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Abstract. The purpose of this paper is to study some properties of outranking relations based

on a concordance-discordance principle. We show that, whenever the structure of the set of

alternatives is sufficiently rich, imposing "nice" transitivity properties on such outranking

relations always leads to a somewhat unappealing distribution of "power" among the various

attributes. These results directly apply to methods, such as TACTIC, that produce a crisp

asymmetric outranking relation. We explore the links between these results and classical ones

in the field of Social Choice Theory and show their relevance for users of outranking methods.

I- Introduction

A classical problem in the field of MCDM is to build a preference relation on a set of multiat-

tributed alternatives on the basis of preferences expressed on each attribute and "inter-attribute"

information such as weights and/or tradeoffs. A common way (see Keeney and Raiffa (1976))

to do so is to attach a number v(x) to each alternative x and to declare that x is preferred to y if
and only if v(x) > v(y). Usually, the number v(x) depends on the evaluations x1, x2, ..., xn of

x on the n attributes and we have v(x) = V(x1, x2, ..., xn). When one uses such a method, the

preference relation that is built has "nice" transitivity properties. However, the definition of the

aggregation function V may not always be an easy task (see, e.g., Roy and Bouyssou (1987)).

Starting with ELECTRE I (see Roy (1968) or, for a presentation in English, Goicoechea et al.

(1982)), a number of MCDM techniques, the so-called outranking methods, have been propo-

sed that use an alternative way to build a preference relation based on a concordance-discor-

dance principle (see, e.g., Roy and Bertier (1973), Vansnick (1986) and the bibliography of

Siskos et al. (1983)). In these methods, the preference relation, which is often called an out-

ranking relation, is built through a series of pairwise comparisons. Such pairwise comparisons

can be done in many ways. The idea of concordance-discordance consists in declaring that an

alternative x is preferred to an alternative y if a "majority" of the attributes supports this asser-

tion (concordance condition) and if the opposition of the other attributes is not "too strong"

(non-discordance condition). In this paper we will restrict our attention to methods aiming at

building a crisp (i.e., nonfuzzy) and, for reasons to be explained in section 4, asymmetric

preference relation1.

1 A (crisp) binary relation S on a set K is a subset of K2. Throughout the paper we will classically write a S b
instead of (a, b) ∈ S. We say that a binary relation S on a set K is (for all a, b, c ∈ K):
- complete if  a S b or b S a,
- asymmetric if a S b implies Not (b S a),
- transitive if a S b and b S c imply a S c,
- negatively transitive if Not(a S b) and Not(b S c) imply Not(a S c),
It is without circuit if for all k≥1 and all a1, a2,..., ak ∈ K, a1 S a2, a2 S a3, ..., ak-1 S ak imply Not ak S
a1.
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In order to be more specific, suppose that we have defined on each attribute i a complete and
transitive binary relation Ri allowing to compare in terms of preference the evaluations of the

alternatives on this attribute2. When comparing two alternatives x and y, it is possible to

partition the set of attributes N between attributes favoring x, attributes favoring y and "neutral"
attributes, i.e., P(x, y) = {i ∈ N : xi Pi yi}, P(y, x) = {i ∈ N : yi Pi xi} and I(x, y) = I(y, x)

= {i ∈ N : xi Ii yi}. Using the idea of concordance, it is declared that x is preferred to y when

the "coalition" of attributes in P(x, y) (or in P(x, y) ∪ I(x, y)) is considered more important

than the "coalition" of attributes in P(y, x). For practical purposes, the importance of a coalition
of attributes is usually determined in an additive way after having attached a weight pi to each

attribute. For instance, in TACTIC (Vansnick (1986)), we have, for the concordance part of the

method:
x P y  ⇔   ∑    pi >  ρ    ∑    pi (1)

            i∈P(x, y)       i∈P(y, x)

where ρ is a threshold greater than 1.

It is worth noting that preference relations based on the idea of concordance do not make use of

the magnitude of the "differences" between evaluations and are only based on the ordinal
information conveyed by the relations Ri.

