
Chapter 16

Conjoint Measurement Models for Preference
Relations

16.1. Introduction

Conjoint measurement [KRA 71, WAK 89] is concerned with the study of binary relations
defined on Cartesian products of sets. Such relations are central in many disciplines, for exam-
ple:

– multicriteria or multiattribute decision making, in which the preference of the decision
maker is a relation that encodes, for each pair of alternatives, the preferred option taking into
account all criteria [BEL 01, KEE 76, WIN 86];

– decision under uncertainty, where the preference relation compares alternatives evaluated
on several states of nature [FIS 88, GUL 92, SHA 79, WAK 84, WAK89];

– consumer theory, dealing with preference relations that compare bundles of goods
[DEB 59];

– inter-temporal decision making, that uses preference relations for comparing alternatives
evaluated at various instants in time [KOO 60, KOO 72, KEE 76]; and

– inequality measurement, that compares distributions of wealth across individuals
[ATK 70, BEN 94, BEN 97].

Let % denote a binary relation on a product setX = X1 × X2 × · · · × Xn. Conjoint
measurement searches for conditions that allow numerical representations of% to be built and
possibly guarantee the uniqueness of such representations. The interest of numerical represen-
tations is obvious. They not only facilitate the manipulation of preference relations but also, in
many cases, the proofs that such representations exist are constructive (or at least provide useful
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indications on how to build them). Very often, the conditions for the existence of a representa-
tion can be empirically tested [KRA 71]. All these reasons justify the interest for this theory in
many research domains.

16.1.1. Brief overview of conjoint measurement models

In most classical models of conjoint measurement, the relation is assumed to becomplete
andtransitive. The central model is theadditive utilitymodel in which we have:

x % y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi), (16.1)

whereui denotes a real-valued function defined on the setXi, for all i = 1, . . . , n. x andy de-
note n-dimensional elements of the product setX i.e.x = (x1, . . . , xn) andy = (y1, . . . , yn).

The axiomatic analysis of this model is now well establishedand additive utility (also called
additive value function) is at the root of many techniques used in decision analysis [FRE 93,
KEE 76, WIN 86, WAK 89, POM 00].

This model has two main difficulties, however. The axiomaticanalysis of equation (16.1)
raises technical questions that are rather subtle yet important. Many systems of axioms have
been proposed in order to guarantee the existence of a representation as described by equa-
tion (16.1) [KRA 71, WAK 89]. Two cases can be distinguished:

– If X is finite and no upper bound is fixeda priori on the number of its elements, Scott
and Suppes [SCO 64] have shown that the system of axioms needed consists of an infinite
(countable) set ofcancellationconditions, which guarantee (via the use of the theorem of the
alternative) that a system of (finitely many) linear equations possesses at least one solution (see
also [KRA 71, chapter 9] and, for more recent contributions,[FIS 96, FIS 97]). These conditions
are hardly interpretable or testable.

– The case in whichX is infinite is quite different but raises other problems. Non-necessary
conditions are usually imposed onX in order to guarantee that the structure ofX is ‘close’ to
that of the real numbers and that% behaves consistently with this structure. In one approach,
an archimedean axiom is imposed together with solvability conditions [KRA 71, chapter 6].
In another approach, it is assumed thatX is a topological space and that% is continuous
[DEB 60, WAK 89]. Using such ‘structural’ assumptions, it ispossible to characterize model
equation (16.1) by means of a finite number of cancelation conditions (for recent contributions
see [GON 96, GON 00, KAR 98]; for an alternative approach extending the technique used in
the finite case to the infinite one, see [JAF 74]). In these axiomatic systems, the necessary prop-
erties interact with structural, unnecessary assumptionsimposed onX [KRA 71, chapter 6],
which obscures the understanding of the model and does not allow for completely satisfac-
tory empirical tests [KRA 71, chapter 9]. In addition, the analysis of the two-dimensional case
(n = 2) differs totally from that of the cases wheren is greater than or equal to3.

As we shall see, it is possible to avoid imposing unnecessaryhypotheses (structural as-
sumptions) provided the requirement of an additive representation is abandoned; this is the idea
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followed by the authors of [KRA 71, chapter 7] when introducing the followingdecomposable
model:

x % y ⇔ U(u1(x1), u2(x2), . . . , un(xn)) ≥ U(u1(y1), u2(y2), . . . , un(yn)) (16.2)

whereU is an increasing function of all its arguments.

There is another type of difficulty with the additive model (16.1) of a more fundamental
nature: this model excludes all preference relations that fail to be transitive or complete from
consideration. Several authors have now forcefully arguedin favor of models tolerating intran-
sitive or incomplete preferences [MAY 54, TVE 69] and there are multiple criteria decision
analysis methods that do not exclude such relations [ROY 85,ROY 93].

Theadditive differencemodel proposed in [TVE 69] is among the first that does not assume
transitive preferences; the preference% is supposed to satisfy:

x % y ⇔
n∑

i=1

Φi(ui(xi)− ui(yi)) ≥ 0 (16.3)

whereΦi are increasing and odd functions (which implies that the preference% is complete).
An axiomatic characterization of this model has been proposed by Fishburn [FIS 92]. Due to the
additive form of the representation, Fishburn could not avoid imposing unnecessary structural
conditions in his characterization of model (16.3).

More recently, more general additive non-transitive models have been proposed (allowing
in particular for incomplete preferences) [BOU 86, FIS 90a,FIS 90b, FIS 91, FIS 92, VIN 91].
They are of the type:

x % y ⇔
n∑

i=1

pi(xi, yi) ≥ 0 (16.4)

wherepi are real-valued functions defined onX2
i ; they may enjoy additional properties (e.g.

pi(xi, xi) = 0 ∀i ∈ {1, 2, . . . , n} and for allxi ∈ Xi).

In the spirit of the decomposable model (16.2) that avoids the difficulties of the axiomatiza-
tion of the additive models, Goldstein [GOL 91] has proposeda generalization of model (16.4)
in which the sum has been substituted by a functionG, increasing in its arguments. The under-
lying model is therefore:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0. (16.5)

In decision analysis, methods that may lead to intransitiveand/or incomplete preference re-
lations have been used for a long time [ROY 68, ROY 73]. They are known asoutrankingmeth-
ods [ROY 91, ROY 93], and are inspired by social choice procedures, especially the Condorcet
voting rule. In a basic version of the ELECTRE method [ROY 68, ROY 73], the outranking
relation is obtained as follows:

x % y ⇔
∑

{i:xiSiyi}

wi ≥ λ (16.6)
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wherewi are weights associated with the criteria,xi andyi represent the performance of alter-
nativesx andy on criterioni,Si is a binary relation that orders the levels on the scale of criterion
i andλ is a majority threshold (calledconcordance threshold), generally assigned a value larger
than 50% of the sum of the weights. Clearly, binary relationsobtained in this way may fail to
be transitive or complete. Consider for instance the case wheren = 3, p1 = p2 = p3 = 1

3
,

x = (3, 2, 1), y = (2, 1, 3), z = (1, 3, 2), Si is the usual order≥ on the set of the real numbers
andλ = 60%. Denoting by� the asymmetric part of% (a � b if a % b and notb % a)
and applying rule (16.6) yieldsx � y, y � z, but notx � z: i.e. relation� is not transitive.
Moreover, sincez � x, it has cycles. This is a version of the Condorcet paradox, appearing
in a multiple criteria decision making context. In the same perspective, consideringn = 2,
p1 = p2 = 1

2
, x = (2, 1), y = (1, 2) andλ = 60%, we have that neitherx % y nory % x: the

relation% is not complete.

