# An axiomatic approach to ELECTRE TRI

Denis Bouyssou Thierry Marchant

CNRS-LAMSADE Paris, France

Universiteit Gent Ghent, Belgium

LAMSADE — 6 December 2005

### If you do not know Thierry...



### Introduction

#### Context

• preference modelling for MCDA

#### Two main traditions

- Axiomatic: conjoint measurement and additive value functions
  - firm theoretical background (Krantz et al., 1971)
  - implementation often delicate: requires a detailed analysis of preferences
- Pragmatic: dominance relation and refinements
  - outranking relations based on a concordance-discordance principle
  - simple and intuitive...but difficult to compare to other methods (lack of axiomatic foundations)

### Conjoint measurement

#### Ingredients

- $X \subseteq X_1 \times X_2 \times \cdots \times X_n$ : set of objects evaluated on n attributes
- $\succeq$ : binary relation on X

**Aim**: Study under what conditions  $\succeq$  can be represented in a given measurement model and the uniqueness of this representation

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

### Bouyssou & Pirlot (2002, 2004 a & b, 2005)

- general conjoint measurement framework tolerating intransitivity and incompleteness
- analyze pragmatic methods within this framework

### Conjoint measurement

### Why be interested in conjoint measurement?

- axiomatic analysis allows to better understand models and to compare them
- for Psychologists: these results exhibit empirically testable conditions
- for Decision Analysts: these results give hints on how to build the representation and, hence, to assess preferences

#### Limitation

• restricted to *relative* evaluation models (models comparing alternatives between themselves)

# Sorting methods

#### Absolute evaluation models

- compare alternative to norms
  - prototypes
  - limiting profiles

### ELECTRE TRI (Wei, 1992, Roy & Bouyssou, 1993)

- compare alternatives to limiting profiles
- using a concordance / discordance approach

### ELECTRE TRI

### ELECTRE TRI vs other outranking methods

- keeps the idea of concordance and non-discordance
- seems to avoid "exploitation" problems

#### Active research

- interactive assessment of parameters (Mousseau et al.)
- many applications

# Objectives

### Propose a general framework for conjoint measurement

- adapted to sorting methods
- simple and intuitive but nontrivial
- having a numerical representation

#### Put this framework to work

- to characterize Electre Tri
- not any characterization
  - having ad hoc axioms for a method is an easy (and rather futile) exercise

### Outline

- Background
  - Definitions and notation
  - Measurement framework
  - GMS
  - Electre Tri
- 2 The noncompensatory sorting model
  - Definitions
  - Axioms and results
  - Sugeno integral
  - Extensions
- 3 The noncompensatory sorting model with veto
  - Definitions
  - Axioms and results
  - Extensions
- 4 Conclusion

# Setting

### Classical conjoint measurement setting

- $N = \{1, 2, \dots, n\}$ : set of attributes
- $X = \prod_{i=1}^{n} X_i$  with  $n \ge 2$ : set of alternatives
  - $\bullet$   $X_i$  are not supposed to have a special structure
- $\succsim$ : binary relation on X
- notation:  $(x_i, y_{-i}) \in X$

### Our setting

• replace the binary relation  $\succsim$  on X by a partition  $\langle C^1, C^2, \dots, C^r \rangle$  of X

# Setting

#### Variants

partition  $\langle C^1, C^2, \dots, C^r \rangle$  of X

- ordered vs unordered categories
- r = 2 vs r > 2
- presence or absence of a "frontier" between categories
- objects belonging to more than one category
- measurement models

# Scope of today's talk: 2 categories

#### **Primitives**

• twofold partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  of the set X

#### Interpretation

- A contains sAtisfactory objects
- $\bullet$   $\mathscr U$  contains Unsatisfactory objects

#### Remark

- with only two categories the distinction between ordered and unordered categories tends to be blurred
- the ordering of categories is not part of our primitives