This idea of concordance may however be criticized since on some attributes in P(y, x) the
difference between yi and xi may be so large as to cast a major doubt on the validity of x P y

even if these attributes are of limited importance. One simple way to circumvent this problem is

to combine the idea of concordance with that of discordance. Taking discordance into account

amounts to defining a set D of ordered pairs of evaluations on the various attributes such that
(yi, xi) ∈ D for some i ∈ N implies Not(x P y) regardless of the comparison of the importance

of the various coalitions of attributes as modelled using the idea of concordance. This set D is
often defined through a binary relation Vi ⊂ Pi that reads "is very strongly preferred to" such

that (yi, xi) ∈ D ⇔ yi Vi xi. Thus taking the idea of discordance into account leads to a poorer

relation that the one that would have been obtained using concordance alone. For instance, we

have in TACTIC:
x P y  ⇔      ∑    pi >  ρ   ∑    pi  and Not(yi Vi xi) for all i ∈ P(y, x) (2)

              i∈P(x, y)        i∈P(y, x)

The interest of such methods and the way to assess the weights pi and the relations Vi have

been discussed elsewhere (see, e.g., Roy (1971) or Roy and Vincke (1981)). It should be

emphasized that, contrary to methods attaching a number to each alternative, the preference

2 We respectively note Pi and Ii the asymmetric and symmetric parts of Ri i.e. [xi Pi yi iff x i Ri yi and Not yi
Ri xi] and [xi Ii yi iff x i Ri yi and yi Ri xi], a similar convention holding for all binary relations used in this
paper.
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relation that is obtained in that kind of methods may not possess "nice" transitivity properties3.

The purpose of this paper is to study under what conditions these relations may possess such

properties as transitivity or absence of circuit. We present our notations and definitions in the

next section. In section 3, we investigate some properties of relations that are only based on the

idea of concordance. In section 4, we generalize our results so as to take the idea of

discordance into account. In a final section we analyze the links between these results and more

classical ones in the Theory of Social Choice and stress their relevance for users of outranking

methods..

II- Definitions and Notations
Let N be a set of attributes. To each attribute i ∈ N, we associate a set Xi which will be

interpreted as a set of possible levels on attribute i and a binary relation Ri on Xi. Let X be a set

of alternatives such that X ⊂ ∏i ∈ N Xi. When there will be no risk of confusion, xi will

designate the element of Xi being the ith component of x ∈ X.

Throughout the paper we suppose that the following structural conditions hold:
S1 Ri is complete and Pi is transitive,

S2 N is finite and |N| = n ≥ 2.

Condition S1 implies a minimal consistency requirement on the preferences on each attribute. It

should be noticed that S1 is compatible with a semiorder or an interval order structure on each
Xi (on these notions see, e.g., Roubens and Vincke (1985)). Condition S2 is hardly restrictive

in the context of MCDM.

We will also use a structural condition aiming at introducing a minimal diversity among the

alternatives to be compared. For k = 2, 3, ..., we consider:
D(k) for all i ∈ N, there is a set Yi ⊂ Xi with |Yi| = k such that for all ai, bi ∈ Yi with ai ≠ bi

either ai Pi bi or bi Pi ai, furthermore Y = ∏i ∈ N Yi ⊂ X.

Condition D(k) implies that on each attribute it possible to find k levels that can be distin-

guished in terms of strict preference and that all possible combinations of these k levels are in

X. This condition may seem very restrictive. It should however be noticed that the alternatives

which have to be in X if D(k) holds are very similar to the "artificial" alternatives that are used

in many methods to assess inter-attribute information (see, e.g., Keeney and Raiffa (1976) or

Roy et al. (1986)). Furthermore, the set of alternatives has to be rich enough if we want such

properties as transitivity or absence of circuit to be meaningful. Therefore we will use this

condition throughout the paper though weaker diversity conditions could sometimes have been

used at the cost of a greater complexity. As it will become apparent in the next sections, this

3 This not to say that these relations are useless for decision-aid purposes. A number of techniques have been
devised in order to rank the alternatives or to choose one of them on the basis of such relations, see, e.g., Roy
and Vincke (1981).
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structural condition plays a crucial part in our proofs in allowing to transfer classical "multi-

profile" results into a "single profile" context (see section 5). Most of our results use D(3).

An aggregation procedure in MCDM is a rule allowing to build a preference relation on X on
the basis of the relations Ri on Xi and inter-attribute information. As already mentioned, we

restrict our attention here to methods producing an asymmetric relation P on X.
A usual condition relating P and the Ri is:

U for all x, y ∈ X, [xi Pi yi for all i ∈ N] ⇒ x P y.

