An axiomatic approach to ELECTRE TRI Denis Bouyssou Thierry Marchant CNRS-LAMSADE Paris, France Universiteit Gent Ghent, Belgium LAMSADE — 6 December 2005 ### If you do not know Thierry... ### Introduction #### Context • preference modelling for MCDA #### Two main traditions - Axiomatic: conjoint measurement and additive value functions - firm theoretical background (Krantz et al., 1971) - implementation often delicate: requires a detailed analysis of preferences - Pragmatic: dominance relation and refinements - outranking relations based on a concordance-discordance principle - simple and intuitive...but difficult to compare to other methods (lack of axiomatic foundations) ### Conjoint measurement #### Ingredients - $X \subseteq X_1 \times X_2 \times \cdots \times X_n$: set of objects evaluated on n attributes - \succeq : binary relation on X **Aim**: Study under what conditions \succeq can be represented in a given measurement model and the uniqueness of this representation $$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$ ### Bouyssou & Pirlot (2002, 2004 a & b, 2005) - general conjoint measurement framework tolerating intransitivity and incompleteness - analyze pragmatic methods within this framework ### Conjoint measurement ### Why be interested in conjoint measurement? - axiomatic analysis allows to better understand models and to compare them - for Psychologists: these results exhibit empirically testable conditions - for Decision Analysts: these results give hints on how to build the representation and, hence, to assess preferences #### Limitation • restricted to *relative* evaluation models (models comparing alternatives between themselves) # Sorting methods #### Absolute evaluation models - compare alternative to norms - prototypes - limiting profiles ### ELECTRE TRI (Wei, 1992, Roy & Bouyssou, 1993) - compare alternatives to limiting profiles - using a concordance / discordance approach ### ELECTRE TRI ### ELECTRE TRI vs other outranking methods - keeps the idea of concordance and non-discordance - seems to avoid "exploitation" problems #### Active research - interactive assessment of parameters (Mousseau et al.) - many applications # Objectives ### Propose a general framework for conjoint measurement - adapted to sorting methods - simple and intuitive but nontrivial - having a numerical representation #### Put this framework to work - to characterize Electre Tri - not any characterization - having ad hoc axioms for a method is an easy (and rather futile) exercise ### Outline - Background - Definitions and notation - Measurement framework - GMS - Electre Tri - 2 The noncompensatory sorting model - Definitions - Axioms and results - Sugeno integral - Extensions - 3 The noncompensatory sorting model with veto - Definitions - Axioms and results - Extensions - 4 Conclusion # Setting ### Classical conjoint measurement setting - $N = \{1, 2, \dots, n\}$: set of attributes - $X = \prod_{i=1}^{n} X_i$ with $n \ge 2$: set of alternatives - \bullet X_i are not supposed to have a special structure - \succsim : binary relation on X - notation: $(x_i, y_{-i}) \in X$ ### Our setting • replace the binary relation \succsim on X by a partition $\langle C^1, C^2, \dots, C^r \rangle$ of X # Setting #### Variants partition $\langle C^1, C^2, \dots, C^r \rangle$ of X - ordered vs unordered categories - r = 2 vs r > 2 - presence or absence of a "frontier" between categories - objects belonging to more than one category - measurement models # Scope of today's talk: 2 categories #### **Primitives** • twofold partition $\langle \mathcal{A}, \mathcal{U} \rangle$ of the set X #### Interpretation - A contains sAtisfactory objects - \bullet $\mathscr U$ contains Unsatisfactory objects #### Remark - with only two categories the distinction