A Manichean theory of Subjective Expected Utility

Denis Bouyssou Thierry Marchant

CNRS & Université Paris Dauphine Paris, France

> Ghent University Ghent, Belgium

ROADEF—Saint-Étienne

Introduction

Decision making under uncertainty

- I have to make a decision
- the consequences of my decisions depend on Nature's decisions
- I have to decide before Nature decides

Three main Ingredients

- States: what Nature can decide, $N = \{1, 2, ..., n\}$
- Consequences: what will ultimately happen to me, $\Gamma = \{\alpha, \beta, \gamma ...\}$
- Acts: mapping from states to consequences, $\mathcal{X} = \Gamma^N = \Gamma^n = \{a, b, \dots\}$

Example

Planning a reception

- states: {Sunny, Rainy, Cloudy }
- consequences: $\{++, +, 0, -, --\}$
- acts:

	Sunny	Rainy	Cloudy
Outdoor	++		0
Indoor	_	+	+
Tent	+	_	0

Subjective Expected Utility

Model

$$a \gtrsim b \Leftrightarrow SEU(a) = \sum_{i=1}^{n} p_i u(a_i) \ge SEU(b) = \sum_{i=1}^{n} p_i u(b_i)$$

- SEU(a): sum over all states of the utility of the consequence in state i $(u(a_i))$ weighted by the subjective probability of the state i (p_i)
- \(\): preference relation on the set of acts

SEU

- simplicity: separation of tastes (u) and beliefs (p_i)
- analytical tractability: linear model underlying Decision Analysis
- many useful tools: decision trees, influence diagrams, EVPI, etc.
- normative appeal: behavioral foundations, dynamic consistency
- descriptive limitations: Ellsberg & Allais

Behavioral foundations of SEU

Many approaches

- Shapiro (1979)
- Savage (1954)
- Wakker (1989)
- Anscombe & Aumann (1963)
- all approaches use a preference relation on the set of all acts

Research Question

• deriving SEU from different and weaker premises

Manichean premises

• ordered partition: attractive and unattractive acts

Motivations

Theory

- \bullet a preference relation \succeq induces many ordered partitions
 - $\mathscr{A}^x = \{a \in \mathcal{X} : a \succ x\}, \ \mathscr{U}^x = \{a \in \mathcal{X} : x \succsim a\}$
- our premises are weaker than the classical ones

Practice

- the status quo plays an important rôle in comparing acts
- comparing to the status quo induces an ordered partition

Framework

Classical setting

- $N = \{1, 2, ..., n\}$: set of states
- $\Gamma = \{\alpha, \beta, \gamma ...\}$: set of consequences
- $\mathcal{X} = \Gamma^N = \Gamma^n = \{a, b, \dots\}$: set of acts
- notation: $(a_E, b_{-E}), (\alpha_E, b_{-E}), (a_i, b_{-i}), (\alpha_{ij}, b_{-ij})$

Primitives: ordered partition $\langle \mathcal{A}, \mathcal{U} \rangle$ of \mathcal{X}

- $\mathscr{A} \subseteq \mathscr{X}, \mathscr{U} \subseteq \mathscr{X}, \mathscr{A} \cup \mathscr{U} = \mathscr{X}, \mathscr{A} \cap \mathscr{U} = \varnothing$
- \mathscr{A} : set of acts that are "Attractive"
- \mathcal{U} : set of acts that are "Unattractive"

Useful interpretation

- position of acts vis-à-vis a status quo
- \bullet acts in $\mathscr A$ are strictly better than the status quo
- all acts in $\mathscr{A}(\mathscr{U})$ are not equivalent

Definitions

<u>In</u>fluence

• state $i \in N$ has influence if there are $\alpha, \beta \in \Gamma$ and $a \in \mathcal{X}$ such that $(\alpha_i, a_{-i}) \in \mathscr{A}$ and $(\beta_i, a_{-i}) \in \mathscr{U}$

Structural Assumption

There are at least three states

All states have influence

- the case of two states is quite different
- price to pay for using weak premises

Model

SEU

$$a \in \mathscr{A} \Leftrightarrow \sum_{i=1}^{n} p_i u(a_i) > 0$$

- $a_i \in \Gamma$ consequence of act $a \in \mathcal{X}$ if state $i \in N$ obtains
- u is a real-valued function on Γ
- p_i is the subjective probability of $i \in N$
 - $p_i \ge 0, \sum_{i=1}^n p_i = 1$
- the choice of the value "0" for the threshold is arbitrary
- influence of state i implies $p_i > 0$

Tradeoff Consistency

Tradeoff Consistency

$$\begin{aligned} &(\alpha_{j}, \textcolor{red}{\lambda_{k}}, a_{-jk}) \in \mathscr{A} \quad \text{and} \\ &(\gamma_{j}, \textcolor{red}{\mu_{k}}, b_{-jk}) \in \mathscr{A} \quad \text{and} \\ &(\delta_{i}, \textcolor{red}{\tau_{k}}, c_{-ik}) \in \mathscr{A} \quad \text{and} \\ &(\beta_{i}, \textcolor{red}{\xi_{k}}, d_{-ik}) \in \mathscr{A} \quad \text{and} \end{aligned} \Rightarrow \begin{cases} &(\beta_{j}, \textcolor{red}{\mu_{k}}, a_{-jk}) \in \mathscr{A} \quad \text{or} \\ &(\delta_{j}, \textcolor{red}{\lambda_{k}}, b_{-jk}) \in \mathscr{A} \quad \text{or} \\ &(\gamma_{i}, \textcolor{red}{\xi_{k}}, c_{-ik}) \in \mathscr{A} \quad \text{or} \\ &(\alpha_{i}, \textcolor{red}{\tau_{k}}, d_{-ik}) \in \mathscr{A} \end{cases}$$