Condition U is a hardly controversial unanimity condition for strict preference. A slightly more

restrictive unanimity condition is:
U* for all x, y ∈ X, [xi Ri yi for all i ∈ N and xj Pj yj for some j ∈ N] ⇒ x P y.

As soon as all weights pi are strictly positive it is easy to see that, when a relation P is obtained

by (1), it satisfies U* and, thus, U. We are not aware of any MCDM aggregation procedure

that does not satisfy U. However, as exemplified by ELECTRE I (see Roy (1968)), some

procedures may fail to satisfy U*.

The following condition aims at capturing a crucial property underlying the idea of concor-

dance:
NC for all x, y, z, w ∈ X, [xi Ri yi ⇔ zi Ri wi and yi Ri xi ⇔ wi Ri zi for all i ∈ N] ⇒

[x P y ⇒ z P w].

Condition NC has been introduced by Fishburn (1975 and 1976) under the name of noncom-

pensation. It has been studied by Bouyssou and Vansnick (1986) and Bouyssou (1986). This

condition implies that preference among two alternatives x and y only depends on the subsets
of N for which xi Ri yi and yi Ri xi and seems at the heart of the idea of concordance. It is not

difficult to see that when a relation P is obtained by (1) it satisfies condition NC.

Condition NC does not convey any notion of monotonicity which seems a crucial part of any

aggregation procedure. Combining NC with an idea of monotonicity, we obtain:
M for all x, y, z, w ∈ X, [xi Pi yi ⇒ zi Pi wi and xi Ii yi ⇒ zi Ri wi for all i ∈ N] ⇒

[x P y ⇒ z P w].

Condition M implies that, when x is strictly preferred to y, if the set of attributes for which

there is a strict preference for x over y is enlarged then x remains strictly preferred to y regard-

less of what is happening on the other attributes. It is easy to see that condition M implies

condition NC. When a binary relation P is obtained by (1), it is not difficult to see that it

satisfies condition M.

Suppose that P is a preference relation obtained using the idea of concordance. Taking discor-

dance into account leads to a relation P ⊂ P, i.e. a relation in which a number of preferences

have been deleted. Generalizing the conditions we just introduced, we obtain:
WNC for all x, y, z, w ∈ X, [xi Ri yi ⇔ zi Ri wi and yi Ri xi ⇔ wi Ri zi for all i ∈ N] ⇒

[x P y ⇒ Not(w P z)].

WM for all x, y, z, w ∈ X, [xi Pi yi ⇒ zi Pi wi and xi Ii yi ⇒ zi Ri wi for all i ∈ N] ⇒
[x P y ⇒ Not(w P z)].
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It is easy to see that [WM ⇒ WNC] and that if a binary relation P satisfies condition NC (resp.

M) then all binary relations P such that P ⊂ P satisfy condition WNC (resp. WM)4.

III- Properties of outranking relations based on concordance

The purpose of this section is to investigate some consequences of conditions NC and M when

they are coupled with some particular properties of P. It is easy to see that a binary relation P

built using relation (1) satisfies U and M (and, thus NC). Simple numerical examples inspired

from Condorcet's paradox show that, in general, such a relation will not be transitive and will

have circuits. Two simple ways to avoid these phenomena can be envisaged.

The first one is to chose the threshold ρ very close to one so that x P y is obtained only when

all the attributes are unanimous to support this proposition. Such a solution is however

extremely ineffective and leads to a relation P that is very poor.

The second one consists in giving a very large weight to a particular criterion so that the relation

P more or less coincides with the preference relation on that criterion. This is not a very

attractive solution however since it amounts to amounts to giving much power to a single

criterion. Of course many other ways to obtain a relation P with "nice" transitivity properties

can be envisaged. The following results show that, when the structure of X is sufficiently rich,

imposing "nice" transitivity properties on P always leads to a somewhat unappealing

distribution of power among the attributes. We sum up our results in:

Theorem 1. Given S1-S2,

(a) [D(3), NC, U, P is asymmetric and negatively transitive] ⇒
there is an i ∈ N such that for all x, y ∈ X, xi Pi yi ⇒ x P y.

(b) [D(3), NC, U, P is asymmetric and transitive] ⇒
there is a unique O ⊂ N such that for all x, y ∈ X:

xi Pi yi for all i ∈ O ⇒ x P y

xj Pj yj for some j ∈ O ⇒ Not(y P x).