between ordered and unordered categories tends to be blurred - the ordering of categories is not part of our primitives # Influence and degeneracy #### Influence Attribute $i \in N$ is influent if there are $x_i, y_i \in X_i$ and $a_{-i} \in X_{-i}$ such that • $$(x_i, a_{-i}) \in \mathscr{A}$$ • $$(y_i, a_{-i}) \notin \mathscr{A}$$ An attribute that is not influent will be degenerate We do **not** suppose that all attributes are influent ### Measurement models ### Decomposable threshold model (Goldstein, 1992) $$x \in \mathscr{A} \Leftrightarrow F[u_1(x_1), u_2(x_2), \dots, u_n(x_n)] > 0$$ (D) - u_i is a real-valued function on X_i - F is a real-valued function on $\prod_{i=1}^{n} u_i(X_i)$ #### Variants - model $(D \nearrow)$: (D) with F nondecreasing in each variable - model $(D \nearrow)$: (D) with F increasing in each variable - model (Add): (D) with $F = \sum$ $$(Add) \subseteq (D \nearrow) \subseteq (D \nearrow) \subseteq (D)$$ ### Results ### Analysis of model (D) the relation \sim_i on X_i such that: $$x_i \sim_i y_i \Leftrightarrow [\text{for all } a_{-i} \in X_{-i}, (y_i, a_{-i}) \in \mathscr{A} \Leftrightarrow (x_i, a_{-i}) \in \mathscr{A}]$$ is an equivalence ### Theorem (Goldstein) $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation in model (D) if and only if, for all $i \in N$, there is a one-to-one correspondence between X_i/\sim_i and some subset of \mathbb{R} ### Axioms #### Analysis of variants the relation \succeq_i on X_i such that: $$x_i \succsim_i y_i \Leftrightarrow [\text{for all } a_{-i} \in X_{-i}, (y_i, a_{-i}) \in \mathscr{A} \Rightarrow (x_i, a_{-i}) \in \mathscr{A}]$$ is always reflexive and transitive (symmetric part is \sim_i) • in all variants $(D \nearrow, D \nearrow \nearrow, Add)$ introduced above, \succeq_i is complete ### Axiom: linearity on attribute i for all $x_i, y_i \in X_i$ and all $a_{-i}, b_{-i} \in X_{-i}$ $\langle \mathscr{A}, \mathscr{U} \rangle$ is linear if it satisfies $linear_i$ on all $i \in N$ ### Results ### Lemma (Linearity) - condition linear, holds iff \succeq_i is complete - if $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation in model $(D \nearrow)$ then it is linear ### Theorem (Model $(D \nearrow \nearrow)$) There is a representation of $\langle \mathcal{A}, \mathcal{U} \rangle$ in model $(D \nearrow)$ if and only if it is linear and, for all $i \in N$, there is a finite or countably infinite set $X_i' \subseteq X_i$ that is dense in X_i for \succsim_i . #### Furthermore: - if $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation in model $(D \nearrow \nearrow)$, it has a representation in which, for all $i \in N$, u_i is a numerical representation of \succsim_i , - $models (D \nearrow \nearrow) and (D \nearrow) are equivalent.$ # Model(D //) #### Remarks - uniqueness is quite weak - the role of $\mathscr A$ and $\mathscr U$ is entirely symmetric ### Using model $(D \nearrow \nearrow)$ - model $(D \nearrow)$ contains many sorting models as particular cases - UTADIS (model (Add)) - conjunctive and disjunctive models - models using distances to prototypes - we will show later that it contains (our version of) ELECTRE TRI as a particular case #### The "at least" decision rule model of GMS - S_i : complete and transitive relation on each X_i - decision rule d - a subset $N^d \subseteq N$ of attributes - for each $i \in \mathbb{N}^d$, in an element $\delta_i^d \in X_i$ - "at least" decision rule d $$[x_i \ \mathcal{S}_i \ \delta_i^d, \forall i \in N^d] \Rightarrow x \in \mathscr{A}$$ #### Representation in the decision rule model A set of "at least" decision rules $\mathcal D$ is said to represent $\langle \mathscr A,\mathscr U \rangle$ if - for each $x \in \mathcal{A}$, there is one decision rule in $d \in \mathcal{D}$ that matches x, $(x_i \mathcal{S}_i \delta_i^d, \forall i \in N^d)$ - for each $y \in \mathcal{U}$, there is no decision rule in \mathcal{D} that matches y ### Result #### Theorem (GMS, 2001, 2002) A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ can be represented in the "at least" decision rule model iff it is linear ▶ skip relational model ### Relational model à la GMS #### Relational model of GMS - S_i : complete and transitive relation on each X_i - binary relation S on X compatible with S_i $$[x \mathcal{S} y, z_i \mathcal{S}_i x_i, y_j \mathcal{S}_j w_j] \Rightarrow (z_i, x_{-i}) \mathcal{S} (w_j, y_{-j})$$ • an element $\tau \in X$ such that $$x \in \mathscr{A} \Leftrightarrow x \mathcal{S} \tau$$ ### Theorem (GMS, 2001, 2002) A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ can be represented in the relational model iff it is linear # (our version of) Electre Tri ### Ingredients - profile: $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ - $\widehat{X}_i = X_i \cup \{\pi_i\}$ and $\widehat{X} = \prod_{i=1}^n \widehat{X}_i$ - semiorder: S_i on \widehat{X}_i - strict semiorder: V_i on \widehat{X}_i such that $V_i \subseteq P_i$ - normalized weights: $w_i (\sum_{i=1}^n w_i = 1)$ - majority threshold: $\lambda \in [0.5, 1]$ ### Outranking relation • S on \widehat{X} $$x \ S \ y \Leftrightarrow \sum_{i \in S(x,y)} w_i \ge \lambda \text{ and } [Not[y_i \ V_i \ x_i], \text{ for all } i \in N]$$ ### ELECTRE TRI #### Pessimistic version $$x \in \mathscr{A} \Leftrightarrow x \mathrel{S} \pi$$ ### Optimistic version $$x \in \mathscr{A} \Leftrightarrow Not[\pi \ P \ x]$$ #### Remarks - no weak preference zone - discordance occur in an "all or nothing" way Close to the original when X_i are discrete ### ELECTRE TRI $$d_i(b S a)$$ $$c_i(b S a)$$ ### Definition ### Noncompensatory sorting model A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ has a representation in the noncompensatory sorting model if - for all $i \in N$ there is a set $\mathcal{A}_i \subseteq X_i$ - there is a subset \mathscr{F} of 2^N such that, for all $I, J \in 2^N$ $$[I \in \mathscr{F} \text{ and } I \subseteq J] \Rightarrow J \in \mathscr{F}$$ such that, for all $x \in X$, $$x \in \mathscr{A} \Leftrightarrow \{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F}$$ ### Interpretation • $x \in \mathscr{A}$ iff x is "satisfactory" $(x_i \in \mathscr{A}_i)$ on a subset of attributes that is "sufficiently important" $(\in \mathscr{F})$ ### Consequences of influence - if attribute $i \in N$ is influent then $\varnothing \subseteq \mathscr{A}_i \subseteq X_i$ - if $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation $\langle \mathscr{F}, \langle \mathscr{A}_i \rangle_{i \in \mathbb{N}} \rangle$ in the noncompensatory sorting model, this representation is unique iff all attributes are influent ### Particular cases of the noncompensatory sorting model - $\mathscr{F} = \{N\}$: conjunctive model - $\{i\} \in \mathcal{F}$, for all $i \in N$: disjunctive model # Noncompensatory sorting model and Electre Tri ### Electre Tri (pessimistic) • When $V_i = \emptyset$, for all $i \in N$, (our version of) Electre Tri is a particular case of the noncompensatory sorting model $$x \in \mathscr{A} \Leftrightarrow x \ S \ \pi \Leftrightarrow \sum_{i \in S(x,\pi)} w_i \ge \lambda$$ - $\bullet \ \mathscr{A}_i = \{x_i \in X_i : x_i \ S_i \ \pi_i\}$ - $I \in \mathscr{F} \text{ iff } \sum_{i \in I} w_i \ge \lambda$ ### Electre Tri (optimistic) • Electre Tri (optimistic) is *not* a particular case of the noncompensatory sorting model ### Observations and Result #### Observations Suppose that $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation in the noncompensatory sorting model. Then - it is linear, so that \succeq_i are weak orders - all relations \succeq_i have at most two distinct