# Influence and degeneracy

#### Influence

Attribute  $i \in N$  is influent if there are  $x_i, y_i \in X_i$  and  $a_{-i} \in X_{-i}$  such that

• 
$$(x_i, a_{-i}) \in \mathscr{A}$$

• 
$$(y_i, a_{-i}) \notin \mathscr{A}$$

An attribute that is not influent will be degenerate

We do **not** suppose that all attributes are influent

### Measurement models

### Decomposable threshold model (Goldstein, 1992)

$$x \in \mathscr{A} \Leftrightarrow F[u_1(x_1), u_2(x_2), \dots, u_n(x_n)] > 0$$
 (D)

- $u_i$  is a real-valued function on  $X_i$
- F is a real-valued function on  $\prod_{i=1}^{n} u_i(X_i)$

#### Variants

- model  $(D \nearrow)$ : (D) with F nondecreasing in each variable
- model  $(D \nearrow )$ : (D) with F increasing in each variable
- model (Add): (D) with  $F = \sum$

$$(Add) \subseteq (D \nearrow ) \subseteq (D \nearrow ) \subseteq (D)$$

### Results

### Analysis of model (D)

the relation  $\sim_i$  on  $X_i$  such that:

$$x_i \sim_i y_i \Leftrightarrow [\text{for all } a_{-i} \in X_{-i}, (y_i, a_{-i}) \in \mathscr{A} \Leftrightarrow (x_i, a_{-i}) \in \mathscr{A}]$$

is an equivalence

### Theorem (Goldstein)

 $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation in model (D) if and only if, for all  $i \in N$ , there is a one-to-one correspondence between  $X_i/\sim_i$  and some subset of  $\mathbb{R}$ 

### Axioms

#### Analysis of variants

the relation  $\succeq_i$  on  $X_i$  such that:

$$x_i \succsim_i y_i \Leftrightarrow [\text{for all } a_{-i} \in X_{-i}, (y_i, a_{-i}) \in \mathscr{A} \Rightarrow (x_i, a_{-i}) \in \mathscr{A}]$$

is always reflexive and transitive (symmetric part is  $\sim_i$ )

• in all variants  $(D \nearrow, D \nearrow \nearrow, Add)$  introduced above,  $\succeq_i$  is complete

### Axiom: linearity on attribute i

for all  $x_i, y_i \in X_i$  and all  $a_{-i}, b_{-i} \in X_{-i}$  $\langle \mathscr{A}, \mathscr{U} \rangle$  is linear if it satisfies  $linear_i$  on all  $i \in N$ 

### Results

### Lemma (Linearity)

- condition linear, holds iff  $\succeq_i$  is complete
- if  $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation in model  $(D \nearrow)$  then it is linear

### Theorem (Model $(D \nearrow \nearrow)$ )

There is a representation of  $\langle \mathcal{A}, \mathcal{U} \rangle$  in model  $(D \nearrow )$  if and only if it is linear and, for all  $i \in N$ , there is a finite or countably infinite set  $X_i' \subseteq X_i$  that is dense in  $X_i$  for  $\succsim_i$ .

#### Furthermore:

- if  $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation in model  $(D \nearrow \nearrow)$ , it has a representation in which, for all  $i \in N$ ,  $u_i$  is a numerical representation of  $\succsim_i$ ,
- $models (D \nearrow \nearrow) and (D \nearrow) are equivalent.$

# Model(D //)

#### Remarks

- uniqueness is quite weak
- the role of  $\mathscr A$  and  $\mathscr U$  is entirely symmetric

### Using model $(D \nearrow \nearrow)$

- model  $(D \nearrow )$  contains many sorting models as particular cases
  - UTADIS (model (Add))
  - conjunctive and disjunctive models
  - models using distances to prototypes
- we will show later that it contains (our version of) ELECTRE TRI as a particular case

