
A note on Wakker’s Cardinal Coordinate
Independence ?

Denis Bouyssou 1,∗

CNRS, LAMSADE, Université Paris Dauphine, Place du Maréchal de Lattre de
Tassigny, F-75775 Paris Cedex 16, France.

Marc Pirlot

Faculté Polytechnique de Mons, 9, rue de Houdain, B-7000 Mons, Belgium.

Abstract

Peter P. Wakker has forcefully shown the importance for decision theory of a
condition that he called “Cardinal Coordinate Independence”. Indeed, when the out-
come space is rich, he proved that, for continuous weak orders, this condition fully
characterizes the Subjective Expected Utility model with a finite number of states.
He has furthermore explored in depth how this condition can be weakened in order
to arrive at characterizations of Choquet Expected Utility and Cumulative Prospect
Theory. This note studies the consequences of this condition in the absence of any
transitivity assumption. Complete preference relations satisfying Cardinal Coordi-
nate Independence are shown to be already rather well-behaved. Under a suitable
necessary order denseness assumption, they may always be represented using a sim-
ple numerical model.

JEL: D81

Key words: Decision under uncertainty, Cardinal Coordinate Independence,
Nontransitive preferences

? We wish to thank Peter Wakker for his very helpful comments on an earlier draft
of this text. The usual caveat applies.
∗ Corresponding author.

Email addresses: bouyssou@lamsade.dauphine.fr (Denis Bouyssou),
marc.pirlot@fpms.ac.be (Marc Pirlot).
1 Part of this work was accomplished while Denis Bouyssou was visiting the Ser-
vice de Mathématique de la Gestion at the Université Libre de Bruxelles (Brus-
sels, Belgium). The warm hospitality of the Service de Mathématique de la Gestion,
the support of the Belgian Fonds National de la Recherche Scientifique and the

Preprint submitted to Mathematical Social Sciences 26 November 2003



1 Introduction and motivation

The work of Peter P. Wakker on the foundations of decision theory has force-
fully shown how the consideration of induced relations comparing preference
differences between outcomes may illuminate the analysis of models of decision
making under uncertainty 2 . In order to characterize the Subjective Expected
Utility (SEU) model with a finite number of states, he introduced a condition
called “Cardinal Coordinate Independence” (CCI) 3 . This condition requires
that the comparisons of preference differences between outcomes revealed in
different states and using different reference outcomes do not exhibit contra-
dictory information. Using topological assumptions to ensure that the set of
outcomes is “rich”, Wakker showed that CCI fully characterizes SEU for con-
tinuous weak orders (see Wakker, 1984, 1988b, 1989a). This striking result
can be extended to more general outcome sets in the algebraic approach (see
Wakker, 1991).

This condition, when appropriately weakened (e.g. requiring it only for comono-
tonic acts), may also be used to characterize non-EU models such as Choquet
Expected Utility (see Wakker, 1989a,b, 1994) and Cumulative Prospect The-
ory (Wakker and Tversky, 1993). Indeed, CCI and its variants may be seen as
a powerful unifying tool to analyze many models in decision making under risk
and uncertainty (see Wakker and Zank, 1999). Furthermore, this condition is
intimately related to empirical assessment techniques of utility functions and
has served as an inspiring principle for the development of such techniques (see
Abdellaoui, 2000; Bleichrodt and Pinto, 2000; Wakker and Deneffe, 1996).

In all the above-mentioned papers, it is supposed that the set of outcomes
is rich and that the complete and transitive preferences behave consistently
in this rich structure. This is done either requiring a “solvability” assump-
tion (see Wakker, 1988a, 1991) or continuity w.r.t. a connected topology (see
Wakker, 1989a). Clearly, these structural assumptions interact with the nec-
essary conditions and it is well-known that this may contribute to obscure
their interpretation (see Furkhen and Richter 1991, Krantz et al. 1971, ch. 9,
Wakker 1989a, pages 75–76, or Köbberling and Wakker 2003, Appendix A).
Furthermore, the weak order assumption is quite powerful: transitivity clearly
plays a vital rôle in the definition of “standard sequences” or “grids” (see,
e.g. Krantz et al., 1971; Wakker, 1989a). In view of the importance of CCI,
it seems worth investigating its “pure consequences”, i.e. its consequences in

Brussels-Capital Region through a “Research in Brussels” action grant are gratefully
acknowledged.
2 A similar idea is already used in Pfanzagl (1971, ch. 9); we thank Peter Wakker
for bringing this point to our attention.
3 We use here the terminology of Wakker (1984). This condition is often called
“tradeoff consistency” in Wakker’s later texts, e.g. Wakker (1988b, 1989a).
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the absence of any transitivity requirement and of any unnecessary structural
assumption on the set of outcomes. This is the purpose of this note.