As is easily verified, note that outranking relations obtained through equation (16.6) are
representable in the additive non-transitive model (16.4), letting:

pi(xi, yi) =





wi − λ
n

if xiSiyi

− λ
n

otherwise.
(16.7)

16.1.2. Chapter contents

Our goal is to propose a general framework as well as quite general analytical tools that
allow the study of binary relations defined on a Cartesian product in a conjoint measurement
perspective. Our framework encompasses most methods that have been proposed in multiple
criteria decision analysis to construct a global preference relation.

We consider two main families of models of relations on a product set. To support the
reader’s intuition, consider the various manners of comparing objects characterized by their
description on a set ofn attributes. Letx = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn) be
two alternatives described byn-dimensional vectors. In a first approach, in view of deciding
whether ‘x is at least as good asy’, we may try to assess the ‘value’ of either alternative on each
attribute and then combine these values in appropriate fashion. It is important to emphasize what
we mean by ‘value’; the ‘value’ of alternativex on criterioni is not simply the label describing
this alternative on attributei (which is denoted byxi) but an assessment that reflects the way
this label is perceived by a decision maker in a given decisional context, taking into account
their objectives and preferences. Abandoning for the moment classical requirements such as
transitivity or completeness, we may consider a model in which:

x % y ⇔ F (u1(x1), u2(x2), . . . , un(xn), u1(y1), u2(y2), . . . , un(yn)) ≥ 0, (16.8)

whereui are real-valued functions onXi andF is a real-valued function on the product set∏n
i=1 ui(Xi)

2.

Another strategy relies on the idea of ‘measuring’differences of preferencebetweenx andy
on each attribute separately and then combining these differences in order to determine whether
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the balance of these is in favor ofx or y. This suggests a model in which:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (16.9)

wherepi are real-valued functions onX2
i andG is a real-valued function on

∏n
i=1 pi(X

2
i ).

Of course, the strategies just outlined are not incompatible. It can reasonably be expected
that the differences of preference on each criterion can be expressed in terms of values assigned
to the alternatives on each criterion. In the model that thissuggests, we have:

x % y ⇔ H(ϕ1(u1(x1), u1(y1)), ϕ2(u2(x2), u2(y2)), . . . , ϕn(un(xn), un(yn))) ≥ 0

(16.10)

whereui are real-valued functions onXi, ϕi are real-valued functions onui(Xi)
2 andH is a

real-valued function on
∏n

i=1 ϕi(ui(Xi)
2).

As long as no additional property is imposed to the various functions that intervene in the
above three models, these models are exceedingly general inthe sense that any relation onX
(provided thatX is finite or denumerable) can be represented in all three models. If X is not
denumerable, the generality of the models is only restricted by technical conditions (that are
necessary and sufficient).

Consequently, to make these models interesting, we shall impose additional properties on
the involved functions. For instance:

– in model (16.8), we shall impose thatF is non-decreasing in its firstn arguments and
non-increasing in its lastn arguments;

– in model (16.9), we shall require thatG is an odd function or that it is non-decreasing in
itsn arguments or thatpi is antisymmetric;

– in model (16.10), we shall consider the cases in whichH is an odd function or is non-
decreasing in itsn arguments or the cases in whichϕi are odd functions or functions that are
non-decreasing in their first argument and non-increasing in their second one.

By adding such requirements, a large variety of models can bedefined. A selection of them
will be studied in the sequel. In particular, certain variants are rather close to classical models
alluded to in section 16.1.1. Note, however, that our goal isnot to characterize exactly classical
models but instead to establish general frameworks in whichsuch a characterization could be
elaborated. The advantage of general frameworks is to allowfor a better understanding of what
is common to classical models and what distinguishes them.

Note that the frameworks (16.8), (16.9) and (16.10) rely on fundamental objects that pos-
sess nice interpretations in terms of preference and permitthe analysis of preference relations
on a product set. For understanding of the classical additive value function model,marginal
preferenceis the crucial notion. This relation, defined on each factorXi of the product setX as
a projection (in a certain sense) of the global preference% on each attribute, is the relation that
is numerically represented by theui functions in model (16.1). The process of ‘elicitation’ of
an additive value function model, relies in an essential manner on marginal preferences.
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In models (16.8) and (16.9), the central role is no longer played by marginal preferences
since these relations do not enjoy, in these models, the properties that facilitate their interpreta-
tion in the additive value function model (16.1). In general, they are not transitive or complete.
They are ‘too rough’ to allow for a sufficiently detailed analysis of the global preference, as we
shall see in the following.

In our three frameworks (16.8), (16.9) and (16.10), the maintool for analyzing the prefer-
ence relation is thetrace, a notion that admits different variants. In model (16.8), we shall use
themarginal traceof the preference on each componentXi; this relation provides an ordering
of the labels of the scaleXi of each attributei. In model (16.9), we shall be concerned with
traces on each Cartesian productX2

i of each attribute scale with itself; here the trace rank-orders
the differences of preference between two alternatives on attributei. Finally, in model (16.10),
both types of traces appear and interact.

The contents of this chapter are the following. In section 16.2, we introduce the main tools
for analyzing preference relations: marginal traces on levels and marginal traces on differences.
We discuss the position of the more classical marginal preferences w.r.t. these traces. We then
show how any preference relation can be represented in any ofthe three general models intro-
duced above.

We briefly describe various specializations of model (16.8)and their axiomatic characteri-
zations. We shall see in section 16.2 that some of these axioms indeed express a fundamental
requirement of aggregation procedures, namely that the relation obtained through aggregation
should contain the dominance relation. The rest of the section shows how the marginal traces
on levels tend to become increasingly similar to marginal preference relations while additional
requirements are imposed on the model, driving it closer to the additive value function model.

Section 16.4 studies model (16.9). Much as in the previous section, we characterize several
variants of the model. We show that the numerical representations of type (16.9) are well-suited
to understand outranking methods.

In section 16.5, we consider the relations that can be described within model (16.10). We
characterize some of their variants and analyze the position of some well-known models such
as the model of additive differences (16.3) and some outranking methods in this framework.

A brief conclusion summarizes the main advantages of the newconcepts for analyzing
relations on a product set. Various applications are discussed.

All our results have elementary proofs. We present some which we feel useful for under-
standing the new concepts. The reader interested in more details is invited to refer to a series
of articles in which all proofs are given: [BOU 02b, BOU 04b, BOU 05a, BOU 05b, BOU 09].
These articles contain a complete study of the general, non-denumerable case as well as the
proof that our axioms are independent. We shall pay little attention to the latter aspects in this
chapter.
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16.2. Fundamental relations and trivial models

16.2.1. Binary relations on a product set

As far as binary relations are concerned, we adopt the terminology and definitions used
in Chapter 2. Hence, we shall use notions such as reflexive, irreflexive, complete, symmetric,
asymmetric, transitive, Ferrers and semi-transitive relation with the same meaning. We also
assume that the definitions of (complete) weak order, interval order and semiorder are familiar
to the reader (see also Chapter 2 for these definitions).

We generally work with binary relations on a product setX = X1 ×X2 × . . .×Xn. The
setsXi, i = 1, 2, . . . , n, may be sets of arbitrary cardinality andn is assumed to be at least
equal to2. The elements ofX aren-dimensional vectors:x ∈ X with x = (x1, x2, . . . , xn).
We interpret them as alternatives described by their valuesonn attributes.

A binary relation on the setX will usually be denoted by%, its asymmetric part by� and
its symmetric part by∼. A similar convention holds for the asymmetric and symmetric parts
of a relation when the symbol% is subscripted or superscripted. Relation% is interpreted as a
preference relation anda % b reads: ‘a is at least as good asb’.

For any subsetI of the set of attributes{1, 2, . . . , n}, we denote byXI (respectively,X−I )
the product set

∏
i∈I Xi (respectively,

∏
i/∈I Xi). We denote by(xI , a−I) the vectorw ∈ X

such thatwi = xi if i ∈ I andwi = ai otherwise. IfI is a singleton{i}, we simply writeX−i

and(xi, a−i), abusing notation.