#### The "at least" decision rule model of GMS

- $S_i$ : complete and transitive relation on each  $X_i$
- decision rule d
  - a subset  $N^d \subseteq N$  of attributes
  - for each  $i \in \mathbb{N}^d$ , in an element  $\delta_i^d \in X_i$
- "at least" decision rule d

$$[x_i \ \mathcal{S}_i \ \delta_i^d, \forall i \in N^d] \Rightarrow x \in \mathscr{A}$$

#### Representation in the decision rule model

A set of "at least" decision rules  $\mathcal D$  is said to represent  $\langle \mathscr A,\mathscr U \rangle$  if

- for each  $x \in \mathcal{A}$ , there is one decision rule in  $d \in \mathcal{D}$  that matches x,  $(x_i \mathcal{S}_i \delta_i^d, \forall i \in N^d)$
- for each  $y \in \mathcal{U}$ , there is no decision rule in  $\mathcal{D}$  that matches y

### Result

#### Theorem (GMS, 2001, 2002)

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  can be represented in the "at least" decision rule model iff it is linear

▶ skip relational model

### Relational model à la GMS

#### Relational model of GMS

- $S_i$ : complete and transitive relation on each  $X_i$
- binary relation S on X compatible with  $S_i$

$$[x \mathcal{S} y, z_i \mathcal{S}_i x_i, y_j \mathcal{S}_j w_j] \Rightarrow (z_i, x_{-i}) \mathcal{S} (w_j, y_{-j})$$

• an element  $\tau \in X$ 

such that

$$x \in \mathscr{A} \Leftrightarrow x \mathcal{S} \tau$$

### Theorem (GMS, 2001, 2002)

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  can be represented in the relational model iff it is linear

# (our version of) Electre Tri

### Ingredients

- profile:  $\pi = (\pi_1, \pi_2, \dots, \pi_n)$
- $\widehat{X}_i = X_i \cup \{\pi_i\}$  and  $\widehat{X} = \prod_{i=1}^n \widehat{X}_i$
- semiorder:  $S_i$  on  $\widehat{X}_i$
- strict semiorder:  $V_i$  on  $\widehat{X}_i$  such that  $V_i \subseteq P_i$
- normalized weights:  $w_i (\sum_{i=1}^n w_i = 1)$
- majority threshold:  $\lambda \in [0.5, 1]$

### Outranking relation

• S on  $\widehat{X}$ 

$$x \ S \ y \Leftrightarrow \sum_{i \in S(x,y)} w_i \ge \lambda \text{ and } [Not[y_i \ V_i \ x_i], \text{ for all } i \in N]$$

### ELECTRE TRI

#### Pessimistic version

$$x \in \mathscr{A} \Leftrightarrow x \mathrel{S} \pi$$

### Optimistic version

$$x \in \mathscr{A} \Leftrightarrow Not[\pi \ P \ x]$$

#### Remarks

- no weak preference zone
- discordance occur in an "all or nothing" way

Close to the original when  $X_i$  are discrete

### ELECTRE TRI

$$d_i(b S a)$$

$$c_i(b S a)$$



### Definition

### Noncompensatory sorting model

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  has a representation in the noncompensatory sorting model if

- for all  $i \in N$  there is a set  $\mathcal{A}_i \subseteq X_i$
- there is a subset  $\mathscr{F}$  of  $2^N$  such that, for all  $I, J \in 2^N$

$$[I \in \mathscr{F} \text{ and } I \subseteq J] \Rightarrow J \in \mathscr{F}$$

such that, for all  $x \in X$ ,

$$x \in \mathscr{A} \Leftrightarrow \{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F}$$

### Interpretation

•  $x \in \mathscr{A}$  iff x is "satisfactory"  $(x_i \in \mathscr{A}_i)$  on a subset of attributes that is "sufficiently important"  $(\in \mathscr{F})$ 