Rather surprisingly, it turns out that, when coupled with completeness, CCI
already implies that preferences are rather well-behaved. Under a suitable nec-
essary order denseness assumption, such preferences may be represented nu-
merically using a simple model that generalizes the Skew Symmetric Additive
(SSA) model studied in Fishburn (1990), replacing additivity by a mere decom-
posability requirement. Technically (so to speak, since in our poor framework,
the reader should not expect anything that is much involved), our results ex-
tend to the case of decision making under uncertainty the results obtained in
Bouyssou and Pirlot (2002) in the case of conjoint measurement.

In this note, models tolerating intransitive preferences are simply used as a
framework allowing to understand the pure consequences of some well-known
conditions. They may nevertheless have some interest in themselves. Indeed,
as shown by the famous experiment in Tversky (1969), nontransitive prefer-
ences may be observed in quite a predictable way in decision making under
risk (see however Iveson and Falmagne (1985), for a critical analysis of this
experiment). Furthermore, Fishburn (1991) has challenged, quite convincingly
in our opinion, the usual arguments used to dismiss such models (for classical
and less classical counterarguments, see Luce, 2000; Raiffa, 1968).

This note is organized as follows. Section 2 briefly introduces our setting and
notation. Our main results appear in section 3. A final section discusses our
findings.

2 The setting

2.1 Outcomes, states and acts

We adopt a classical setting for decision under uncertainty with a finite number
of states. Let Γ = {α, β, γ, . . .} be the set of outcomes and N = {1, 2, . . . , n}
be the set of states. It is understood that the elements of N are exhaustive
and mutually exclusive: one and only one state will turn out to be true. An
act is a function from N to Γ. The set of all acts is denoted by A = ΓN . Acts
will always be denoted by lowercase letters a, b, c, d, . . . An act a ∈ A therefore
associates to each state i ∈ N an outcome a(i) ∈ Γ. We often abuse notation
and write ai instead of a(i). Among the elements of A are constant acts, i.e.
acts giving the same outcome in all states. We denote by α the constant act
giving the outcome α ∈ Γ in all states i ∈ N .
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Let E ⊆ N and a, b ∈ A. We denote by aEb the act c ∈ A such that ci = ai,
for all i ∈ E and ci = bi, for all i ∈ N \ E. Similarly αEb will denote the act
d ∈ A such that di = α, for all i ∈ E and di = bi, for all i ∈ N \ E. When
E = {i} we write aib and αib instead of a{i}b and α{i}b.

2.2 Preferences on acts

In this note, % will always denote a reflexive binary relation on the set A. The
binary relation % is interpreted as an “at least as good as” preference relation
between acts. We denote by � (resp. ∼) the asymmetric (resp. symmetric)
part of %. A similar convention holds when % is starred, superscripted and/or
subscripted.

We say that state i ∈ N is influent (for %) if there are α, β, γ, δ ∈ Γ and a, b ∈
A such that αia % βib and Not [γia % δib] and degenerate otherwise. It is clear
that a degenerate state has no influence whatsoever on the comparison of the
elements of A and may be suppressed from N . In order to avoid unnecessary
minor complications, we suppose henceforth that all states in N are influent.
Note that, in general, this does not rule out the existence of null states i ∈ N ,
i.e. such that aic ∼ bic, for all a, b, c ∈ A. A state will be said essential if it is
not null 4 .

We denote by %Γ the relation induced on the set of outcomes Γ by the relation
% on A, i.e., for all α, β ∈ Γ, α %Γ β ⇔ α % β.

2.3 Comparing preference differences between outcomes

Consistently with Wakker (1988b, 1989a), our analysis uses induced relations
comparing preference differences on the set of outcomes. Note that our defi-
nitions differ from his, although we use similar notation.

