, for all
finite set X, all a Î X and all R Î X, by:

SNF(a, R, X) = å     (R(a, c) Ð R(c, a)).

                        c Î X\{a}

The "Net Flow Rule" (NFR) rank orders the alternatives according to their net flow scores and

corresponds to the well-known Copeland rule (see, e.g., Fishburn (1973); characterizations of

this rule can be found in Rubinstein (1980) and Henriet (1985)). When it is directly applied to

R we denote this rule by NFR(R). The "Repeated Net Flow Rule" (RNFR) ranks in first

position the elements with the highest Net Flow score in X. These elements are then removed

from X and the Net Flow scores of the remaining alternatives are computed in the reduced set.

Alternatives with the highest Net Flow score in the reduced set are then ranked in second

position and so on. When it is directly applied to R, we denote this rule by RNFR(R).

The "Rank Rule" (RR) consists first in reducing the circuits of R. This leads to a relation Rr

without circuit on a set Xr of elements obtained by replacing all alternatives belonging to the

same circuit of R by a single element; we have A Rr B as soon as there are some alternatives a,

b Î X such that a R b and a (resp. b) belongs to the circuit of R represented by A (resp. B).

Since Rr is without circuit, Xr has maximal elements for Rr (an element A Î Xr is maximal for

Rr if, for all B Î Xr, B ¹ A implies Not(B Rr A)). Alternatives corresponding to a maximal

element of Xr for Rr are then ranked in first position. These maximal elements are then

removed from Xr. Alternatives corresponding to maximal elements for Rr in the reduced set are

then ranked in second position and so on. This defines a rule denoted by RR(Rr).



These three basic rules (NFR(R), RNFR(R) and RR(Rr)) are simple and intuitive. Their com-

parison is not obvious however. Hence the use of the properties introduced in the preceding

section to distinguish between them. We sum up our results in Table 1 in which a Y indicates

that a property is satisfied and a N that it is violated (see Vincke (1992b) for a proof).

[Insert Table 1 about here]

With respect with to this set of property, it is apparent that none of the three rules is dominated.

This table may however prove useful since in a particular situation some properties may acquire

more importance than others (e.g., if alternatives are likely to become unavailable,

independence of the best ranked elements may be seen as extremely desirable). A question

immediately arises: can we think of "better" rules that would dominate some or even all of the

rules envisaged so farÊ? A simple way to try to answer this question is to imagine new rules

and to enter them into Table 1. New rules are easily created by applying preliminary

transformations on R before using NFR, RNFR or RR. Among the possible transformations

that are of interest, let us mention:

-replacing R by Rr,

-taking the asymmetric part P of R,

-taking the transitive closure R* of R.

These preliminary transformations can be combined to obtain (using obvious notations)

relations such as P*, Pr, R*r, P*r (where R*r = (R*)r = (Rr)* and P*r = (P*)r = (Pr)*). This

defines rules such as NFR(P*r), RNFR(Rr) or RR(Pr). Given that RR is only defined for

relations without circuit and some rules are identical (e.g. NFR(R) and NFR(P)), the systematic

application of this process leads to 16 distinct rules including the three basic ones. The

complete table exhibiting their properties can be found in Vincke (1992b and 1993). In Table 2,

we only consider nondominated rules. These six rules are all distinct.

[Insert Table 2 about here]

Comparing Tables 1 and 2, it is easy to observe, for example, that NFR(R) and RNFR(R) are

both dominated by RNFR(P*) while RR(Rr) remains nondominated. This process of

imagining new rules possessing many properties is not endless however since it may well

happen that some properties cannot be satisfied together. As an example, let us mention the fol-

lowing proposition proved in Vincke (1992b):

Proposition 2. There is no -ranking rule being at the same time data-preserving 2 and

independent of non-discriminating alternatives.



This proves that the six rules included in Table 2 are non dominated rules in the set of all -

ranking rules with respect to our set of properties. If these rules are judged unsatisfactory, one

may try either to find other nondominated rules or to modify the list of properties. The reader is

referred to Vincke (1992b and 1993) for more details.

V. Ranking alternatives on the basis of a valued relation.

We shall be interested in this section in -ranking rules, i.e. rules associating a weak order to

every reflexive valued relation defined on a finite set. Given proposition 1, such rules are

clearly of interest for ELECTRE III. The same analysis that the one presented in section 4 can

be conducted for such rules. However, in order to illustrate another type of analysis, we shall

concentrate here on establishing "characterization" results, i.e. exhibiting sets of properties

satisfied by a single rule.