### Consequences of influence

- if attribute  $i \in N$  is influent then  $\varnothing \subseteq \mathscr{A}_i \subseteq X_i$
- if  $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation  $\langle \mathscr{F}, \langle \mathscr{A}_i \rangle_{i \in \mathbb{N}} \rangle$  in the noncompensatory sorting model, this representation is unique iff all attributes are influent

### Particular cases of the noncompensatory sorting model

- $\mathscr{F} = \{N\}$ : conjunctive model
- $\{i\} \in \mathcal{F}$ , for all  $i \in N$ : disjunctive model

# Noncompensatory sorting model and Electre Tri

### Electre Tri (pessimistic)

• When  $V_i = \emptyset$ , for all  $i \in N$ , (our version of) Electre Tri is a particular case of the noncompensatory sorting model

$$x \in \mathscr{A} \Leftrightarrow x \ S \ \pi \Leftrightarrow \sum_{i \in S(x,\pi)} w_i \ge \lambda$$

- $\bullet \ \mathscr{A}_i = \{x_i \in X_i : x_i \ S_i \ \pi_i\}$
- $I \in \mathscr{F} \text{ iff } \sum_{i \in I} w_i \ge \lambda$

### Electre Tri (optimistic)

• Electre Tri (optimistic) is *not* a particular case of the noncompensatory sorting model

### Observations and Result

#### Observations

Suppose that  $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation in the noncompensatory sorting model. Then

- it is linear, so that  $\succeq_i$  are weak orders
- all relations  $\succeq_i$  have at most two distinct equivalence classes

### Proposition

 $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation in the noncompensatory sorting model iff it has a representation in model  $(D \nearrow \nearrow)$  in which each  $u_i$  takes at most two distinct values

### Axiom

#### 2-gradedness

 $\langle \mathscr{A}, \mathscr{U} \rangle$  satisfies condition  $2\text{-}graded_i$  if

for all  $x_i, y_i, z_i \in X_i$  and all  $a_{-i}, b_{-i} \in X_{-i}$ We say that  $\langle \mathscr{A}, \mathscr{U} \rangle$  is 2-graded if it is 2-graded<sub>i</sub> for all  $i \in N$ 

$$\begin{array}{l} (x_i,a_{-i}) \in \mathscr{A} \text{ and } (z_i,a_{-i}) \notin \mathscr{A} \Rightarrow Not[z_i \succsim_i x_i] \\ (y_i,a_{-i}) \in \mathscr{A} \text{ and } (z_i,a_{-i}) \notin \mathscr{A} \Rightarrow Not[z_i \succsim_i y_i] \\ (y_i,b_{-i}) \in \mathscr{A} \text{ and } (x_i,b_{-i}) \notin \mathscr{A} \Rightarrow Not[x_i \succsim_i y_i] \end{array} \right\} \Rightarrow 3 \text{ classes}$$

### Observations and result

#### Lemma

- Conditions linear<sub>i</sub> and 2-graded<sub>i</sub> hold iff  $\succeq_i$  is a weak order having at most two distinct equivalence classes
- Conditions linear<sub>i</sub> and 2-graded<sub>i</sub> are independent

#### Theorem

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  has a representation in the noncompensatory sorting model iff it is linear and 2-graded

# (Discrete) Sugeno integral model

### Ingredients

- a non-negative real valued function  $f_i$  on  $X_i$ , for all  $i \in N$
- a real valued function  $\mu$  (a capacity) on  $2^N$  that is nondecreasing w.r.t. inclusion (i.e., such that  $A \subseteq B$  implies  $\mu(A) \le \mu(B)$ ) and such that  $\mu(\varnothing) = 0$

such that, for all  $x \in X$ ,

$$x \in \mathscr{A} \Leftrightarrow \bigvee_{I \subseteq N} \left[ \mu(I) \wedge \left( \bigwedge_{i \in I} [f_i(x_i)] \right) \right] > 0$$
 (Su)

