On consistent families of criteria : An axiomatic approach

Denis Bouyssou

CNRS-LAMSADE

and Marc Pirlot

Faculté Polytechnique de Mons

ORBEL 16, FUSL, Brussels 24–25 January 2002

Outline

- Introduction: Consistent families in the sense of Roy
- Example: Ranking vectors of constraint satisfaction degrees
- A general model
 - Characterisation
 - Interpretation
 - Back to the example
- Discussion and future work

Introduction

Families of criteria (Roy, 1985)

- Definition of a criterion: $g_i : \mathcal{A} \to \mathbb{R}$ interpretation of $g_i(a) \geq g_i(b)$: a is at least as good as bon point of view i
- n points of view: $i = 1, \ldots, n$
- Notation for the global preference on \mathcal{A} (to be constructed by applying some method): \succeq

ORBEL Page 3

Consistent families

Properties to be fulfilled

• Exhaustivity:

$$[g_i(a) = g_i(b), \ \forall i \] \Rightarrow a \sim b$$

• Consistency:

$$\begin{cases}
a \gtrsim b \\
g_i(c) \geq g_i(a) \quad \forall i \\
g_i(b) \geq g_i(d) \quad \forall i
\end{cases} \Rightarrow c \gtrsim d$$

• Non-redundancy

Interpretation and Question

Interpretation ...

... of consistency: The relationship between the criteria and the constructed preference \succeq is supposed to be monotonic

Alternative formulation: respect of dominance

Question:

Is it possible to characterise the preferences that are consistent with a family of criteria?

Example

Comparing vectors of satisfaction levels

FCSP: Flexible Constraint Satisfaction Problem

- vertices = tasks
- arcs = constraints C_i , i = 1, ..., n
- solution = a feasible schedule for the tasks
- quality of solution : a vector of satisfaction levels

$$x = (x_1, \dots, x_n)$$

• problem : comparing the solutions

General problem of "vector optimisation": no evident complete ordering of the solutions

Dominance

A natural partial order: the dominance relation D (Pareto ordering)

$$x \ D \ y \ \text{if} \ x_i \ge y_i, \ \forall i$$

Note: in general x_i belongs to a set X_i that is at least ordered

Question: Characterise "natural and operational methods" leading to a complete ordering of the vectors and preserving dominance (question raised by Dubois and Prade)

A framework

- $X = X_1 \times X_2 \times \ldots \times X_n$: finite set of alternatives
- $N = \{1, 2, \dots, n\}$: set of attributes
- $\bullet \ \ x = (x_1, x_2, \dots, x_n) \in X$
- $x_{-i} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- $\bullet \ (a_i, x_{-i}) \in X$
- \succeq reflexive binary relation on X interpreted as "large preference"
- $\bullet \sim : \text{symmetric part}; \rightarrow : \text{asymmetric part}$

Note: there is no structure assumed on X_i

Model 0

$$x \gtrsim y \Leftrightarrow F((u_i(x_i), u_i(y_i)), i = 1, \dots, n) \ge 0$$

for some functions $u_i: X_i \to \mathbb{R}$

and some function $F: \mathbb{R}^{2n} \to \mathbb{R}$

Note: no properties assumed on functions F and u_i

Result: any relation \succeq on X satisfies Model 0

Note: u_i induces an ordering \succsim_i^{\pm} on X_i :

$$x_i \gtrsim_i^{\pm} y_i \iff u_i(x_i) \ge u_i(y_i)$$

This ordering plays no role (is arbitrary) when F has no special property

Model 1

$$x \gtrsim y \Leftrightarrow F((u_i(x_i), u_i(y_i)), i = 1, \dots, n) \ge 0$$

for some functions $u_i: X_i \to \mathbb{R}$ and some function $F: \mathbb{R}^{2n} \to \mathbb{R}$ such that

$$F(\nearrow, \searrow)$$

i.e. F is non-decreasing in its first n coordinates and non-increasing in its last n coordinates:

Property: \succeq is monotonic (consistent) with respect to the orders \succeq_i^{\pm}

$$x \gtrsim y$$

$$u_i(z_i) \ge u_i(x_i) \quad \forall i$$

$$u_i(y_i) \ge u_i(w_i) \quad \forall i$$

Indeed:

$$F(u_i(x_i), u_i(y_i)) \ge 0$$

$$F(\nearrow, \searrow)$$

$$\Rightarrow F(u_i(z_i), u_i(w_i)) \ge 0$$

Characterisation of Model 1

Result: the relations that satisfy Model 1 are those verifying properties AC123

 $AC1_i$:

$$(x_i, a_{-i}) \succsim (y_i, b_{-i})$$
and
$$(z_i, c_{-i}) \succsim (w_i, d_{-i})$$

$$\Rightarrow \begin{cases} (z_i, a_{-i}) \succsim (y_i, b_{-i}) \\ or \\ (x_i, c_{-i}) \succsim (w_i, d_{-i}), \end{cases}$$

Definition of \succsim_i^+ :

$$x_i \succsim_i^+ y_i \Leftrightarrow [(y_i, a_{-i}) \succsim z \Rightarrow (x_i, a_{-i}) \succsim z]$$

Result 1: $AC1_i$ iff \succsim_i^+ is a complete preorder

Result 2 : $AC2_i$ iff \succsim_i^- is a complete preorder with

$$x_i \succsim_i^- y_i \Leftrightarrow [z \succsim (x_i, a_{-i}) \Rightarrow z \succsim (y_i, a_{-i})],$$

Result 3: AC123_i iff \succsim_i^{\pm} is a complete preorder with

$$x_i \succsim_i^{\pm} y_i \Leftrightarrow [x_i \succsim_i^+ y_i \text{ and } x_i \succsim_i^- y_i],$$

Consequence:

If \succeq satisfies AC123,

- the relations \succsim_i^{\pm} are complete preorders
- u_i can be chosen to be any numerical representation of \succsim_i^{\pm}
- $F(u_i(x_i), u_i(y_i))$ is easily built

Model 2

A model for a preference \succeq that is a **complete preorder**:

$$x \gtrsim y \Leftrightarrow u(x) = u(y)$$

 $\Leftrightarrow G(u_i(x_i), i = 1, ..., n) \geq G(u_i(y_i), i = 1, ..., n)$

for some functions $u_i: X_i \to \mathbb{R}$ and some function $G: \mathbb{R}^n \to \mathbb{R}$

Model $2 \Leftrightarrow \text{Model } 0 \text{ with } :$

$$F(u_i(x_i), u_i(y_i)) = G(u_i(x_i), i = 1, ..., n) - G(u_i(y_i), i = 1, ..., n)$$

Model $1 \land 2$

Result:

 \gtrsim is a complete preorder and satisfies AC123

$$\Leftrightarrow$$

$$\exists \ u_i: X_i \to \mathbb{R}, \quad \exists \ G: \mathbb{R}^n \to \mathbb{R}$$

$$G(\nearrow) \text{ (non-decreasing)}$$
such that
$$x \succsim y \Leftrightarrow G(u_i(x_i), \ i = 1, \dots, n) \geq G(u_i(y_i), i = 1, \dots, n)$$

Examples:

- $G = \sum_{i} u_i(x_i)$ (MAU)
- $G = \max_i \{u_i(x_i)\}$

Back to the example FCSP

... and coherent families

What if the X_i are ordered a priori?

If a preference \succeq is built that is a complete preorder and respects dominance, then the relations \succeq_i^{\pm} that can be deduced from \succeq are compatible with the complete preorders given a priori.

ORBEL Page 16

Conclusions and future research

- Framework in which specific methods can be further specified (max, MAU, ...)
- There are further interesting "sub frameworks": e.g. the case where F (or G) is **strictly** monotonic (already characterised)
- Advantages of such a framework :
 - understanding
 - suggests methods of elicitation
 - allows for choosing between several specific procedures in a "family"

ORBEL Page 17