Replacing X by X whenever necessary, it is clear that all properties introduced in section

4.1 can be generalized to -ranking rules. We shall need the following additional ones.

Consider a sequence of valued relations on X (Ri Î X, i = 1, 2, ...). We say that this se-

quence converges to R Î X if, for all e > 0, there is an integer k such that, for all j > k and all

a, b Î A,  |Rj(a, b) Ð R(a,Êb)| < e. An -ranking rule ³³³  is said to be continuous if, for all

finite set X, all R Î X, all sequences (RiÊÎÊ X, iÊ= 1, 2, ...) converging to R and all a, b Î

X,
[a ³³³X(Ri) b for all Ri in the sequence] Þ [a ³³³X(R) b].

Continuity says that "small" changes in a valued relation should not lead to radical changes in

the associated ranking.

An -ranking rule ³³³  is said to be greatest-faithful if [R is a crisp relation on a finite set X

and G(R, X) ¹ ¯] Þ G(³³³X(R), X) Í G(R, X).

Greatest-faithfulness says that if a crisp relation has greatest elements then the top-ranked

elements should be chosen among them. In spite of names, it should be noticed that a faithful

ranking rule is not necessarily greatest-faithful and vice versa.

An important characteristic of a ranking rule lies in the way it deals with circuits in the relation

R. Consider two reflexive valued relations R and R¢ on X and suppose that R¢ is identical to R

except that, for some distinct a, b, c Î X and some e Î [-1 ; 1]:

[R(a, b) = R¢(a, b) + e and R(b, a) = R¢(b, a) + e] or

[R(a, b) = R¢(a, b) + e, R(b, c) = R¢(b, c) + e and R(c, a) = R¢(c, a) + e].



Thus, R and R¢ are identical except on a circuit of length 2 or 3 on which a positive or negative

quantity has been added. In this case we say that R and R¢ are circuit-equivalent.
An -ranking rule ³³³ is independent of circuits if for all finite set X and all R, R¢ Î X,

[R and R¢ are circuit-equivalent] Þ  ³³³X(R) = ³³³X(R¢).

This property has a straightforward interpretation. When R and R¢ are circuit-equivalent via a

circuit of length 2, independence of circuits implies that the ranking is only influenced by the

differences R(a, b) Ð R(b, a). When R and R¢ are circuit-equivalent via a circuit of length 3, in-

dependence of circuits implies that intransitivities of the kind R(a, b) > 0, R(b, c) > 0 and R(c,

a) > 0 can be "wiped out". Notice that this property makes an explicit use of the cardinal

properties of the valuations of the relation R (except in the particular case in which both R and

R¢ are crisp).

An -ranking rule ³³³  is said to be ordinal if for all finite set X, all R Î X and all strictly

increasing and one-to-one transformation f on [0, 1],
³³³X(R) = ³³³X(f[R])

where f[R] is the valued relation on X such that f[R](c, d) = f(R(c, d)) for all c, d Î X.

Ordinality implies that a ranking rule should not make use of the "cardinal" properties of the

valuations.

An -ranking rule ³³³ is said to be strictly monotonic if, for all finite set X and all R Î X,

[a ³³³X(R) b Þ a >>>X(R¢) b], where R¢ is an element of X such that R¢/X\{a} = R/X\{a} and

[R(a, c) £ R¢(a, c), R(c, a) ³ R¢(c, a) for all cÊÎÊX\{a}, at least one of these inequalities being

strict].

Strict monotonicity says that improving an alternative must improve its position in the ranking.

It is clear that strict monotonicity implies monotonicity.

We shall be interested here in two ranking rules. The first one is just the Net Flow Rule applied

to valued relations, which we call the Valued Net Flow Rule (VNFR). The second one, the

Valued Min in Favor Rule (VMIFR), is obtained by rank ordering the alternatives according to

the following score:
SMinF(a, R, X) =  Min  R(a, c).

                           c Î  X\{a}

Besides their simplicity and intuitive appeal, there are a number of reasons for being interested

in these two rules. The VNFR rule has a long history in Social Choice. We already mentioned

that it coincides with the rule of Copeland when R is crisp. When R(a, b) is interpreted as a

percentage of voters considering that a is preferred or indifferent to b, it corresponds to the

well-known rule of Borda (see Fishburn (1973); for characterizations of various versions of

Borda's rule see Young (1974), Hansson and Sahlquist (1976), Nitzan and Rubinstein

(1981)). The VNFR rule is also used in the PROMETHEE II outranking method (see Brans et



al. (1984)), the Net Flow score being also used, though in a different way, in the exploitation

technique of ELECTRE III. It should be noticed that this rule makes use of the "cardinal"

properties of the numbers R(a, b). On the contrary, the Min In Favor Rule is purely "ordinal"

and uses the valuations R(a, b) as if they were a numerical representation of a credibility

relation between pairs of alternatives.