The idea that any binary relation generates various reflexive and transitive
binary relations called traces dates back at least to the pioneering work of
Luce (1956). The use of traces has proved especially useful in the study of

4 As pointed out to us by a referee, the distinction between an influent and an
essential state is subtle. Let us illustrate this difference with the simple example of
a preference relation for which each state is null while all states are influent. Let
N = {1, 2, 3, 4} and Γ = R. Let % on A be such that, for all a, b ∈ A, a % b ⇔∑

i∈P (a,b) pi ≥
∑

i∈P (b,a) pi − 1/4, with p1 = p2 = p3 = p4 = 1/4 and P (a, b) = {i ∈
N : ai > bi}. The relation % is clearly complete. All states are null (an essential
state would require to have pi > 1/4). Yet, each state is influent. For instance, state
1 is influent because Not [(0, 0, 0, 0) % (10, 10, 0, 0)] but (10, 0, 0, 0) % (10, 10, 0, 0).
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preference structures tolerating intransitive indifference such as semiorders or
interval orders (see Aleskerov and Monjardet, 2002; Fishburn, 1985; Pirlot
and Vincke, 1997). We pursue here the same idea using traces on preference
differences.

Definition 1 (Relations comparing preference differences). Let % be a
binary relation on A. We define the binary relations %∗ and %∗∗ on Γ2 letting,
for all α, β, γ, δ ∈ Γ,

(α, β) %∗ (γ, δ) if [for all a, b ∈ A and all i ∈ N, γia % δib ⇒ αia % βib],

(α, β) %∗∗ (γ, δ) if [(α, β) %∗ (γ, δ) and (δ, γ) %∗ (β, α)].

Intuitively, if (α, β) %∗ (γ, δ), it seems reasonable to conclude that the prefer-
ence difference between α and β is not smaller than the preference difference
between γ and δ. Contrary to the intuition concerning the comparison of pref-
erence differences, the definition of %∗ does not imply that the two “opposite”
differences (α, β) and (β, α) are linked. This is the motivation for the intro-
duction of the relation %∗∗.

By construction, %∗ and %∗∗ are reflexive and transitive. Therefore, ∼∗ and
∼∗∗ are equivalence relations. Note that, by construction, %∗∗ is reversible, i.e.
(α, β) %∗∗ (γ, δ) ⇔ (δ, γ) %∗∗ (β, α). Observe that %∗ and %∗∗ may not be
complete: induced comparisons of preference differences may indeed depend
on the reference acts and/or on the state in which they are revealed. Sweeping
consequences will obtain when this is not so.

We note a few useful connections between %∗, %∗∗ and % in the following
lemma that holds independently on any condition on %.

Lemma 2. Let % be a binary relation on A. Then, for all a, b, c, d ∈ A and
all i ∈ N ,

[a % b and (ci, di) %∗ (ai, bi)] ⇒ cia % dib (1)
[(cj, dj) ∼∗ (aj, bj), for all j ∈ N ] ⇒ [a % b ⇔ c % d], (2)

[a � b and (ci, di) %∗∗ (ai, bi)] ⇒ cia � dib, (3)

[(cj, dj) ∼∗∗ (aj, bj), for all j ∈ N ] ⇒

 a % b ⇔ c % d and

a � b ⇔ c � d.
(4)

PROOF. (1) is obvious from the definition of %∗, (2) follows. Suppose that
a � b and (ci, di) %∗∗ (ai, bi). Using (1), we know that cia % dib. Suppose now
that dib % cia. Since (ci, di) %∗∗ (ai, bi) implies (bi, ai) %∗ (di, ci), (1) implies
b % a, a contradiction. Hence (3) holds and (4) follows.
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2.4 Coordinate independence and cardinal coordinate independence

Coordinate Independence (CI) is a classical independence condition stating
that the preference between acts is not affected by a common outcome in some
state.

Definition 3 (Condition CI). Let % be a binary relation onA. This relation
is said to satisfy CI if, for all i ∈ N , all α, β ∈ Γ and all a, b ∈ A,

αia % αib ⇒ βia % βib.

It is not difficult to see that if % satisfies CI then, for all E ⊂ N and all
a, b, c, d ∈ A, aEc % bEc ⇒ aEd % bEd. Condition CI is therefore equivalent
to postulate P2, often referred to as the “Sure Thing Principle”, introduced
by Savage (1954).