16.2.2. Independence and marginal preferences

A preference relation% on a product setX induces relations calledmarginal preferences
on the subspacesXI , for any subset of attributesI . The marginal preference%I induced by%
onXI is defined for allxI , yI by:

xI %I yI ⇔ (xI , z−I) % (yI , z−I), for all z−I ∈ X−I . (16.11)

We do not assume in general that preferences have special properties such as completeness
or transitivity. Even if% is complete, this property is not necessarily inherited by its marginal
preferences%I . Let us define two properties that confer some regularity to marginal prefer-
ences.

Definition 16.1. Let % be a preference relation on a product setX and letI be a subset of
attributes.

– We say that% is independent forI if, for all xI , yI ∈ XI ,

[(xI , z−I) % (yI , z−I), for somez−I ∈ X−I ]
⇒ [(xI , w−I) % (yI , w−I), for all w−I ∈ X−I ].
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– We say that% is separable forI if, for all xI , yI ∈ XI ,

[(xI , z−I) � (yI , z−I), for somez−I ∈ X−I ]
⇒ Not[ (yI , w−I) � (xI , w−I) ] , for all w−I ∈ X−I .

– If % is independent (respectively, separable) for all subset ofattributesI , we say that
% is independent (respectively, separable). If% is independent (respectively, separable) for
all subsets consisting of a single attribute, we say that% is weakly independent (respectively,
weakly separable).

Independence is a classical notion in measurement theory. Intuitively, it means that common
values on a subset of attributes do not influence preference.It is well known that independence
implies weak independence, but not the converse [WAK 89]. Similarly, independence implies
separability but the converse is false. Separability is a weakening of the independence property.
It is an interesting property since aggregation models based on themax or min operator yield
preferences that are separable but not independent. Separability prohibits strict reversal of the
preferences while letting common values on some attributesvary. Separability entails weak
separability but the converse is not true.

Independence and separability are of course related to completeness of marginal prefer-
ences. The following results are either well known or obvious.

Proposition 16.1. Let% be a binary relation onX.

– If % is complete and independent for attributei, %i is complete;

– %i is complete if and only if% is weakly separable and satisfies the following condition:
for all xi, yi ∈ Xi and for alla−i ∈ X−i,

(xi, a−i) % (yi, a−i) or (yi, a−i) % (xi, a−i). (16.12)

Marginal preferences on each attributei express the results of the pairwise comparison of
levelsxi andyi when these levels are adjoined common levels on all other attributes (ceteris
paribusreasoning). We shall see in the next section that marginal preferences%i do not exploit
all the information contained in% relatively to attributei, contrary to marginal traces on levels.

16.2.3. Marginal traces on levels

Various kinds of marginal traces (%+
i ,%

−
i and%±

i ) onXi are defined as follows.

Definition 16.2. For allxi, yi ∈ Xi, for all a−i ∈ X−i, for all z ∈ X,

xi %+
i yi⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z],

xi %−
i yi⇔ [z % (xi, a−i)⇒ z % (yi, a−i)],

xi %±
i yi ⇔





(yi, a−i) % z ⇒ (xi, a−i) % z,
and
z % (xi, a−i)⇒ z % (yi, a−i).



Conjoint Measurement and preferences 603

These definitions clarify the difference between marginal preferences and marginal traces.
Marginal traces use all the information available in% in order to comparexi with yi. These two
levels inXi are adjoined the same evaluations onX−i and one observes how such alternatives
compare with all other alternatives. In contrast, marginalpreference results from the comparison
of alternatives, evaluated by levelxi on attributei, with alternatives that are evaluated by level
yi. Both alternatives are adjoined the same evaluations onX−i (ceteris paribuscomparison).
The latter mode of comparison does not take into account the behavior of such alternatives with
respect to others. Under a very weak hypothesis, namely reflexivity of %, we have indeed that
xi %+

i yi (or xi %−
i yi) entailsxi %i yi. This is readily verified starting e.g. from(yi, a−i) %

(yi, a−i). Applying the definition of%+
i , we obtain(xi, a−i) % (yi, a−i). Similarly, starting

from (xi, a−i) % (xi, a−i) and using the definition of%−
i , we obtain the other entailment.

Using their definitions, it is not difficult to see that%+
i ,%

−
i and %±

i are reflexive and
transitive relations.

According to our conventions, we denote the asymmetric (respectively, symmetric) part of
%+

i by�+
i (respectively,∼+

i ) and similarly for%−
i and%±

i . In the following lemma we note a
few links between marginal traces and the preference relation %. These properties, which will
be used in the sequel, describe the ‘responsiveness’ of the preference with respect to the traces.
The proof of this lemma is left to the reader.

Lemma 16.1. For all i ∈ {1, . . . , n} andx, y, z, w ∈ X:

1) [x % y, zi %+
i xi]⇒ (zi, x−i) % y,

2) [x % y, yi %−
i wi]⇒ x % (wi, y−i),

3) [zi %±
i xi, yi %±

i wi]⇒





x % y ⇒ (zi, x−i) % (wi, y−i),

and

x � y ⇒ (zi, x−i) � (wi, y−i),

4) [zi ∼±
i xi, yi ∼±

i wi, ∀ i ∈ {1, . . . , n}]⇒





x % y ⇔ z % w,
and
x � y ⇔ z � w.

Marginal traces are not necessarily complete relations. When this is the case, this has im-
portant consequences as we shall see in section 16.3.

16.2.4. Marginal traces on differences

Wakker [WAK 88, WAK 89] has demonstrated the importance of traces on differences for
understanding conjoint measurement models. We introduce two relations on preference differ-
ences%∗

i and%∗∗
i for each attributei. These relations compare pairs of levels; they are subsets

of X2
i ×X2

i .

Definition 16.3. For allxi, yi, zi, wi ∈ Xi,

(xi, yi) %∗
i (zi, wi) if and only if

∀ a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i)⇒ (xi, a−i) % (yi, b−i);
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(xi, yi) %∗∗
i (zi, wi) if and only if [(xi, yi) %∗

i (zi, wi) and(wi, zi) %∗
i (yi, xi)].

Intuitively, we interpret(xi, yi) %∗
i (zi, wi) as stating that the difference of preference

between levelsxi andyi is at least as large as that betweenzi andwi. By definition,%∗
i is

reflexive and transitive while, in contrast, there is no necessary link between(xi, yi) and the
‘opposite’ difference(yi, xi); that is why we introduce relation%∗∗

i .

As for marginal traces on levels, the preference relation% is monotone with respect to
marginal traces on differences. Moreover, traces on levelsand traces on differences are not
unrelated. The following lemmas describe the former and thelatter links; their elementary proof
is left to the reader.

Lemma 16.2. For all x, y ∈ X and allzi, wi ∈ Xi,

1) % is independent if and only if(xi, xi) ∼∗
i (yi, yi), ∀ i ∈ {1, . . . , n},

2) [x % y and(zi, wi) %∗
i (xi, yi)]⇒ (zi, x−i) % (wi, y−i),

3) [(zi, wi) ∼∗
i (xi, yi), ∀ i ∈ {1, . . . , n}]⇒ [x % y ⇔ z % w],

4) [x � y and(zi, wi) %∗∗
i (xi, yi)]⇒ (zi, x−i) � (wi, y−i),

5) [(zi, wi) ∼∗∗
i (xi, yi), ∀ i ∈ {1, . . . , n}]⇒





[x % y ⇔ z % w]

and

[x � y ⇔ z � w],

Lemma 16.3. For all i ∈ {1, . . . , n} and allxi, yi ∈ Xi,

1) xi %+
i yi ⇔ [(xi, wi) %∗

i (yi, wi), ∀wi ∈ Xi],

2) xi %−
i yi ⇔ [(wi, yi) %∗

i (wi, xi), ∀wi ∈ Xi],

3) xi %±
i yi ⇔ [(xi, wi) %∗∗

i (yi, wi), ∀wi ∈ Xi],

4) [`i %+
i xi and(xi, yi) %∗

i (zi, wi)]⇒ (`i, yi) %∗
i (zi, wi),

5) [yi %−
i `i and(xi, yi) %∗

i (zi, wi)]⇒ (xi, `i) %∗
i (zi, wi),

6) [zi %+
i `i and(xi, yi) %∗

i (zi, wi)]⇒ (xi, yi) %∗
i (`i, wi),

7) [`i %−
i wi and(xi, yi) %∗

i (zi, wi)]⇒ (xi, yi) %∗
i (zi, `i),

8) [xi ∼+
i zi andyi ∼−

i wi]⇒ (xi, yi) ∼∗
i (zi, wi),

9) [xi ∼±
i zi andyi ∼±

i wi]⇒ (xi, yi) ∼∗∗
i (zi, wi).