(c) [D(n), M, P is without circuit] ⇒
there is an i ∈ N such that for all x, y ∈ X, xi Pi yi ⇒ Not(y P x).

In proving theorem 1, the following definitions will be useful. We say that A ⊂ N is

• decisive if, for all x, y ∈ X, xi Pi yi for all i ∈ A ⇒ x P y,

• almost decisive if, for all x, y ∈ X, xi Pi yi for all i ∈ A and yj Pj xj for all j ∉ A ⇒ x P y,

• semi-decisive if, for all x, y ∈ X, xi Pi yi for all i ∈ A ⇒ Not(y P x),

• almost semi-decisive if, for all x, y ∈ X, xi Pi yi for all i ∈ A and yj Pj xj for all j ∉ A ⇒

Not(y P x).

We state without proof the following obvious facts as:

4 It is worth noting that this would not be the case if discordance were applied to a binary relation satisfying NC
but not asymmetric, as this is the case for example in ELECTRE I.
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Lemma 1.
(a) M ⇒ NC ⇒ [ x P y (resp. Not(y P x) for some x, y ∈ X, such that xi Pi yi for all i ∈ A

and yj Pj xj for all j ∉ A ⇒ A is almost decisive (resp. almost semi-decisive)]

(b) M ⇒ [A is almost semi-decisive ⇒ A is semi-decisive].

We also have:

Lemma 2.
For all A ⊂ N, [S1, S2, NC, U, D(3), P is asymmetric and transitive] ⇒ [A is almost decisive

(resp. almost semi decisive) ⇒ A is decisive (resp. semi decisive)].

Proof of lemma 2.
If A = N, the conclusion follows. If not, use D(3) with Yi = {ai, bi, ci} and ai Pi bi and bi Pi ci

to construct the following alternatives:
A N\A

x ai di
y bi ai
z ci ei
where ai Pi di and ai Pi ei. Such alternatives are in X by D(3). By U we get y P z.

Suppose that A is almost decisive. We thus have x P y and the transitivity of P leads to x P z,
independently of the comparison of di and ei on the attributes of N\A. In view NC, this proves

that A is decisive.

Suppose now that A is almost semi decisive. If z P x, the transitivity of P implies y P x con-

tradicting the fact that A is almost semi-decisive. We thus have Not(z P x), independently of the
comparison of di and ei on the attributes of N\A. In view NC this proves that A is semi-

decisive. nn

Proof of theorem 1.

Proof of part (a).

We prove that if A is decisive and |A| >1 then some proper subset of A is decisive. In order to
do so let B be a proper subset of a decisive set A and use D(3) with Yi = {ai, bi, ci} and

ai Pi bi and bi Pi ci to construct the following alternatives:
B A\B N\A

x ai ci bi
y bi ai ci
z ci bi ai

A being decisive, we have y P z. If x P z then NC implies that B is almost decisive and, by

lemma 2, decisive (since asymmetry and negative transitivity imply transitivity). If Not(x P z)

then Not(y P x) would imply by negative transitivity Not(y P z) violating the fact that A is

decisive. Thus, we have y P x. Given NC and lemma 2, we conclude in this case that A\B is

decisive.

By U we know that N is decisive. Repeating the previous argument leads to the conclusion that

a singleton is decisive, completing the proof of part (a).

Proof of part (b).
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By U, we know that N decisive. Given S2, there exists at least one decisive set of minimal
cardinality. Let O be one of them. We have xi Pi yi for all i ∈ O ⇒ x P y.

If |O| = 1, then we obviously have that xj Pj yj for some j ∈ O ⇒ Not(y P x).

If not consider {i} ⊂ O and use D(3) with Yi = {ai, bi, ci} and ai Pi bi and bi Pi ci to construct

the following alternatives:
{i} O\{i} N\O

x ci ai bi
y ai bi ci
z bi ci ai

O being decisive, we have y P z. If x P z, then, given NC, O\{i} is almost decisive and thus

decisive, by lemma 2, violating the fact that O is a decisive set of minimal cardinality . We thus

have Not(x P z). But this implies Not(x P y) since x P y, y P z and Not(x P z) would contradict

the transitivity of P. Given NC, Not(x P y) implies that {i} is almost semi-decisive and thus

semi-decisive by lemma 2. Therefore all singletons in O are semi-decisive.