#### GMS (2002)

Model (Su) has been characterized (without proof!) by GMS (2002)

### Result

#### Theorem

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  of a set X has a representation in the noncompensatory sorting model iff it has a representation in the Sugeno integral model (Su)

#### Remarks

- gives a new and simple interpretation of the Sugeno integral
- shows the power and interest of axiomatic analysis
- hint: define  $f_i$  and  $\mu$  letting
  - $f_i(x_i) = 1$  if  $x_i \in \mathcal{A}_i$  and 0 otherwise
  - $\mu(I) = 1$  if  $I \in \mathscr{F}$  and 0 otherwise
- ▶ skip other extensions

# Models without linearity

### 2-graded<sub>i</sub>

$$\left. \begin{array}{c} (x_i,a_{-i}) \in \mathscr{A} \\ \text{and} \\ (y_i,a_{-i}) \in \mathscr{A} \\ \text{and} \\ (y_i,b_{-i}) \in \mathscr{A} \end{array} \right\} \Rightarrow$$

$$\begin{cases} (x_i, b_{-i}) \in \mathscr{A} \\ \text{or} \\ (z_i, a_{-i}) \in \mathscr{A} \end{cases}$$

### 2-graded $_i^*$

$$\left. \begin{array}{c} (x_i,a_{-i}) \in \mathscr{U} \\ \text{and} \\ (y_i,a_{-i}) \in \mathscr{U} \\ \text{and} \\ (y_i,b_{-i}) \in \mathscr{U} \end{array} \right\} \Rightarrow$$

$$\begin{cases} (x_i, b_{-i}) \in \mathscr{U} \\ \text{or} \\ (z_i, a_{-i}) \in \mathscr{U} \end{cases}$$

### Results

#### Lemma

- Conditions 2-graded<sub>i</sub> and 2-graded<sub>i</sub>\* are independent
- **2** In presence of linear, conditions 2-graded, and 2-graded, are equivalent
- 3 [2-graded, and 2-graded, do not imply linear,

#### Lemma

 $\langle \mathcal{A}, \mathcal{U} \rangle$  satisfies 2-graded; and 2-graded; iff  $\sim_i$  has at most two equivalence classes

# The generalized noncompensatory sorting model

#### Definition

- for all  $i \in N$ , there is a set  $\mathscr{A}_i \subseteq X_i$
- there is a subset  $\mathscr{F}$  of  $2^N$

such that, for all  $x \in X$ ,

$$x \in \mathscr{A} \Leftrightarrow \{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F}$$

### Interpretation

- ullet identical to the noncompensatory sorting model except that  $\mathscr{F}$  is not supposed to be compatible with set inclusion
- combinations of levels in  $\mathcal{A}_i$  are typical of  $\mathcal{A}$

### Result

#### Theorem

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  has a representation in the generalized noncompensatory sorting model iff it is 2-graded and 2-graded\*

# The noncompensatory sorting model with veto

### <u>Definition</u>

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  has a representation in the noncompensatory sorting model noncompensatory sorting model with veto if

- for all  $i \in N$  there is a set  $\mathscr{A}_i \subseteq X_i$
- for all  $i \in N$  there is a set  $\mathcal{V}_i \subseteq X_i$  such that  $\mathcal{A}_i \cap \mathcal{V}_i = \emptyset$
- $\bullet$  there is a subset  ${\mathscr F}$  of  $2^N$  such that, for all  $I,J\in 2^N$

$$[I \in \mathscr{F} \text{ and } I \subseteq J] \Rightarrow J \in \mathscr{F}$$

such that, for all  $x \in X$ ,

$$x \in \mathscr{A} \Leftrightarrow \{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F} \text{ and } \{i \in N : x_i \in \mathscr{V}_i\} = \varnothing$$