It is not difficult to see that the VNFR is neutral, continuous, faithful, strictly monotonic and

independent of circuits but neither ordinal nor greatest-faithful. The VMIFR is neutral, greatest-

faithful, continuous and ordinal. It is not faithful. It is neither strictly monotonic nor

independent of circuits. We sum up our observations in Table 3.

[Insert Table 3 about here]

We leave to the reader the Ð not very difficult Ð task of confronting these two rules with the

properties introduced in section 4. This table contains italicized "Y". The reason for this lies in

the following proposition (see Bouyssou (1992b and c) for a proof):

Proposition 3.
(a) The Valued Net Flow Rule is the only -ranking rule that is neutral, strictly monotonic and

independent of circuits.
(b) The Valued Min In Favor Rule is the only -ranking rule ordinal, continuous and greatest-

faithful.

Such characterization results are useful in quickly identifying the main characteristics of a

ranking rule. The VNFR uses the cardinal properties of the valuations. This allows to deal with

circuits in a very elegant and efficient way. On the contrary the VMIFR is purely ordinal at the

cost of not being faithful. Let us mention that different systems of properties may be used to

characterize a given rule. Alternative characterizations of the VNFR (resp. the VMIFR) may be

found in Bouyssou (1993) (resp. Pirlot (1992 and 1995)). They use properties that, in some

contexts, may be found to be more easily interpretable than the ones that we used here.

VI- Conclusions

It is worth stressing that the theoretical analyses presented here do not and cannot, in our opi-

nion, aim at defining a "best" ranking rule. They nevertheless allow to show that, sometimes, a

given rule is the only one to satisfy a set of properties. It may also happen that, for a given set

of properties, a rule dominates another (because it satisfies the same properties plus some

others) or that some rules cannot be dominated (because the addition of new property would

result in a contradiction). Thus, they provide some guidelines to the analyst who has to choose



a ranking rule. It should be noted however that the interpretation of the "properties" is

dependent upon the particular decision-aid situation at hand and the way the binary relation was

obtained. Let us also mention that it cannot be overemphasized that the type of analysis

presented in this paper which focuses exclusively on exploitation techniques can only be

meaningfully conducted if the set of binary relations to which these techniques will be

confronted has been clearly identified.

Our review of techniques allowing to rank order alternatives on the basis of a binary relation is

far from being exhaustive. Many important concepts and results can be found in the literature

and especially in the literature on Social Choice where such a problem has a long history.
Nevertheless many important questions are still open Ð many -ranking rules are still awaiting

their characterization, a list of "desirable" properties for -ranking rules is still to be devised Ð

and much work remains to be done in order to unify the two types of analysis presented here.

We do hope that this review will contribute to stimulate research in this area.
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U - Ranking Rules NFR(R) RNFR(R)   RR(R )  

neutrality Y Y Y

faithfulness Y Y Y

data - presev. 1 Y Y Y

data - preserv. 2 N N Y

data - preserv. 3 N N Y

covering compat. Y Y Y

indep. / Non - disc alt. Y Y N

indep. / Best ranked alt. N Y Y

monotonicity Y N Y

r

Table 1: The three basic rules



U - Ranking Rules
NFR(P*)

NFR(P * )
RNFR(R*)

RNFR(R * )
RR(R

neutrality Y Y

faithfulness Y Y

data - presev. 1 Y Y

data - preserv. 2 N Y

data - preserv. 3 Y Y

covering compat. Y Y

indep. / Non - disc alt. Y N

indep. / Best ranked alt. Y Y

monotonicity Y Y

r r

r

R
R

RR Pr( ) )

Table 2: The six nondominated rules



F - Ranking Rules VMIFR VNFR

Neutrality Y

Continuity Y

Strict Monotonicity N

Faithfulness N Y

Greatest - Faithfulness N

Independence of circuits N

Ordinality N

Y

Y

Y

Y

Y

Y

Table 3: Two basic -Ranking Rules

(see text for the explanation of italicized "Y")