equivalence classes ### Proposition $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation in the noncompensatory sorting model iff it has a representation in model $(D \nearrow \nearrow)$ in which each u_i takes at most two distinct values ### Axiom #### 2-gradedness $\langle \mathscr{A}, \mathscr{U} \rangle$ satisfies condition $2\text{-}graded_i$ if for all $x_i, y_i, z_i \in X_i$ and all $a_{-i}, b_{-i} \in X_{-i}$ We say that $\langle \mathscr{A}, \mathscr{U} \rangle$ is 2-graded if it is 2-graded_i for all $i \in N$ $$\begin{array}{l} (x_i,a_{-i}) \in \mathscr{A} \text{ and } (z_i,a_{-i}) \notin \mathscr{A} \Rightarrow Not[z_i \succsim_i x_i] \\ (y_i,a_{-i}) \in \mathscr{A} \text{ and } (z_i,a_{-i}) \notin \mathscr{A} \Rightarrow Not[z_i \succsim_i y_i] \\ (y_i,b_{-i}) \in \mathscr{A} \text{ and } (x_i,b_{-i}) \notin \mathscr{A} \Rightarrow Not[x_i \succsim_i y_i] \end{array} \right\} \Rightarrow 3 \text{ classes}$$ ### Observations and result #### Lemma - Conditions linear_i and 2-graded_i hold iff \succeq_i is a weak order having at most two distinct equivalence classes - Conditions linear_i and 2-graded_i are independent #### Theorem A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ has a representation in the noncompensatory sorting model iff it is linear and 2-graded # (Discrete) Sugeno integral model ### Ingredients - a non-negative real valued function f_i on X_i , for all $i \in N$ - a real valued function μ (a capacity) on 2^N that is nondecreasing w.r.t. inclusion (i.e., such that $A \subseteq B$ implies $\mu(A) \le \mu(B)$) and such that $\mu(\varnothing) = 0$ such that, for all $x \in X$, $$x \in \mathscr{A} \Leftrightarrow \bigvee_{I \subseteq N} \left[\mu(I) \wedge \left(\bigwedge_{i \in I} [f_i(x_i)] \right) \right] > 0$$ (Su) #### GMS (2002) Model (Su) has been characterized (without proof!) by GMS (2002) ### Result #### Theorem A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ of a set X has a representation in the noncompensatory sorting model iff it has a representation in the Sugeno integral model (Su) #### Remarks - gives a new and simple interpretation of the Sugeno integral - shows the power and interest of axiomatic analysis - hint: define f_i and μ letting - $f_i(x_i) = 1$ if $x_i \in \mathcal{A}_i$ and 0 otherwise - $\mu(I) = 1$ if $I \in \mathscr{F}$ and 0 otherwise - ▶ skip other extensions # Models without linearity ### 2-graded_i $$\left. \begin{array}{c} (x_i,a_{-i}) \in \mathscr{A} \\ \text{and} \\ (y_i,a_{-i}) \in \mathscr{A} \\ \text{and} \\ (y_i,b_{-i}) \in \mathscr{A} \end{array} \right\} \Rightarrow$$ $$\begin{cases} (x_i, b_{-i}) \in \mathscr{A} \\ \text{or} \\ (z_i, a_{-i}) \in \mathscr{A} \end{cases}$$ ### 2-graded $_i^*$ $$\left. \begin{array}{c} (x_i,a_{-i}) \in \mathscr{U} \\ \text{and} \\ (y_i,a_{-i}) \in \mathscr{U} \\ \text{and} \\ (y_i,b_{-i}) \in \mathscr{U} \end{array} \right\} \Rightarrow$$ $$\begin{cases} (x_i, b_{-i}) \in \mathscr{U} \\ \text{or} \\ (z_i, a_{-i}) \in \mathscr{U} \end{cases}$$ ### Results #### Lemma - Conditions 2-graded_i and 2-graded_i* are independent - **2** In presence of linear, conditions 2-graded, and 2-graded, are equivalent - 3 [2-graded, and 2-graded, do not imply linear, #### Lemma $\langle \mathcal{A}, \mathcal{U} \rangle$ satisfies 2-graded; and 2-graded; iff \sim_i has at most two equivalence classes # The generalized noncompensatory sorting model #### Definition - for all $i \in N$, there is a set $\mathscr{A}_i \subseteq X_i$ - there is a subset \mathscr{F} of 2^N such that, for all $x \in X$, $$x \in \mathscr{A} \Leftrightarrow \{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F}$$ ### Interpretation - ullet identical to the noncompensatory sorting model except that \mathscr{F} is not supposed to be compatible with set