The following definition is adapted from Wakker (1989a, page 80).

Definition 4 (Condition CCI). Let % be a binary relation on A. This
relation is said to satisfy CCI if:

αia % βib

and

γib % δia

and

δjc % γjd


⇒ αjc % βjd,

for all i, j ∈ N , all a, b, c, d ∈ A and all α, β, γ, δ ∈ Γ.

We refer to Wakker (1989a) for a thorough discussion of this condition and
to the references in section 1 for a study of its possible variants 5 . Note that,
since we supposed that all degenerate states were suppressed from N , we state
here the condition for all i, j ∈ N , contrary to Wakker (1989a) who only states
it for essential states i and j. Although influent states may not be essential,
they will turn out to be so for complete relations in presence of CCI.

5 Köbberling and Wakker (2003) have recently proposed a weakened version of CCI,
using indifferences instead of preferences in the above definition. They show that
this condition, when coupled with monotonicity, may replace the original condition
in the characterization of SEU (they furthermore show that such a weakening is
also possible starting with the restricted versions of CCI mentioned above used to
characterize Choquet Expected Utility and Cumulative Prospect Theory). In our
nontransitive setting such a weakening of CCI does not seem to lead, on its own,
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3 Results

3.1 CI, CCI and preference differences

Conditions CI and CCI can easily be reformulated using the relations com-
paring preference differences between outcomes introduced above. The, easy,
case of CI is dealt with first.

Proposition 5. Let % be a binary relation on A. Then % satisfies CI if and
only if (iff) (α, α) ∼∗ (β, β), for all α, β ∈ Γ.

PROOF. It is clear that [% satisfies CI] ⇔ [αia % αib ⇔ βia % βib, for all
α, β ∈ Γ, all i ∈ N and all a, b ∈ A] ⇔ [(α, α) ∼∗ (β, β) for all α, β ∈ Γ].

The following summarizes the main consequences of CCI when % is complete.

Lemma 6. Let % be a complete relation on A. If % satisfies CCI then:

(1) %∗ is complete,
(2) Not [(α, β) %∗ (γ, δ)] ⇒ (β, α) %∗ (δ, γ),
(3) %∗∗ is complete,
(4) % satisfies CI,
(5) [a ∼ b and (γ, δ) �∗∗ (ai, bi)] ⇒ γia � δib,
(6) all states are essential.

for all a, b ∈ A, all i ∈ N and all α, β, γ, δ ∈ Γ.

PROOF. Part 1. Suppose that %∗ is not complete so that, for some α, β, γ, δ ∈
Γ, Not [(α, β) %∗ (γ, δ)] and Not [(γ, δ) %∗ (α, β)]. By definition, this implies
αia % βib, Not [γia % δib], γjc % δjd, and Not [αjc % βjd], for some i, j ∈ N
and some a, b, c, d ∈ A. Since % is complete, we have δib % γia. Using CCI,
αia % βib, δib % γia and γjc % δjd imply αjc % βjd, a contradiction.

Part 2. Suppose that, for some α, β, γ, δ ∈ Γ, Not [(α, β) %∗ (γ, δ)] and Not [(β, α) %∗ (δ, γ)].
By definition, we have γia % δib, Not [αia % βib], δjc % γjd and Not [βjc % αjd],
for some i, j ∈ N and some a, b, c, d ∈ A. Since % is complete, we have
βib % αia. Using CCI, βib % αia, γia % δib and δjc % γjd imply βjc % αjd, a
contradiction. Part 3 easily follows from parts 1 and 2.

to interesting restrictions on %. We do not consider it here.
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Part 4. Since %∗∗ is complete and reversible, we have (α, α) ∼∗ (β, β), for all
α, β ∈ Γ. CI therefore follows using proposition 5.

Part 5. Let α = ai and β = bi. Suppose that a ∼ b and (γ, δ) �∗∗ (α, β). Since
we have (γ, δ) %∗ (α, β), we obtain, using (1), γia % δib. Suppose therefore, in
contradiction with the thesis, that δib % γia. Since %∗∗ is complete, (γ, δ) �∗∗

(α, β) ⇔ Not [(α, β) %∗∗ (γ, δ)] ⇔ [(γ, δ) �∗ (α, β) or (β, α) �∗ (δ, γ)].