### Remarks

### Interpretation

•  $x \in \mathscr{A}$  iff x is satisfactory  $(x_i \in \mathscr{A}_i)$  on a subset of attributes that is "sufficiently important"  $(\in \mathscr{F})$  and x has no repulsive level for  $\mathscr{A}$   $(x_i \in \mathscr{V}_i)$ 

#### Lemma

If  $\langle \mathcal{A}, \mathcal{U} \rangle$  has a representation in the noncompensatory sorting model with veto then it is linear

### Consequence

• the noncompensatory sorting model with veto is a particular case of model  $(D \nearrow \nearrow)$ 

# ELECTRE TRI

#### Remark

• (our version of) ELECTRE TRI (pessimistic) is a particular case of the noncompensatory sorting model with veto

$$x \in \mathscr{A} \Leftrightarrow x \ S \ \pi \Leftrightarrow$$

$$\sum_{i \in S(x,\pi)} w_i \ge \lambda \text{ and } [Not[\pi_i \ V_i \ x_i], \text{ for all } i \in N]$$

- $\bullet \ \mathscr{A}_i = \{x_i \in X_i : x_i \ S_i \ \pi_i\}$
- $\bullet \ \mathscr{V}_i = \{x_i \in X_i : \pi_i \ V_i \ x_i\}$
- $I \in \mathscr{F} \text{ iff } \sum_{i \in I} w_i \ge \lambda$

## Axiom

#### 3-gradedness with veto

 $\langle \mathcal{A}, \mathcal{U} \rangle$  satisfies condition 3v-graded, if

$$\begin{aligned} & (x_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ & (y_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ & (y_i, b_{-i}) \in \mathscr{A} \\ & \text{and} \\ & (z_i, c_{-i}) \in \mathscr{A} \end{aligned} \} \Rightarrow \left\{ \begin{aligned} & (x_i, b_{-i}) \in \mathscr{A} \\ & \text{or} \\ & (z_i, a_{-i}) \in \mathscr{A} \end{aligned} \right.$$
 
$$(3v\text{-}graded_i)$$

We say that  $\langle \mathscr{A},\mathscr{U}\rangle$  is 3-graded with veto if it is  $3v\text{-}graded_i$  for all  $i\in N$ 

### Observations

#### Lemma

- If  $\langle \mathscr{A}, \mathscr{U} \rangle$  has a representation in the noncompensatory sorting model with veto then it is 3-graded with veto
- 2 Conditions linear, and 3v-graded, are independent
- Conditions linear, and 3v-graded, imply that  $\succeq_i$  is a weak order having at most three equivalence classes Furthermore if  $\succeq_i$  has exactly three distinct equivalence classes and if  $x_i$  belongs to the last equivalence class of  $\succeq_i$  then  $(x_i, a_{-i}) \in \mathcal{U}$ , for all  $a_{-i} \in X_{-i}$

## Main result

#### Theorem

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  is representable in the noncompensatory sorting model with veto iff it is linear and 3-graded with veto

# Uniqueness

#### Remark

- the representation of  $\langle \mathcal{A}, \mathcal{U} \rangle$  in the noncompensatory sorting model with veto may be non-unique even if all attributes are influent
- the necessary and sufficient conditions for uniqueness are known and are stringent (all attributes should be influent for the partition obtained after having removed the levels that are "obviously" in  $\mathcal{Y}_i$ )

▶ skip other extensions

## Extensions

### 3v-graded,

$$\begin{aligned} &(x_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ &(y_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ &(y_i, b_{-i}) \in \mathscr{A} \\ & \text{and} \\ &(z_i, c_{-i}) \in \mathscr{A} \end{aligned} \Rightarrow$$

$$\begin{cases} &(x_i, b_{-i}) \in \mathscr{A} \\ & \text{or} \\ &(z_i, a_{-i}) \in \mathscr{A} \end{cases}$$