The proof of (b) is completed observing that O is necessarily unique. In fact suppose that there

are two sets O and O' with O ≠ O' satisfying the conclusions of (b). Consider the following

alternatives which by D(3) are in X:
O O'\ON\O∪O'

x ai bi ai
y bi ai ai

We have, by construction, x P y and Not(y P x), a contradiction.

Proof of part (c).

Suppose, in contradiction with the thesis, that no singleton is semi-decisive. Given M and in

view of part (b) of lemma 1, this implies that no singleton is almost semi-decisive, i.e. that:
for all i ∈ N, xi Pi yi and yj Pj xj for all j ≠ i imply y P x.

We use D(n) to construct the following n alternatives with Yi = {xi1, xi2,..., xin} and xi1 Pi
xi2, xi2 Pi xi3..., xin-1Pi xin,

{1} {2} {3} … {n}
x1 x11 x2n x3n-1 xn2

x2 x12 x21 x3n xn3

x3 x13 x22 x31 xn4

. . .
xn x1n x2n-1 x3n-2 xn1

We have x1 P x2, x2 P x3, ..., xn P x1, which violates the fact that P has no circuits and

completes the proof of part (c). nn

Theorem 1 and its proof have strong connections with classical results in Social Choice Theory

that will be explored in section 5. We briefly comment here each part of theorem 1.

(a). This result says that if a concordance relation is a weak order then some attribute dictates its

strict preferences to all others. Given D(3), this distribution of "power" among the various

attributes seems very undesirable. Very similar results have been proved by Fishburn (1975),

Plott et al. (1975), Roberts (1980), Pollack (1979), Parks (1976) and Kemp and Ng (1976).
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As its proof suggests, this result appears as a MCDM counterpart of Arrow's theorem that

takes advantage of the structure of cartesian product of the set of alternatives5. Fishburn (1975)

proves that if U is replaced by U* then P is obtained lexicographically i.e there is a linear order

>> on N such that for all x, y ∈ X:

x P y ⇔ [xi Pi yi for some i ∈ N and for every k ∈ N such that yk Pk xk there is a j ∈ N such

that j >> k and xj Pj yj].

When D(3) is strengthened to D(4), it is easy to see that it is possible to replace [P is asym-

metric and negatively transitive] by [P is asymmetric and for all x, y, z, w ∈ X, x P y and

y P z ⇒ x P w or w P z] or by [P is asymmetric and for all x, y, z, w ∈ X, x P y and z P w

⇒ x P w or z P y] without altering the conclusion. Thus asking for a semi-order or even an

interval order instead of a weak order as the result of an aggregation satisfying U and NC does

not change the situation.

(b). This result is a single profile counterpart of a result of Weymark (1983). It says the

transitivity of P together with D(3), NC and U generates what is usually called an "oligarchy"

of attributes. A good example of this situation is offered by the (strict) dominance relation

defined by:
x P y ⇔ xi Pi yi for all i ∈ N.

With this relation the oligarchy is the entire set N. Smaller oligarchies lead to a richer relation P

at the cost of giving more "power" to a smaller number of attributes.

(c). This result is a single profile counterpart of a result of Blau and Deb (1977). It shows that

an asymmetric concordance relation without circuit gives much power to a single attribute when

the structure of X is very rich6.

IV- Properties of outranking relations based on concordance-discordance

Suppose that P is a preference relation on X obtained using an idea of concordance. Taking

discordance into account leads to a relation P ⊂ P. In general, discordance may impoverish P in

rather an uncontrollable way. For instance, the transitivity of P may be destroyed in P. On the

contrary, if P has circuits, it may happen than discordance destroys all these circuits.

The only thing that seems reasonable to ask on P is the absence of circuit. This is the case if P

has no circuit7. But, as we mentioned, it may also happen that P has no circuit because all the

5 It should be noted that a similar result holds if we suppose that we are working on a binary relation R that is
complete and transitive when the last part of NC is changed to [x R y ⇒ z R w], which is more in line with
the usual presentation of Arrow's theorem.

6 Such a rich structure for X can be criticized. Using D(3), a similar result could be obtained strengthening
condition M to a condition of "positive responsiveness" leading to a single profile counterpart of a result of
Mas-Colell and Sonnenschein (1972).