Suppose that (γ, δ) �∗ (α, β). This implies that there are c, d ∈ A such that,
for some j ∈ N , γjc % δjd and Not [αjc % βjd]. Now αia % βib, δib % γia and
γjc % δjd imply, using CCI, αjc % βjd, a contradiction. The case (β, α) �∗

(δ, γ) is similar.

Part 6. By hypothesis, each state i ∈ N is influent. Therefore there are
α, β, γ, δ ∈ Γ and a, b ∈ A such that αia % βib and Not [γia % δib] (and,
hence, δib � γia, since % is complete). If γic � δic or δic � γic for some c ∈ A,
then state i ∈ N is essential by construction. Suppose therefore that γic ∼ δic,
for all c ∈ A.

It is easy to show that when % is complete and satisfies CCI, if any of the
premises of CCI holds with � instead of %, the conclusion of CCI must hold
with �. Now, using CCI, αia % βib, δib � γia and γic ∼ δic imply αic � βic.
Hence state i ∈ N is essential.

As was the case with CI, it turns out that CCI can easily be characterized
using our relations comparing preference differences.

Proposition 7. Let % be a complete relation on A. Then % satisfies CCI
iff %∗∗ is complete and [a ∼ b and (γ, δ) �∗∗ (ai, bi)] ⇒ γia � δib, for all
a, b ∈ A, all i ∈ N and all γ, δ ∈ Γ.

PROOF. Necessity results from lemma 6. We show sufficiency. Suppose that
αia % βib, γib % δia and δjc % γjd. In contradiction with CCI suppose that
βjd � αjc. By definition, δjc % γjd and Not [αjc % βjd] imply Not [(α, β) %∗ (δ, γ)],
so that (δ, γ) �∗∗ (α, β), since %∗∗ is complete. Now αia % βib and (δ, γ) �∗∗

(α, β) imply δia � γib, a contradiction.

The above proposition shows that a complete binary relation % on A that
satisfies CCI is already quite well structured: there is a reversible weak order
comparing preference differences between outcomes and % is strictly mono-
tonic w.r.t. this relation. The additional strength of CCI compared to CI
should be apparent considering their respective impact on %∗ and %∗∗. On its
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own, CI, even when coupled with completeness, does not imply that any of
our relations comparing preference differences are complete.

Our experience is that the structuring of preferences brought by CCI is even
more apparent considering its consequences in terms of numerical representa-
tions to which we now turn.

3.2 Numerical representations

We envisage a model in which:

a % b ⇔ F (p(a1, b1), p(a2, b2), . . . , p(an, bn)) ≥ 0 (M)

where p is a real-valued function on Γ2 that is skew symmetric (i.e. p(α, β) =
−p(β, α)) and F is a real-valued function on p(Γ2)n that is increasing in all its
arguments and odd (i.e. such that F (x) = −F (−x), abusing notation in an
obvious way). As shown below, model (M) turns out to have close links with
CCI.

Proposition 8. Suppose that Γ is finite or countably infinite. A binary rela-
tion % on A satisfies model (M) iff it is complete and satisfies CCI.

PROOF. Necessity. The completeness of % follows from the skew-symmetry
of p and the oddness of F . Suppose now that CCI is violated so that αia % βib,
γib % δia, δjc % γjd and Not [αjc % βjd].

Using model (M) we have, abusing notation,

F (p(α, β),K−i) ≥ 0,

F (p(γ, δ),−K−i) ≥ 0,

F (p(δ, γ),L−j) ≥ 0,

F (p(α, β),L−j) < 0.

Using the oddness of F , its increasingness and the skew symmetry of p, the
first and the second inequalities imply p(α, β) ≥ p(δ, γ), whereas the third and
the fourth imply p(δ, γ) > p(α, β), a contradiction.

Sufficiency. Since % is complete and satisfies CCI, we know from lemma 6
that %∗∗ is complete so that it is a weak order. This implies that %∗ is a weak
order. Therefore, since Γ is finite or countably infinite, there is a real-valued
function q such that, for all α, β, γ, δ ∈ Γ,

(α, β) %∗ (γ, δ) ⇔ q(α, β) ≥ q(γ, δ). (5)

9



Using any such function q, define p letting, for all α, β ∈ Γ, p(α, β) = q(α, β)−
q(β, α). It is easy to show that p is skew-symmetric and represents %∗∗.