Marginal traces on differences are not generally complete.When they are, this has interest-
ing consequences that will be studied in section 16.4.

16.2.5. Three models for general relations on a Cartesian product

Provided the cardinal ofX is not larger than that of the set of real numbers, every binary
relation onX can be represented in the three models described by equations (16.8–16.10).
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As we shall see in the proof of the following proposition, marginal traces on levels play a
fundamental role for representation (16.8). Marginal traces on differences play a similar role in
representation (16.9) and both types of traces are important for model (16.10). The importance
of this role will be strengthened when we impose the completeness of the traces in the following
three sections.

We use the notation[ui(xi)] to denote then-components vector(u1(x1), . . . , un(xn)).

Proposition 16.2. Trivial representations on product sets
Let% be a binary relation on the setX =

∏n
i=1Xi, the cardinal of which is at most that ofR.

1) There are real-valued functionsui on Xi and a real-valued functionF defined on
[
∏n

i=1 ui(Xi)]
2 such that, for allx, y ∈ X,

x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0. (L0)

2) There are real-valued functionspi on X2
i and a real-valued functionG defined on∏n

i=1 pi(X
2
i ) such that, for allx, y ∈ X,

x % y ⇔ G([pi(xi, yi)]) ≥ 0. (D0)

3) There exist real-valued functionsui onXi, real-valued functionsϕi onui(Xi)
2 and a

real-valued functionH defined on
∏n

i=1 ϕi(ui(Xi)
2) such that, for allx, y ∈ X,

x % y ⇔ H([ϕi(ui(xi), ui(yi))]) ≥ 0. (L0D0)

Proof. Part (1). Leti ∈ {1, . . . , n}. By construction,∼±
i is an equivalence relation since it

is reflexive, symmetric and transitive. SinceXi has at most the cardinality ofR, there exists a
functionui fromXi to R such that for allxi, yi ∈ Xi:

xi ∼±
i yi ⇔ ui(xi) = ui(yi). (16.13)

For all i ∈ {1, . . . , n}, let ui be a function that satisfies equation (16.13). We defineF from
[
∏n

i=1 ui(Xi)]
2 to R by:

F ([ui(xi)]; [ui(yi)]) =

{
+1 if x % y,
−1 otherwise.

(16.14)

Lemma 16.1(4) guarantees thatF is well defined.

Part (2). Since∼∗∗
i is an equivalence relation and in view of the cardinality ofXi, for all

i there is a functionpi fromX2
i to R that separates the equivalence classes of∼∗∗

i , i.e. that is
such that for allxi, yi, zi, wi ∈ Xi:

(xi, yi) ∼∗∗
i (zi, wi)⇔ pi(xi, yi) = pi(zi, wi). (16.15)

Using lemma 16.2(5), the following functionG is well defined:

G([pi(xi, yi)]) =

{
+1 if x % y,
−1 otherwise.

(16.16)
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Part (3). Let us consider, for alli, a functionui that satisfies equation (16.13) and a function
pi that satisfies equation 16.15. We defineϕi onui(Xi)

2 by:

ϕi(ui(xi), ui(yi)) = pi(xi, yi) (16.17)

for all xi, yi ∈ Xi. Let us show thatϕi is welldefined i.e. thatui(xi) = ui(zi) andui(yi) =
ui(wi) imply pi(xi, yi) = pi(zi, wi). By construction, we havexi ∼±

i zi andyi ∼±
i wi;

lemma 16.3(9) yields(xi, yi) ∼∗∗
i (zi, wi), hencepi(xi, yi) = pi(zi, wi).

Finally, we defineH on
∏n

i=1 ϕi(ui(Xi), ui(Xi)) by:

H([ϕi(ui(xi), ui(yi))]) =

{
+1 if x % y,
−1 otherwise.

(16.18)

Using lemma 16.2(3), we see thatH is well defined.�
Remark16.1. The limitation on the cardinality ofX imposed in proposition 16.2 is not a
necessary condition. This condition can be weakened in the following way. For model (L0), it
is sufficient that the number of equivalence classes of the relations∼±

i is not larger than the
cardinal ofR; in the same way, for model (D0), it is necessary and sufficient to impose the
same restriction on the number of equivalence classes of relations∼∗∗

i . For model (L0D0), the
two previous restrictions are required.

16.3. Models using marginal traces on levels

16.3.1. Definition of the models

In model (L0), the role ofui consists only of associating a numerical ‘label’ to each equiv-
alence class of relation%±

i . The role ofF is only to determine whether the profiles[(ui(xi))],
[(ui(yi))] correspond to a preference (see definition ofF in equation (16.14)) or not. Things be-
come more interesting when additional properties are imposed onF . We consider the following
models:

– model (L1), obtained by imposingF ([ui(xi)]; [ui(xi)]) ≥ 0 on model (L0); and

– model (L2), obtained by imposingF ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)]) on
model (L1).

Moreover, in each of the models (L0), (L1) and (L2), we consider the consequences of im-
posing thatF is non-decreasing (respectively, increasing) in its firstn arguments and non-
increasing (respectively, decreasing) in its lastn arguments. The resulting eight new models are
defined in Table 16.1.

A number of implications between these models result immediately from their definitions.
We do not detail them here. We note in the following proposition a number of consequences of
the properties ofF introduced to define models (L1) and (L2).

Proposition 16.3. A binary relation% on a product setX =
∏n

i=1Xi, the cardinal of which
is bounded by that ofR, can be represented in
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(L0) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0
(L1) (L0) with F ([ui(xi)]; [ui(xi)]) ≥ 0
(L2) (L0) with F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(L3) (L0) with F non-decreasing, non-increasing,
(L4) (L0) with F increasing, decreasing,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(L5) (L1) with F non-decreasing, non-increasing,
(L6) (L1) with F increasing, decreasing,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(L7) (L2) with F non-decreasing, non-increasing,
(L8) (L2) with F increasing, decreasing,

Table 16.1.Models using traces on levels

1) model (L1) if and only if% is reflexive;

2) model (L2) if and only if% is complete.

Proof. Reflexivity and completeness of% are clear consequences of models (L1) and (L2),
respectively. Reflexivity of% is evidently sufficient for model (L1). It remains to be shown that
completeness is a sufficient condition for model (L2). This is readily done by reconsidering the
construction of the representation of% in the proof of proposition 16.2; we simply change the
definition ofF , equation (16.14), to:

F ([ui(xi)]; [ui(yi)]) =





+1 if x � y,
0 if x ∼ y,
−1 otherwise.

(16.19)

Using the completeness of%, we readily verify thatF is still well defined and satisfies

F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)]).

�

In the next section, we introduce properties that are intimately connected to the monotonic-
ity of F . Interestingly, the same properties ensure the completeness of marginal traces.