inclusion - combinations of levels in \mathcal{A}_i are typical of \mathcal{A} ### Result #### Theorem A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ has a representation in the generalized noncompensatory sorting model iff it is 2-graded and 2-graded* # The noncompensatory sorting model with veto ### <u>Definition</u> A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ has a representation in the noncompensatory sorting model noncompensatory sorting model with veto if - for all $i \in N$ there is a set $\mathscr{A}_i \subseteq X_i$ - for all $i \in N$ there is a set $\mathcal{V}_i \subseteq X_i$ such that $\mathcal{A}_i \cap \mathcal{V}_i = \emptyset$ - \bullet there is a subset ${\mathscr F}$ of 2^N such that, for all $I,J\in 2^N$ $$[I \in \mathscr{F} \text{ and } I \subseteq J] \Rightarrow J \in \mathscr{F}$$ such that, for all $x \in X$, $$x \in \mathscr{A} \Leftrightarrow \{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F} \text{ and } \{i \in N : x_i \in \mathscr{V}_i\} = \varnothing$$ ### Remarks ### Interpretation • $x \in \mathscr{A}$ iff x is satisfactory $(x_i \in \mathscr{A}_i)$ on a subset of attributes that is "sufficiently important" $(\in \mathscr{F})$ and x has no repulsive level for \mathscr{A} $(x_i \in \mathscr{V}_i)$ #### Lemma If $\langle \mathcal{A}, \mathcal{U} \rangle$ has a representation in the noncompensatory sorting model with veto then it is linear ### Consequence • the noncompensatory sorting model with veto is a particular case of model $(D \nearrow \nearrow)$ # ELECTRE TRI #### Remark • (our version of) ELECTRE TRI (pessimistic) is a particular case of the noncompensatory sorting model with veto $$x \in \mathscr{A} \Leftrightarrow x \ S \ \pi \Leftrightarrow$$ $$\sum_{i \in S(x,\pi)} w_i \ge \lambda \text{ and } [Not[\pi_i \ V_i \ x_i], \text{ for all } i \in N]$$ - $\bullet \ \mathscr{A}_i = \{x_i \in X_i : x_i \ S_i \ \pi_i\}$ - $\bullet \ \mathscr{V}_i = \{x_i \in X_i : \pi_i \ V_i \ x_i\}$ - $I \in \mathscr{F} \text{ iff } \sum_{i \in I} w_i \ge \lambda$ ## Axiom #### 3-gradedness with veto $\langle \mathcal{A}, \mathcal{U} \rangle$ satisfies condition 3v-graded, if $$\begin{aligned} & (x_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ & (y_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ & (y_i, b_{-i}) \in \mathscr{A} \\ & \text{and} \\ & (z_i, c_{-i}) \in \mathscr{A} \end{aligned} \} \Rightarrow \left\{ \begin{aligned} & (x_i, b_{-i}) \in \mathscr{A} \\ & \text{or} \\ & (z_i, a_{-i}) \in \mathscr{A} \end{aligned} \right.$$ $$(3v\text{-}graded_i)$$ We say that $\langle \mathscr{A},\mathscr{U}\rangle$ is 3-graded with veto if it is $3v\text{-}graded_i$ for all $i\in N$ ### Observations #### Lemma - If $\langle \mathscr{A}, \mathscr{U} \rangle$ has a representation in the noncompensatory sorting model with veto then it is 3-graded with veto - 2 Conditions linear, and 3v-graded, are independent - Conditions linear, and 3v-graded, imply that \succeq_i is a weak order having at most three equivalence classes Furthermore if \succeq_i has exactly three distinct equivalence classes and if x_i belongs to the last equivalence class of \succeq_i then $(x_i, a_{-i}) \in \mathcal{U}$, for all $a_{-i} \in X_{-i}$ ## Main result #### Theorem A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ is representable in the noncompensatory sorting model with veto iff it is linear and 3-graded with veto # Uniqueness #### Remark - the representation of $\langle \mathcal{A}, \mathcal{U} \rangle$ in the noncompensatory sorting model with veto may be non-unique even if all attributes are influent - the necessary and sufficient conditions for uniqueness are known and are stringent (all attributes should be influent for the partition obtained after having removed the levels that are "obviously" in \mathcal{Y}_i) ▶ skip other extensions ## Extensions ### 3v-graded, $$\begin{aligned} &(x_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ &(y_i, a_{-i}) \in \mathscr{A} \\ & \text{and} \\ &(y_i, b_{-i}) \in \mathscr{A} \\ & \text{and} \\ &(z_i, c_{-i}) \in \mathscr{A} \end{aligned} \Rightarrow$$ $$\begin{cases} &(x_i, b_{-i}) \in \mathscr{A} \\ & \text{or} \\ &(z_i, a_{-i}) \in \mathscr{A} \end{cases}$$ # 3v-graded $_i^*$ $$\left. \begin{array}{l} (x_i, a_{-i}) \in \mathscr{A} \\ \text{and} \\ (z_i, c_{-i}) \in \mathscr{A} \\ \text{and} \\ (y_i, b_{-i}) \in \mathscr{A} \end{array} \right\} \Rightarrow$$ $$\left(\begin{array}{l} (x_i, b_{-i}) \in \mathscr{A} \end{array} \right.$$ $$\begin{cases} (x_i, b_{-i}) \in \mathscr{A} \\ \text{or} \\ (x_i, c_{-i}) \in \mathscr{A} \\ \text{or} \\ (z_i, b_{-i}) \in \mathscr{A} \end{cases}$$ ## Observations #### Lemma - Conditions 3v-graded_i and 3v-graded_i* are independent - **2** In presence of linear_i, conditions 3v-graded_i and 3v-graded^{*} are equivalent - 3 [3v-graded_i and 3v-graded_i*] do not imply linear_i ### The generalized noncompensatory model with veto - for all $i \in N$ there are disjoint sets $\mathscr{A}_i, \mathscr{V}_i \subseteq X_i$ - there is a subset \mathscr{F} of 2^N such that, for all $x \in X$, $$x \in \mathscr{A} \Leftrightarrow \big[\{i \in N : x_i \in \mathscr{A}_i\} \in \mathscr{F} \text{ and } \{i \in N : x_i \in \mathscr{V}_i\} = \varnothing\big]$$ ### Interpretation - $x \in X$ belongs to \mathscr{A} if it has a *combination* of elements in \mathscr{A}_i that is "typical" of \mathscr{A} - \bullet a repulsive evaluation for $\mathscr A$ is able to destroy this typicalness ## Result #### Theorem A partition $\langle \mathcal{A}, \mathcal{U} \rangle$ has a representation in the generalized noncompensatory model with veto iff it is 3-graded with veto and 3-graded* with veto #### Bonuses • using a simple duality argument, it is possible to characterize models with "bonuses" instead of "vetoes" (some levels are "compulsive" for \mathscr{A}) # Implications ### Theory - the use of conjoint measurement methods is very enlightening - conjoint measurement is not restricted to models using preference relations (Nakamura, JMP, 2004) - a characterization of (our version of) Electre Tri (pessimistic) - within a general framework (model (D //)) - revealing the specific features of (our version of) Electre Tri when compared with other methods - using simple and testable conditions - leading to some new interpretations (Sugeno integral) - new models (generalized noncompensatory sorting model and generalized noncompensatory model with veto) # Implications ### Practice - difference between pessimistic and optimistic versions of ELECTRE TRI - maybe seen as a "problem" of our models... - ... but may also be seen as a "problem" with Electre Tri optimistic - uniqueness is a problem in the noncompensatory sorting model with veto - interactive elicitation methods should be prepared to deal with this ## Extensions ### Extension to r categories? - is it possible? - YES! - is it easy? - NO! - ... but the principles remain unchanged - each of the twofold partitions $\langle C^{\geq k}, C^{< k} \rangle$ induced by $\langle C^1, C^2, \dots, C^r \rangle$ should satisfy the axioms seen today... - ... plus consistency requirements on $\langle C^{\geq k}, C^{< k} \rangle$ #### Current research - model (Add) - model (Su) # Bibliography #### References - D. Bouyssou, Th. Marchant, An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories, 46 pages, 2005 - D. Bouyssou, Th. Marchant, An axiomatic approach to noncompensatory sorting methods in MCDM, II: More then two categories, 51 pages, 2005 - available from www.lamsade.dauphine.fr/~bouyssou/ - (also available as Cahiers du LAMSADE)