Define F letting, for all a, b ∈ A,

F (p(a1, b1), p(a2, b2), . . . , p(an, bn)) =
exp(

∑n
i=1 p(ai, bi)) if a � b,

0 if a ∼ b,

− exp(−∑n
i=1 p(ai, bi)) otherwise.

(6)

The well-definedness of F follows from (4). It is odd by construction since %
is complete. Let us show that it is increasing. Suppose that p(α, β) > p(ai, bi).
If a � b, we obtain, using (3), αia � βib and the conclusion follows from
the definition of F . If a ∼ b, we obtain, using lemma 7, αia � βib and the
conclusion follows from the definition of F . If b � a, we have either βib �
αia, βib ∼ αia, or αia � βib. In either case, the conclusion follows from the
definition of F .

Remark 9. Before tackling the general case, let us note that the uniqueness
properties of the functions used in model (M) are clearly quite weak. Since
we do not study this model for its own sake but as a framework allowing us
to understand the consequences of a number of requirements on %, we do not
study them here; an analysis of these properties is easily inferred from the
results in Bouyssou and Pirlot (2002).

The extension of proposition 8 to sets of arbitrary cardinality is straightfor-
ward. Let 〈F, p〉 be a representation of % in model (M). It is clear that we
must have:

(α, β) �∗∗ (γ, δ) ⇒ p(α, β) > p(γ, δ). (7)
Hence, when model (M) holds, the weak order %p induced on Γ2 by p refines
%∗∗. A necessary condition for model (M) to hold is Γ2 has a finite or countable
order dense subset for %p (see Fishburn, 1970, ch. 3 or Krantz et al., 1971,
ch. 2). Since this weak order refines %∗∗, it is clear that Γ2 will then have a
finite or countable order dense subset for %∗∗. Let us call OD the assertion
that Γ2 has a finite or countable order dense subset for %∗∗. We have shown
that OD is necessary for model (M). The proof of proposition 8 shows that
adding this condition to the completeness of % and CCI is also sufficient for
(M). We omit the cumbersome and apparently uninformative reformulation
of OD in terms of %. We have thus proved the following.

Theorem 10. A binary relation % on A satisfies model (M) iff it is complete
and satisfies CCI and OD.

Using model (M), it is easy to derive more consequences of the combination
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of completeness and CCI. We omit the simple proof of the following, which
shows that, in spite of the absence of transitivity of %, model (M) implies
many of the usual monotonicity properties of the SEU model.

Proposition 11. Let % be a binary relation on A satisfying model (M). Then
for all a, b ∈ A, all α, β ∈ Γ and all nonempty E ⊂ N ,

(1) [ai %Γ bi for all i ∈ N ] ⇒ [a % b],
(2) [ai %Γ bi for all i ∈ N and aj �Γ bj for some j ∈ N ] ⇒ [a � b],
(3) αEa % βEa ⇔ α %Γ β.

Remark 12. It may be instructive to analyze which of the classical postulates
used in Savage (1954) (excluding P6 and P7, which are not pertinent in our
setting with a finite number of states) are satisfied by model (M). It is not
difficult to see that model (M) keeps all of P2 (since CI holds), P3 (in view of
part 3 of proposition 11) and P5 (it is easy to see that α �Γ β ⇔ p(α, β) > 0,
which must be true for some α, β if all states are to be influent; this implies that
� cannot be empty). It keeps only the completeness part of P1, abandoning
transitivity. Simple examples show that model (M) may violate postulate P4.
As should be apparent from its formulation, model (M) does not, in general,
allow tastes to be separated from beliefs.

Remark 13. Consider now model (M ′), which is obtained from model (M)
abandoning the increasingness of F in its arguments. In order to better ap-
preciate the relative strengths of CI and CCI, it is interesting to note that
the conjunction of completeness and CI is tantamount to (M ′). We show this
below in the case of a finite or countably infinite set Γ, leaving to the reader,
the, easy, task of extending the result to the general case (this requires limiting
the cardinality of Γ2/∼∗∗).