# 3v-graded $_i^*$

$$\left. \begin{array}{l} (x_i, a_{-i}) \in \mathscr{A} \\ \text{and} \\ (z_i, c_{-i}) \in \mathscr{A} \\ \text{and} \\ (y_i, b_{-i}) \in \mathscr{A} \end{array} \right\} \Rightarrow$$
 
$$\left( \begin{array}{l} (x_i, b_{-i}) \in \mathscr{A} \end{array} \right.$$

$$\begin{cases} (x_i, b_{-i}) \in \mathscr{A} \\ \text{or} \\ (x_i, c_{-i}) \in \mathscr{A} \\ \text{or} \\ (z_i, b_{-i}) \in \mathscr{A} \end{cases}$$

## Observations

#### Lemma

- Conditions 3v-graded<sub>i</sub> and 3v-graded<sub>i</sub>\* are independent
- **2** In presence of linear<sub>i</sub>, conditions 3v-graded<sub>i</sub> and 3v-graded<sup>\*</sup> are equivalent
- 3 [3v-graded<sub>i</sub> and 3v-graded<sub>i</sub>\*] do not imply linear<sub>i</sub>

### The generalized noncompensatory model with veto

- for all  $i \in N$  there are disjoint sets  $\mathscr{A}_i, \mathscr{V}_i \subseteq X_i$
- there is a subset  $\mathscr{F}$  of  $2^N$

such that, for all  $x \in X$ ,

$$x \in \mathscr{A} \Leftrightarrow \big[\{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F} \text{ and } \{i \in N : x_i \in \mathscr{V}_i\} = \varnothing\big]$$

### Interpretation

- $x \in X$  belongs to  $\mathscr{A}$  if it has a *combination* of elements in  $\mathscr{A}_i$  that is "typical" of  $\mathscr{A}$
- $\bullet$  a repulsive evaluation for  $\mathscr A$  is able to destroy this typicalness

## Result

#### Theorem

A partition  $\langle \mathcal{A}, \mathcal{U} \rangle$  has a representation in the generalized noncompensatory model with veto iff it is 3-graded with veto and 3-graded\* with veto

#### Bonuses

• using a simple duality argument, it is possible to characterize models with "bonuses" instead of "vetoes" (some levels are "compulsive" for  $\mathscr{A}$ )

# Implications

### Theory

- the use of conjoint measurement methods is very enlightening
  - conjoint measurement is not restricted to models using preference relations (Nakamura, JMP, 2004)
- a characterization of (our version of) Electre Tri (pessimistic)
  - within a general framework (model (D //))
  - revealing the specific features of (our version of) Electre Tri when compared with other methods
  - using simple and testable conditions
  - leading to some new interpretations (Sugeno integral)
- new models (generalized noncompensatory sorting model and generalized noncompensatory model with veto)

# Implications

### Practice

- difference between pessimistic and optimistic versions of ELECTRE TRI
  - maybe seen as a "problem" of our models...
  - ... but may also be seen as a "problem" with Electre Tri optimistic
- uniqueness is a problem in the noncompensatory sorting model with veto
  - interactive elicitation methods should be prepared to deal with this

## Extensions

### Extension to r categories?

- is it possible?
  - YES!
- is it easy?
  - NO!
  - ... but the principles remain unchanged
  - each of the twofold partitions  $\langle C^{\geq k}, C^{< k} \rangle$  induced by  $\langle C^1, C^2, \dots, C^r \rangle$  should satisfy the axioms seen today...
  - ... plus consistency requirements on  $\langle C^{\geq k}, C^{< k} \rangle$

#### Current research

- model (Add)
- model (Su)

# Bibliography

#### References

- D. Bouyssou, Th. Marchant, An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories, 46 pages, 2005
- D. Bouyssou, Th. Marchant, An axiomatic approach to noncompensatory sorting methods in MCDM, II: More then two categories, 51 pages, 2005
- available from www.lamsade.dauphine.fr/~bouyssou/
- (also available as Cahiers du LAMSADE)