16.3.2. Completeness of marginal traces and monotonicity ofF

We introduce the following three axioms for each dimensioni.

Definition 16.4. ConditionsAC1,AC2 andAC3
Let % be a binary relation onX =

∏n
i=1Xi. For i ∈ {1, . . . , n}, we say that relation%
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satisfies:AC1i if

x % y
and

z % w



 ⇒





(zi, x−i) % y
or
(xi, z−i) % w,

AC2i if

x % y
and

z % w



 ⇒





x % (wi, y−i)
or
z % (yi, w−i),

andAC3i if

z % (xi, a−i)
and

(xi, b−i) % y



⇒





z % (wi, a−i)
or
(wi, b−i) % y,

for all x, y, z, w ∈ X, for all a−i, b−i ∈ X−i and for allxi, wi ∈ Xi.

We say also that% satisfiesAC1 (respectively,AC2, AC3) if it satisfiesAC1i (respec-
tively, AC2i, AC3i) for all i ∈ {1, . . . , n}. We useAC123 as short-hand for the conjunction
of propertiesAC1,AC2 andAC3.

These three conditions are calledcancelation conditions, which is classical terminology in
conjoint measurement theory. The denomination of the axioms comes from the fact that these
axioms express ‘intrA-Criterion’ cancelation conditions(in contrast to axioms RC – ‘inteR-
Criterion’ cancelation conditions; see section 16.4). Conditions AC1, AC2 andAC3 were
initially introduced in [BOU 99, BOU 97] and then used in [GRE02].

ConditionAC1i suggests that the elements ofXi can be ordered taking into account ‘up-
ward dominance’: ‘xi upward dominateszi’ means that if(zi, c−i) % w, then(xi, c−i) % w.
ConditionAC2i has a similar interpretation taking into account ‘downwarddominance’: ‘yi

downward dominateswi’ if x % (yi, c−i) entailsx % (wi, c−i). ConditionAC3i ensures that
it is possible to rank-order the elements ofXi taking into account both upward and downward
dominance; these are not incompatible. It can be shown [BOU 04b, appendix A] thatAC1,
AC2 andAC3 are logically independent axioms.

ConditionsAC1, AC2, AC3 have consequences on marginal traces. We describe them in
the following proposition.

Lemma 16.4. Completeness of marginal traces
Let% be a binary relation onX. We have:

1) %+
i is complete if and only if% verifiesAC1i;

2) %−
i is complete if and only if% verifiesAC2i;

3) [ Notxi %+
i yi ⇒ yi %−

i xi] if and only if% verifiesAC3i;

4) %±
i is complete if and only if% verifiesAC1i, AC2i andAC3i.
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Proof. To prove part (1), it is sufficient to observe that the negation of AC1i is equivalent to
the negation of the completeness of%+

i . Part (2) is proven in a similar way.

Part (3). Assume that Notxi %+
i yi; then there existz ∈ X anda−i ∈ X−i such that

(yi, a−i) % z and Not(xi, a−i) % z. If w % (yi, b−i), thenAC3i entails(xi, a−i) % z or
w % (xi, b−i). Since by hypothesis, Not(xi, a−i) % z, we must havew % (xi, b−i) hence
%−

i xi. The converse implication results from the fact that the negation ofAC3i is equivalent
to the existence ofxi, yi ∈ Xi such that Notyi %+

i xi and Notxi %−
i yi.

Part (4) is a direct consequence of the first three parts.�

ConditionsAC1,AC2 andAC3 together imply that the marginal traces%±
i induced by%

are (complete) weak orders. We can expect that these axioms have consequences on marginal
preferences%i. Note, however, that marginal preferences and marginal traces on levels do not
generally coincide, even under conditionsAC123. The following results are given without
proofs (these can be found in [BOU 04b, proposition 3]).

Proposition 16.4. Properties of marginal preferences
We have:

1) If % is reflexive and verifiesAC1i or AC2i for all i ∈ {1, . . . , n}, then% is weakly
separable and satisfies condition (16.12).

2) If % is reflexive and verifiesAC1i or AC2i then%i is an interval order.

3) If, in addition,% satisfiesAC3i, then%i is a semiorder.

From part (1), using proposition 16.1, we infer that%i is complete as soon as% is reflexive
and verifiesAC1i orAC2i.

We know that if% is reflexive and satisfiesAC123, the marginal traces%±
i are weak orders

(lemma 16.4(4)). Under the same conditions, part (3) of the previous proposition tells us that
marginal preferences%i are semiorders. This suggests that marginal traces and preferences
are distinct relations, which is confirmed by examples in [BOU 04b]; we shall see conditions
ensuring that these relations are identical below. If they are distinct, we have seen thatxi %±

i yi

entailsxi %i yi as soon as% is reflexive. Since underAC123, %±
i and%i are complete, this

means that under these conditions%±
i is more discriminant than%i (in the sense that∼±

i ⊆∼i:
more pairs are indifferent with respect to marginal preference than to marginal trace).

AxiomsAC123 are not only related to the completeness of marginal traces but also to the
monotonicity properties of the functionF that appears in models of type (16.8). In the next
proposition, we establish a characterization of models (L5) and (L6). We prove the result only
for the case whereX is a countable set.

Proposition 16.5. Characterization of (L5) and (L6)
Let % be a binary relation on the countable setX =

∏n
i=1Xi. We have that% verifies model

(L6) if and only if% is reflexive and satisfiesAC1,AC2 andAC3. Models (L5) and (L6) are
equivalent.
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Proof. Model (L5) is a particular case of model (L1); hence in that model the preference re-
lation % is reflexive (proposition 16.3(1)). It is easily checked that any relation representable
in model (L5) verifiesAC123. Conversely, if% is reflexive and verifiesAC123, we can con-
struct a numerical representation that follows model (L6). As functionui, we select a numerical
representation of the weak order%±

i , i.e.∀xi, yi ∈ Xi, we have:

xi %±
i yi ⇔ ui(xi) ≥ ui(yi). (16.20)

Such a representation does exist since we have assumed thatX is a countable set. We then
defineF on [

∏n
i=1 ui(Xi)]

2 by setting:

F ([ui(xi)]; [ui(yi)]) =

{
+exp(

∑n
i=1 (ui(xi)− ui(yi))) if x % y,

− exp(
∑n

i=1 (ui(yi)− ui(xi))) otherwise.
(16.21)

ThatF is well defined results from lemma 16.1(4). The fact thatF is increasing in its firstn
arguments and decreasing in its lastn arguments is a consequence of the definition ofF and of
lemma 16.1(3).�

The case in whichX is not denumerable does not raise serious difficulties. A necessary and
sufficient condition for its representability is that the marginal traces of% are representable on
the real numbers, which is equivalent to imposing an ‘order-density’ condition. We say that%±

i

satisfies the ‘order-density’ conditionOD±
i if there is a denumerable subsetYi ⊆ Xi such that

∀xi, zi ∈ Xi,

xi �±
i zi ⇒ ∃ yi ∈ Yi such thatxi %±

i yi %±
i zi. (16.22)

Conditional to this additional condition imposed on% for all i ∈ {1, . . . , n} is that the charac-
terization of the above models remains valid.

Note also that the slightly more general case of models (L3) and (L4) is dealt with very
similarly. These models are equivalent and the preferencesthat can be represented in these
models are those that verifyAC1,AC2 andAC3 (they need not be reflexive).

16.3.3. Model (L8) and strict monotonicity w.r.t. traces

In order to obtain a characterization of the more constrained model in Table 16.1, we intro-
duce two new axioms that are effective only when the preference relation is complete. These
axioms follow the scheme of the classical ‘triple cancelation’ axioms that are used in the char-
acterization of additive value function models. That is thereason why we denote them by the
acronymTAC (Triple intrA-Criteria annulation).