Proposition 14. Suppose that Γ is finite or countably infinite. A binary re-
lation % on A satisfies model (M ′) iff it is complete and satisfies CI.

PROOF. Necessity. The completeness of % follows from the skew-symmetry
of p and the oddness of F . CI follows from p(α, α) = 0 and F (0) = 0.

Sufficiency. Let ≥Γ be any linear order on Γ, i.e. a complete, antisymmetric
and transitive relation. Consider the set Υ = {(α, β) : α, β ∈ Γ and α >Γ β},
where >Γ denotes the asymmetric part of ≥Γ. Since Γ is finite or countably
infinite, so is Υ. Therefore, there is a one-to-one function q between Υ and
some subset of N \ {0}.
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Define p on Γ2 letting, for all α, β ∈ Γ,

p(α, β) = q(α, β) if (α, β) ∈ Υ,

p(α, β) = 0 if α = β,

p(α, β) = −q(β, α) if α 6= β and (α, β) /∈ Υ.

By construction, p is skew symmetric. Using such a p define F letting:

F (p(a1, b1), . . . , p(an, bn)) =


+1 if a � b,

0 if a ∼ b,

−1 otherwise.

(8)

By construction, p(α, β) = p(γ, δ) implies [α = β and γ = δ]. Since, % satisfies
CI, we know from proposition 5 that (α, α) ∼∗ (γ, γ) so that (α, α) ∼∗∗ (γ, γ).
This shows, using (4), that F is well-defined. It is odd since % is complete.

Remark 15. In Bouyssou and Pirlot (2002), we consider several models that,
when translated into the framework of decision under uncertainty, fall “in
between” (M ′) and (M), e.g. a model in which F is odd and nondecreasing in
all its arguments. The analysis of such models is straightforward adequately
reformulating the conditions introduced in Bouyssou and Pirlot (2002).

4 Discussion

It may be interesting to briefly compare theorem 10 with the characterization
of SEU proposed by Wakker (1989a). We recall his result below considering
only the case in which there are at least 2 states and all states are influent (and,
hence, essential—therefore we omit the condition of separability, see Wakker
(1989a, Remark A.3.1, page 163) or Wakker (1988a, Th. 6.2, page 430)).

Theorem 16 (Wakker (1989a, Th. IV.2.7, page 83)). Suppose that Γ is
a connected topological space and endow A with the product topology. Suppose
that n ≥ 2 and that all states are influent. There is a continuous real valued
function u on Γ and n positive real numbers pi that add up to 1 such that, for
all a, b ∈ A,

a % b ⇔
n∑

i=1

piu(ai) ≥
n∑

i=1

piu(bi), (SEU)

iff

• % is complete,
• % satisfies CCI,
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• % is continuous (i.e. the sets {a ∈ A : a � b} and {a ∈ A : b � a} are open
for all b ∈ A),

• % is transitive.

Furthermore, u is unique up to a scale and location and the pi are unique.

Theorem 10 abandons the topological assumptions on Γ and, hence continuity.
It also drops transitivity. Given such differences, it is rather surprising that,
as already observed, the resulting model (M) keeps a number of important
properties of model (SEU). This is an indication of the power of CCI combined
with completeness.

It should be noted that model (M) is far from being the only possible model
taking intransitivities into account in decision making under uncertainty. Mod-
els of this type have already been suggested in Fishburn (1984, 1988, 1989,
1990); Fishburn and Lavalle (1987a,b); Lavalle and Fishburn (1987); Naka-
mura (1998). Most of these models are closely related to model (M) but use
an additive F together with probabilities for each state. The closest to model
(M) is the Skew Symmetric Additive (SSA) model with a finite number of
states introduced in Fishburn (1990). This model uses the following numerical
representation:

a % b ⇔
n∑

i=1

piΦ(ai, bi) ≥ 0, (SSA)

where pi are positive real numbers that add up to one and Φ is a skew sym-
metric real-valued function on Γ2.

It is not difficult to see that this model implies the completeness of % as well
as CCI. The characterization proposed in Fishburn (1990) requires a rich
topological structure for Γ and a formulation of continuity adapted to the
nontransitive case. The necessary axioms that are used (i.e. axioms 3–5) have
close connections with CCI while being collectively stronger.
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