7 Note that this is not so if discordance is applied to a relation that is not asymmetric. In that case, discordance
may create as well as destroy circuits in the asymmetric part of the relation. This the reason why we restrict our
attention here to asymmetric relations.
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circuits in P have been destroyed by discordance. It is therefore easy to see that imposing that P

has no circuit coupled with WNC or WM will not create results similar to those of section 3.

One simple way, among others, to obtain similar results is to limit the extent of discordance.
For instance we may impose that there is no discordance between the elements of Y = ∏i ∈ N
Yi where the sets Yi are those used in the diversity condition D(k). This amounts to supposing

that, though the elements of Yi can be distinguished in terms of strict preference, they are

sufficiently "close" to one another not to generate discordance effects. This hypothesis seems in

line with the way "artificial" alternatives are introduced in X in order to assess inter-attribute

information (see, e.g., Roy et al. (1986)). Therefore we reformulate conditions WM as:
WM* for all x, y, z, w ∈ X, [xi Pi yi ⇒ zi Pi wi and xi Ii yi ⇒ zi Ri wi for all i∈ N] ⇒

[x P y ⇒ Not(w P z), furthermore if z, w ∈ Y then z P w].

Though this condition may seem ad hoc, it has a simple interpretation. If a relation P has been

obtained by applying discordance to a relation satisfying M then it satisfies WM* if there is no

discordance between the elements of Y. We have the following:

Theorem 2.

Given S1-S2,

[D(n), WM*, P is without circuit] ⇒
there is an i ∈ N such that for all x, y ∈ X, xi Pi yi ⇒ Not(y P x).

Proof of theorem 2.

It is easy to see that if P satisfies WM* on X then it satisfies M on Y. Since P has no circuit on
Y, we know from theorem 1 (c) that there is an i ∈ N such that for all x, y ∈ Y, xi Pi yi ⇒
Not(y P x). Suppose now that for some z, w ∈ X, we have zi Pi wi and w P z. From D(3), we

know that there are r, s ∈ Y such that ri Ri si ⇔ zi Ri wi and si Ri ri ⇔ wi Ri zi for all i∈N.

Therefore, WM* implies that s P r, a contradiction. This completes the proof. nn

V- Relation with Social Choice Theory.

As already argued, the results of section 3 are transpositions of classical results in the field of

Social Choice Theory. In order to understand better the extent of this transposition, it is worth

recalling here the classical result of Arrow.

A central theme in Social Choice Theory is to study how the preferences of several individuals

can be aggregated in a "reasonable" way. Let X be a set of objects called "alternatives" and N a
finite set, the |N| = n elements of N being interpreted as "voters". We define X as the set of

all binary relations on X. A Social Aggregation Procedure is a function:
G : E ⊂ [ X]n → F ⊂ X

(R1, R2, ..., Rn) �  G(R1, R2, ..., Rn) = R

associating8 a binary relation on X to n-uples of binary relations on X.

8 in the sequel, it is understood that R = G(R1, R2, ..., Rn) and R' = G(R1', R2', ..., Rn'). As before, P denotes
the asymmetric part of R.
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Let RX be the set all all complete and transitive binary relations on X. We introduce the follo-

wing conditions:
D E = [RX]n [Domain]

C F = RX [Codomain]

I for all (R1, R2, ..., Rn), (R1', R2', ..., Rn') ∈ E, and for all x, y ∈ X,

[x Ri y ⇔ x Ri' y and y Ri x ⇔ y Ri' x for all i ∈ N] ⇒
[x R y ⇔ x R' y and y R x ⇔ y R' x] [Independence]

UN for all (R1, R2, ..., Rn) E, and for all x, y ∈ X, [Unanimity]

[x Pi y for all i ∈ N] ⇒ x P y

ND for all i ∈ N, [Nondictatorship]

x Pi y and Not(x P y) for some (R1, R2, ..., Rn) ∈ E and some x, y ∈ X

In this context we have the following:

Theorem (Arrow (1963)): When |X| ≥ 3, there is no Social Aggregation Procedure satisfying

D, C, I, UN and ND.

The relations between Arrow's result and part (a) of theorem 1 have been explored by many

authors (e.g., Fishburn (1975), Roberts (1980), Pollack (1979), Parks (1976) and Kemp and

Ng (1976)). It will suffice to recall here that, in the framework of Arrow's theorem, all pos-

sible profiles of weak orders are in the domain of the Social Aggregation Procedure and that

condition I relates the result of the aggregation between two different profiles. This multi-

profile formulation is at the crux of the "impossibility" result. On the contrary, in theorem 1

only one particular profile of preference relation on each attribute is used. But D(k) requires the

set X to contain alternatives for which the preferences on each attribute are conflictual. This

diversity together with NC lead to the results of theorem 1. Thus, condition D(k) appears as the

counterpart of condition D in the single-profile context.