Definition 16.5. ConditionsTAC1, TAC2
We say that% satisfies

TAC1i if
(xi, a−i) % y

and
y % (zi, a−i)

and
(zi, b−i) % w




⇒ (xi, b−i) % w,
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andTAC2i if
(xi, a−i) % y

and
y % (z−i, a−i)

and
w % (xi, b−i)




⇒ w % (zi, b−i),

for all xi, zi ∈ Xi, for all a−i, b−i ∈ X−i and for ally,w ∈ X.

We say that% satisfiesTAC1 (respectively,TAC2) if it satisfiesTAC1i (respectively,
TAC2i) for all i ∈ {1, . . . , n}. We use alsoTAC12 as short-hand forTAC1 andTAC2.

The first two conditions in the premise ofTAC1i andTAC2i suggest that levelxi is not
lower than levelzi. TAC1i (respectively,TAC2i) entail thatxi should then upward (respec-
tively, downward) dominatezi.

We give without proof a few consequences ofTAC1 andTAC2. These axioms will only
be imposed to complete relations; without this hypothesis,they have rather limited power.

Lemma 16.5. Strictly positive responsiveness to the traces on levels
If % is a complete binary relation onX =

∏n
i=1Xi then:

1) TAC1i ⇒ [AC1i andAC3i]

2) TAC2i ⇒ [AC2i andAC3i]

3) TAC1i is equivalent to the completeness of relation%±
i together with the condition:

[x % y andzi �+
i xi]⇒ (zi, x−i) � y. (16.23)

4) TAC2i is equivalent to the completeness of relation%±
i together with the condition:

[x % y andyi �−
i wi]⇒ x � (wi, y−i). (16.24)

5) If TAC1i or TAC2i, then% is independent for{i} and%i is a weak order. Moreover,
if we haveTAC12 then%i = %±

i .

As we can see, as soon as% is complete, the conjunction ofTAC1i andTAC2i guarantees
that% responds in a strictly increasing manner to the marginal trace�±

i . These properties also
imply that % is weakly independent on criterion{i} and that the marginal preference%i is
a weak order and identical to the marginal trace%±

i . We do not examine in detail here the
relationship betweenTAC1i, TAC2i on the one hand andAC1i, AC2i, AC3i on the other.
We shall return to this in section 16.3.6. It can be shown [BOU04b, appendix A] that for a
complete relation,TAC1 andTAC2 are logically independent properties.

Note that the above system of axioms does not imply that the preference% has strong
properties such as transitivity or even semi-transitivityor the Ferrers property. In these models
(even in the more constrained i.e. model (L8)), the preference cannot even be supposed to be
an interval order. The previous results lead directly to thecharacterization of model (L8).
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Proposition 16.6. Characterization of (L8)
Let% be a binary relation on the denumerable setX =

∏n
i=1Xi. The relation% verifies model

(L8) if and only if% is complete and satisfiesTAC1 andTAC2.

Proof. The proof follows exactly the same scheme as that of proposition 16.5. The only differ-
ence lies in the definition of functionF which has to be altered in order to take into account the
completeness of%. We defineF on [

∏n
i=1 ui(Xi)]

2, substituting equation (16.21) by:

F ([ui(xi)]; [ui(yi)]) =





+ exp(
∑n

i=1 (ui(xi)− ui(yi))) if x % y,
0 if x ∼ y,
− exp(

∑n
i=1 (ui(yi)− ui(xi))) otherwise.

(16.25)

Parts (3) and (4) of lemma 16.5 entail thatF is strictly increasing (respectively, decreasing) in
its first (respectively, last)n arguments since, in this construction, theui have been chosen to
be numerical representations of the weak orders%±

i . �

16.3.4. Complete characterization of the models on levels

To be complete, we give without proof [see BOU 04b] a characterization of all the models
on levels described in Table 16.1. We limit ourselves to the case in which the setX is denumer-
able. The non-denumerable case can be dealt with without major difficulty by imposing order
density conditions on the traces, starting from model (L4).

Theorem 16.1. Models based on traces on levels
Let % be a binary relation on the denumerable setX =

∏n
i=1Xi. This relation can be repre-

sented in

1) model (L1) if and only if% is reflexive;

2) model (L2) if and only if% is complete;

3) model (L4) if and only if% verifiesAC1, AC2 andAC3; models (L3) and (L4) are
equivalent;

4) model (L6) if and only if% is reflexive and verifiesAC1,AC2 andAC3; models (L5)
and (L6) are equivalent;

5) model (L7) if and only if% is complete and verifiesAC1,AC2 andAC3;

6) model (L8) if and only if% is complete and verifiesTAC1 andTAC2.

Let us observe that increasing or non-decreasing (respectively, decreasing or non-increasing)
do not make a difference in our models unless functionF is also supposed to be antisymmetric
(i.e.F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)])). In this case, the value ‘0’ plays a special
role, which is to represent indifference. This is what led usto differentiate the increasing case
from the non-decreasing one.
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16.3.4.1.Uniqueness and regular representations

All these models have obviously rather poor properties regarding uniqueness of numerical
representation. A large variety of functions can of course be used forF as well as for the
ui. Nevertheless, it is not difficult to determine necessary and sufficient conditions that these
functions must fulfill. Let us consider, for instance, model(L6). Our proof of proposition 16.5
shows that it is always possible to use functionsui that verify:

xi %±
i yi ⇔ ui(xi) ≥ ui(yi). (16.26)

Let us refer to a representation in which the functionsui verify equation (16.26) asregular.
According to our proof, any strictly increasing transformation of a functionui verifying this
condition can also be used and yields another valid representation. Other choices can be made,
however. It is easy to see that any functionui that satisfies

xi �±
i yi ⇒ ui(xi) > ui(yi) (16.27)

can be used in a representation of% in model (L6).

Regarding functionF , we can substitute the exponential of the sum of the differences of
the2n arguments, that appears in equation (16.21), by any real-valued positive function defined
onR2n (or at least on the subset[

∏n
i=1 ui(Xi)]

2) that is increasing in its firstn arguments and
decreasing in its lastn ones. It is also clear that only such functions can be used.

The representations described above are the only possible ones for model (L6). It is easy to
adapt the reasoning that we have just used to cover all the models considered here [BOU 04b].

16.3.5. Relations compatible with dominance

Why should we be particularly interested in models (L5), (L6) and (L8)? The major reason
is related to the application of conjoint measurement models to multiple criteria decision anal-
ysis. In this field of application the preference is usually constructed; it is not knowna priori.
The process of constructing the preference relies upon data(that are the evaluations of the alter-
natives on the various attributes recognized as relevant for the decision) and their interpretation
in terms of preference on each criterion.

We emphasize that we have not assumed anya priori structure on the setsXi. We did not
suppose that they are sets of numbers; they may be ordered sets or even nominal scales. The
interpretation of the evaluations of the alternatives in terms of preference requires at least the
definition of an ordering of the elements ofXi, an order that would correspond to the direction
of increasing preference of the decision maker on the viewpoint attached to that attribute. The
setXi endowed with this interpretation is what we call acriterion [ROY 93].

We expect of course the existence of certain logical connections between the criteria and
global preference.Respect of dominanceis such a natural connection [ROY 85, ROY 93] and
[VIN 89]. (This notion of dominance must not be confused withthat introduced just after def-
inition 16.4. The latter only deals with the relative positions of the levels on the scale of a
single attribute. We called it ‘upward dominance’ and ‘downward dominance’ due to the lack
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of a more appropriate term.) In conjoint measurement theory, no order isa priori postulated on
the setsXi. Would it exist, such an order should be compatible with global preference. We can
therefore formulate the principle of the respect of dominance in a conjoint measurement context
as follows.