<u>Interpretation</u>

Consistent tradeoff between consequences that are independent from states:

$$p_{j}u(\alpha) - p_{j}u(\beta) > p_{k}u(\mu) - p_{k}u(\lambda)$$

$$p_{k}u(\mu) - p_{k}u(\lambda) > p_{j}u(\delta) - p_{j}u(\gamma)$$

$$p_{i}u(\delta) - p_{i}u(\gamma) > p_{k}u(\xi) - p_{k}u(\tau)$$

$$p_{k}u(\xi) - p_{k}u(\tau) > p_{i}u(\alpha) - p_{i}u(\beta)$$

Necessary for SEU

Inspired from Wakker (1989)

r-1-Linearity

r-1-Linearity

$$(\alpha_i, a_{-i}) \in \mathscr{A}$$
 and
$$(\beta_j, b_{-j}) \in \mathscr{A}$$

$$\Rightarrow \begin{cases} (\beta_i, a_{-i}) \in \mathscr{A} \\ \text{or} \\ (\alpha_j, b_{-j}) \in \mathscr{A} \end{cases}$$

$$\alpha \succsim^{\mathscr{A}} \beta \Leftrightarrow [(\beta_i, a_{-i}) \in \mathscr{A} \Rightarrow (\alpha_i, a_{-i}) \in \mathscr{A}, \text{ for all } i \in \mathbb{N} \text{ and all } a \in \mathcal{X}]$$

- $\succeq^{\mathcal{A}}$ is always reflexive and transitive
- the above axiom implies that it is complete: consistent ordering of consequences across states
- necessary for SEU
- implied by Tradeoff Consistency

Connectedness

Remarks

- under r-1-Linearity, the set Γ is weakly ordered by $\succeq^{\mathscr{A}}$
- \bullet we use the order topology induced by $\succsim^{\mathscr{A}}$ on Γ
- we use the product topology on $\mathcal{X} = \Gamma^n$

Connectedness

When $\succeq^{\mathscr{A}}$ is a weak order, the set Γ is connected in the order topology generated by $\succeq^{\mathscr{A}}$

- the set Γ is "rich"
- $\alpha \succ^{\mathscr{A}} \beta \Rightarrow \alpha \succ^{\mathscr{A}} \gamma \succ^{\mathscr{A}} \beta$, for some $\gamma \in \Gamma$
- not necessary for SEU

Openness

Openness

The set $\mathscr A$ is open in the product topology on $\mathcal X$

- \bullet necessary for SEU whenever u is continuous
 - if $a \in \mathcal{A}$, there is a neighborhood of a included in \mathcal{A}
- ullet implies that $\mathscr U$ is closed in the product topology on $\mathcal X$

Unboundedness*

<u>Unb</u>oundedness*

For all $i \in N$ and all $a \in \mathcal{X}$, $(\alpha_i, a_{-i}) \in \mathcal{A}$ and $(\beta_i, a_{-i}) \in \mathcal{U}$, for some $\alpha, \beta \in \Gamma$

- strong axiom
- not necessary for SEU
- implies that the image of Γ by u is \mathbb{R}
- only introduced to keep things simple

New behavioral foundations for SEU

Theorem, B & Marchant, 2010

Suppose that $\langle \mathscr{A}, \mathscr{U} \rangle$ is an ordered partition on \mathcal{X} such that the Structural Assumption holds.

Suppose that $\langle \mathcal{A}, \mathcal{U} \rangle$ satisfies Tradeoff Consistency, Connectedness, Openness, and Unboundedness*.

Then there are:

- a continuous real-valued function u on Γ such that $u(\Gamma) = \mathbb{R}$
- n strictly positive numbers $p_1, p_2, \dots p_n$ adding up to 1 such that SEU holds.

The numbers p_1, p_2, \ldots, p_n are unique. The function u is unique up to a multiplication by a strictly positive constant.

Remarks

- full characterization of SEU when $n \geq 3$
- tight uniqueness properties

Summary

- SEU with tight uniqueness properties derived from Manichean premises
- Manichean premises are observable
- reasonably simple conditions that can be tested in experiments

Further work

Theoretical side

- get rid of Unboundedness*
 - technical but important
- use similar analysis for NEU models (CEU, CPT)
 - likely to be difficult

Experimental side

- test Tradeoff Consistency
- are SEU violations less severe with weaker premises?
 - unlikely!
 - the paper gives variants of Allais' problem and Ellsberg's problem adapted to our setting

References

Bouyssou, D., Marchant, T. (2009)

Ordered categories and additive conjoint measurement on connected sets *Journal of Mathematical Psychology*, **53**(2):92–105.

Bouyssou, D., Marchant, T. (2010)
Subjective expected utility without preferences

Nakamura, Y. (2004)

Trichotomic preferences for gambles Journal of Mathematical Psychology, 48(6):385–398.

Vind, K. (1991)

Independent preferences

Journal of Mathematical Economics, **20**(1): 119–135.

Wakker, P. P. (1989)

Additive representations of preferences

Kluwer, Dordrecht.