Both theorems use a similar unanimity condition (U and UN) and there is an obvious

correspondence between condition C in Arrow's theorem and the requirement that P be

asymmetric and negatively transitive in theorem 1 (a). It is worth observing that when I is

coupled with UN, C and D, it implies the following "neutrality" condition:
for all (R1, R2, ..., Rn), (R1', R2', ..., Rn') ∈ E, and for all x, y, z, w ∈ X,

[x Ri y ⇔ z Ri' w and y Ri x ⇔ w Ri' z for all i ∈ N] ⇒
[x R y ⇔ z R' w and y R x ⇔ w R' z],

which is an analogue of NC with several profiles.

Parts (b) and (c) of theorem 1 have similar multi-profile correspondents in the Theory of Social

Choice (see Weymark (1983) and Blau and Deb (1977)).

Consider, for instance, the concordance part of TACTIC as defined by (1). Given a set of
alternatives X evaluated on a set of attributes N, once the weights pi and the threshold ρ have

been chosen, it is possible to see (1) as a way to aggregate any n-uples of weak orders defined

on X. It is easy to see that this aggregation satisfies conditions D, UN and I and consequently
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violates either C or ND. Thus, Arrow's result applies directly to the context of MCDM and may

lead the reader to question the interest of the reformulation presented in theorem 1.

Apart from bringing to the attention of the MCDM community several results that are less

famous than Arrow's theorem, it seems to us that the single-profile approach is of special

interest in the context of MCDM. We refer to Sen (1986), Fishburn (1987), Roberts (1980)

and Pollack (1979) for a thorough analysis of the comparison between the multi-profile and the

single-profile approaches in Social Choice Theory9. We will only emphasize here what seem to

be the advantages of a single profile formulation in the context of MCDM.

It should first be observed that the multi-profile format, when applied to MCDM, does not

make use of the fact that alternatives are multiattributed, which, in our opinion, is a funda-

mental characteristic of MCDM. Second, it is worth noting that the proof of theorem 1 is, by

far, simpler than the corresponding proofs for the multi-profile case. Third, in order to apply a

multi-profile result to MCDM, one has to suppose that all inter-attribute information remains

unchanged when aggregating different profiles, whereas it is well-known, in practice, that the

modelling of such information crucially depends on the particular problem that is under study.

Finally, whereas a multi-profile result is of direct interest to the analyst wishing to create a

method that "works" in all cases, it is of limited interest to the user of the method who is

always confronted to a single profile, i.e. to a given set of alternatives with given evaluations

on several attributes. Define a MCDM problem as a set of alternatives evaluated on several

attributes. Suppose that you want to informally sum up multi-profile results for a user of

MCDM techniques. A "multi-profile explanation" could sound like:

"You have applied an outranking method based on a concordance-discordance principle with

given weights and threshold to a particular problem. If the concordance relation you obtain has

‘nice properties’, you should check whether your choice of weights and threshold does not

amount to giving much power to a single attribute. If this is not the case, it can be proved that it

is possible to find at least one problem with the same number of alternatives and attributes as

your problem such that, if you apply the same method with the same weights and threshold, to

this new problem, the resulting concordance relation will not have ‘nice properties’".

An informal explanation of single-profile results could be:

"You have applied an outranking method based on a concordance-discordance principle to a

particular problem. If the concordance relation you obtain has ‘nice properties’, you should

check whether your choice of weights and threshold does not amount to giving much power to

a single attribute. If this is not the case, it can be proved that if you add some alternatives to

your problem, very similar to those you have used to assess your weights, the concordance

relation will loose its nice properties unless you modify the weights and threshold so as to give

much power to a single attribute."

9 In particular, Roberts (1980) studies to what extent multi-profile results have single-profile analogues.
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The choice of a particular presentation is, to a certain extent a matter of taste. However, if the

emphasis is on the user of the method and if it is agreed that modelling inter-attribute informa-

tion often implies to take into consideration "artificial" alternatives and is highly specific to a

particular problem, it seems that the single-profile approach we have used has definite advan-

tages.
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