Definition 16.6. A reflexive binary relation% on a setX =
∏n

i=1Xi is compatible with a
dominance relationif for all i ∈ {1, . . . , n}, there is a weak orderSi onXi such that for all
x, y ∈ X and allzi, wi ∈ Xi,

[x % y, ziSixi andyiSiwi for all i ∈ {1, . . . , n}]⇒ z % w. (16.28)

We say that this compatibility isstrict if the conclusion of condition (16.28) is modified inz �
w as soon as, for somej ∈ {1, . . . , n}, zjPjxj or yjPjwj (wherePj denotes the asymmetric
part ofSj).

This definition requires a comment. It could be thought that areasonable definition of the
compatibility with a dominance relation would require the fulfillment of the following condition
instead of condition (16.28):

[xiSiyi for all i ∈ {1, . . . , n}]⇒ x % y. (16.29)

The reader will easily be convinced that defining compatibility in this way would make this
notion too weak in case the preference relation cannot be supposed transitive. Indeed, if% has
cycles in its asymmetric part, it is possible that this relation verifies condition (16.28) while
there exist alternativesx, y, z ∈ X such thatx∆y, y � z andz � x (where the dominance
relationx∆y is defined by[xiSiyi for all i ∈ {1, . . . , n}]). In such a case, the non-dominated
alternatives (w.r.t. relation∆) need not always be considered as good choices in a multiple
criteria choice decision problem sincex could be non-dominated while there would exist an
alternativez such thatz � x.

Definition 16.6 avoids this drawback since, using condition(16.28),x∆y andy � z imply
x % z, which contradictsz � x.

In view of the results in section 16.3.2, establishing a linkbetween relations%±
i and the

monotonicity ofF , we can expect that when a preference% is compatible with a dominance
relation, the relationsSi in definition 16.6 are related to the marginal traces%±

i . It is indeed
the case as shown in the next proposition (in which we limit ourselves to reflexive preference
relations; the case of asymmetric relations could be treated similarly).

Proposition 16.7. Compatibility with dominance
A reflexive binary relation% on a setX =

∏n
i=1Xi is compatiblewith a dominance relation

if and only if it satisfiesAC1,AC2 andAC3. In such a case,Si is compatible with%±
i in the

following sense:

xi �±
i yi ⇒ NotyiSixi. (16.30)
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Proof. The necessity ofAC1,AC2 andAC3 is almost immediate. Consider the case ofAC1,
the cases of the other axioms being similar. Assume that(xi, a−i) % y and(zi, b−i) % w.
RelationSi being complete, we have eitherxiSizi or ziSixi. If we haveziSixi then, using the
definition of compatibility with dominance,(xi, a−i) % y entails(zi, a−i) % y. If we have
xiSizi, then(zi, b−i) % w entails(xi, b−i) % w. As a consequence,AC1 is verified.

The fact thatAC1, AC2 andAC3 are sufficient conditions is clear. We can indeed take
Si =%±

i for all i ∈ {1, . . . , n}. UnderAC123, the relations%±
i are complete weak orders

(lemma 16.4(4)) and, using lemma 16.1(3), we get equation (16.28).

To show equation (16.30), let us suppose on the contrary thatthere existxi, yi ∈ Xi with
xi �±

i yi andyiSixi. From the former relation we deduce that there exist eithera−i ∈ X−i

and z ∈ X such that(xi, a−i) % z and Not(yi, a−i) % z, or b−i ∈ X−i andw ∈ X
such thatw % (yi, b−i) and Notw % (xi, b−i). In both cases, usingyiSixi and applying
equation (16.28) leads to a contradiction.�

From this result we deduce, when the preference% is compatible with a dominance relation,
that%±

i cannot be finer thanSi. In other words,Si ⊆%±
i . From a practical point of view, if

we consider that a global preference% compatible with a dominance relation is the result of
the aggregation of relationsSi defining the criteria, we understand that% cannot induce a
trace onXi that would contradictSi; % cannot even create a preference whereSi only sees
indifference. Even although, for a reflexive preference satisfyingAC123, we cannot guarantee
the uniqueness of the relationsSi, we see that such relations are strongly constrained:Si can
only be a weak order included in%±

i .

With the previous proposition, model (L6) (or the equivalent model (L5)) can be seen as
a natural framework for describing preferences compatiblewith a dominance relation. This
prompts the question of a similar framework for preferencesthat arestrictly compatible with a
dominance relation. Surprisingly, the natural framework for such preferences is not model (L8).
This model imposes complete preferences which is not, as we shall see, a necessary condition
for strict dominance.

16.3.6. Strict compatibility with dominance

Strict compatibility with dominance requires, of course, stronger axioms thanAC1, AC2, AC3.
We refer to the following strengthening ofAC3 asAC4.

Definition 16.7. ConditionAC4
We say that% satisfiesAC4i if % verifiesAC3i and if, whenever one of the consequences in
AC3i is false, then the other consequence is strictly satisfied, i.e. with� instead of%. We say
that% satisfiesAC4 if it satisfiesAC4i for all i ∈ {1, . . . , n}.

The following lemma that we state without proof [see BOU 04b]collects a few conse-
quences ofAC4.

Lemma 16.6. Consequences ofAC4
If % is a relation onX, we have:
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1) If % is reflexive,AC4i is equivalent to the completeness of%±
i and the conjunction of

the following two conditions:

[x % y andzi �±
i xi]⇒ (zi, x−i) � y, (16.31)

[x % y andyi �±
i wi]⇒ x � (wi, y−i). (16.32)

2) If % is reflexive and satisfiesAC4i then
- % is independent for{i},
- %i is a weak order and
- %i = %±

i .

3) If % is complete,[TAC1i andTAC2i]⇔ AC4i.

As soon as% is reflexive, conditionAC4 (which, by definition, is stronger thanAC3) also
entailsAC1 andAC2 since it implies the completeness of relations%±

i (lemmas 16.6(1) and
16.4(4)). If % is complete,AC4 is equivalent toTAC1 andTAC2, which also provides (see
proposition 16.6) an alternative characterization of model (L8): % satisfies (L8) if and only if
% is complete and verifiesAC4.

AC4 has the advantage overTAC1 andTAC2 that it implies a strictly positive response
to marginal traces even when% is incomplete. It is the condition that we look for in view of
obtaining a characterization of strict compatibility withdominance.

Proposition 16.8. Strict compatibility with dominance
A reflexive binary relation% on a setX =

∏n
i=1Xi is strictly compatiblewith a dominance

relation if and only if it satisfiesAC4. In such a case, the relationsSi are uniquely determined
andSi =%±

i , for all i.

The proof of this proposition is similar to that of proposition 16.7; [see BOU 04b].

Let us observe that the conditions ensuring strict compatibility with a dominance relation do
not, however, guarantee that% possesses ‘nice’ properties such as completeness or transitivity.
It is straightforward, using examples inspired by Condorcet’s paradox [e.g. SEN 86], to build
a binary relation% that is strictly compatible with a dominance relation and has circuits in its
asymmetric part (building for example% via the majority rule applied to relationsSi).

16.3.7. The case of weak orders

Visiting more classical models of preferences, i.e. modelsin which the preference is a weak
order, we examine how this hypothesis combines with our axioms. When% is a weak order,
the marginal trace%±

i is identical to the marginal preference%i. We give the following results
without proof [see BOU 04b].

Lemma 16.7. Case of a weak order
If % is a weak order on the setX =

∏n
i=1Xi, we have:
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1) [% is weakly separable] ⇔ [% satisfiesAC1] ⇔ [% satisfiesAC2] ⇔ [% satisfies
AC3]; and

2) [% is weakly independent] ⇔ [% satisfiesAC4]⇔ [% satisfiesTAC1 andTAC2].

In the case of weakly independent weak orders, we can neglectconsidering marginal traces;
we do not need tools more refined than marginal preferences for analyzing preferences when
these are weakly independent weak orders. Note that the caseof weak orders is highly spe-
cific: see [BOU 04b, appendix A] for examples of weakly separable (even weakly independent)
semiorders which violateAC1, AC2 andAC3. In this slightly less constrained case, weak
separability is not equivalent toAC1,AC2 orAC3.

Using these observations, it is easy to prove the following proposition.

Proposition 16.9. Let % be a weak order on a denumerable setX =
∏n

i=1Xi. There exist
real-valued functionsui defined onXi and a real-valued functionU on

∏n
i=1 ui(Xi) such that

for all x, y ∈ X,

x % y ⇔ U(u1(x1), . . . , un(xn)) ≥ U(u1(y1), . . . , un(yn)) ≥ 0. (16.33)

FunctionU in equation (16.33) can be chosen to be:

1) non-decreasingin all its arguments if and only if% is weakly separable; and

2) increasingin all its arguments if and only if% is weakly independent.

Proof. We start with applying Cantor’s classical result [CAN 95]: any weak order% on a denu-
merable setX admits a numerical representation, i.e. there exists a function f : X → R such
thatx % y ⇔ f(x) ≥ f(y). In the general case, a factorization off asU(u1(x1), . . . , un(xn))
obtains, as in the proof of proposition 16.2(1), the following. We choose functionsui that sep-
arate the equivalence classes of%±

i (see condition (16.13):xi ∼±
i yi ⇔ u(xi) = ui(yi))

and we defineU settingf(x) = U(u1(x1), . . . , un(xn)). In the weakly separable and weakly
independent cases,ui will be a numerical representation of the marginal preference, the weak
order%i or the marginal trace%±

i which is equivalent here. We defineU as before. Combin-
ing the results of lemmas 16.4, 16.6 and 16.7 we show thatU is non-decreasing (respectively,
increasing) in each of its arguments.�

The non-denumerable case requires the adjunction of the usual hypothesis limiting the car-
dinality ofX and guaranteeing the existence of numerical representations for the weak orders
% and%i (order-density condition).

While the case of a representation with an increasing functionU is well known in the liter-
ature [KRA 71, theorem 7.1], the result in the case of non-decreasingU generalizes a theorem
obtained by [BLA 78] under the hypothesis thatX ⊆ Rn.
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16.3.8. Examples

Models (16.1), (16.3) and (16.6) enter into the framework ofour models using traces on
levels. Among them, the additive value function model (16.1) is the only one in which the
preference is a weak order. However, all three models have marginal traces%±

i that are weak
orders.

In contrast, in the additive non-transitive model (16.4), the marginal traces of the preference
relation are not necessarily complete. Postulating the latter condition in this model drives us
closer to Tversky’s additive differences model (16.3).

Let us briefly review the three models cited above, for the aimof illustration.

The additive value function model (16.1) belongs to model (L8), the more constrained of
our models based on levels. In addition, the preferences representable by an additive value
function are weak orders. In view of lemma 16.6, marginal traces and marginal preferences are
identical and are weak orders. The functionsui that appear in (16.1) are numerical representa-
tions of the marginal preferences (or traces). The preference reacts in a strictly positive way to
any progress of an alternative on any marginal trace.

Tversky’s additive differences model (16.3) tolerates intransitive preferences. Like the addi-
tive value function it belongs to the more constrained classof models (L8). Lemma 16.6 applies
also to this model, in which marginal traces and preferencesare identical; the functionsui that
appear in (16.3) are numerical representations of these marginal preferences (or traces). We
shall turn again to this model in section 16.5.2 since it is also based on the traces of differences
(represented by the functionsΦi).

Although the models based on levels are not the most adequatefor describing relations
obtained by outranking methods (a basic version of which is described by condition (16.6)),
such relations nevertheless possess marginal traces that are weak orders. The preference rela-
tions representable in model (16.6) belong to class (L5) or (L6). The asymmetric part of their
marginal preferences�i is usually empty. Indeed, the marginal preference on dimension j does
not discriminate at all between levels unless the weightpj of criterion j is ‘dominant’, i.e. if∑n

i=1 wi ≥ λ, while
∑

i;i6=j wi < λ.

At this stage, it may come as a surprise to see that the additive value function model and the
additive differences model belong to the same class (L8) of models on the levels. In particular,
for those models, there is no distinction between marginal preferences and traces. Does this
mean that the only interesting class of models on the levels is (L8), if we except the models
inspired by the majoritarian methods in Social Choice (suchas the ELECTREmethods)? If the
answer were positive, the more refined analysis made here (which consists of carefully distin-
guishing marginal traces from marginal preferences) wouldlose a great deal of its interest. As
well as the fact that our approach allows us to understand important issues such as the respect of
a dominance relation (section 16.3.5), there exist models that are both genuinely interesting and
cannot be described satisfactorily in terms of marginal preferences. Let us consider for instance
a preference% which is representable in an additive value function model with a threshold:

x � y ⇔ ∑n
i=1 ui(xi) ≥

∑n
i=1 ui(yi) + ε

x ∼ y ⇔
∣∣∑n

i=1 ui(xi)−
∑n

i=1 ui(yi)
∣∣ ≤ ε, (16.34)
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whereε is a positive number representing a threshold above which a difference of preference
becomes noticeable; differences that do not reach this threshold escape perception and lead to
an indifference judgement (∼). The preferences% that can be described by such a model are
not weak orders but semiorders. The asymmetric part� of the preference is transitive, while
indifference∼ is not [LUC 56, PIR 97]. Such a model can be used e.g. for describing a statistical
test for the comparison of means (taking into account that, in this context, relation% should not
be interpreted as a preference but rather as a comparative judgement on two quantities). It is
impossible to analyze such a relation in terms of marginal preferences. Indeed, the latter can be
represented by

xi %i yi ⇔ ui(xi) ≥ ui(yi)− ε,

which implies that each marginal preference relation%i is a semiorder. Generally, marginal
traces are more discriminant. They are weak orders; if the set of alternatives is sufficiently rich
(it is the case, for instance, when the image setsui(Xi) are intervals of the real line), they
can be represented by the functionsui (i.e. xi %±

i yi ⇔ ui(xi) ≥ ui(yi)). In this model,
preference% is complete and its marginal traces are complete; hence it belongs to model (L7).
It is likely that the reason why such models have received little attention is related to the fact that
the dominant additive value function model does not requiretools more refined than marginal
preferences for its analysis. In the next section, we are interested in another fundamental tool
for analyzing preferences: traces on differences.

Before closing this section, there is a final issue to be discussed. In the last part of this
section, devoted to preferences that are weak orders (section 16.3.7), we distinguished weakly
separable and weakly independent weak orders. The reader may wonder if there are interesting
preference relations that are weak orders, weakly separable but not weakly independent. The
answer is definitely positive. Consider for instance the additive value function model (16.1) and
substitute the sum by a ‘minimum’ or a ‘maximum’ operator. Wethen obtain a weak order
that is weakly separable but not independent. Indeed, let(Xi) = [0, 10] andui(xi) = xi for
i = 1, 2. Preference% compares the alternatives only taking into consideration their ‘weak
point’, that isx % y if and only if min xi ≥ min yi. Clearly, marginal traces and marginal
preferences are identical and correspond to the usual orderof the real numbers of the interval
[0, 10]. Letx = (3, 5) andy = (7, 3); we havex ∼ y, but preference% does not strictly react
if e.g. we raise the level ofx on the second dimension. Even if we setx2 to 10, we still have
(3, 10) indifferent to(7, 3).

Other decision rules of practical importance, such as ‘LexiMin’ or ‘LexiMax’, the Choquet
integral, the Sugeno integral (see section 17.5) lead in general to weak orders that are weakly
separable but not weakly independent.

16.4. Models using marginal traces on differences

In this section we study preference models obtained in a similar manner to those in the pre-
vious section; we simply substitute marginal traces on levels by marginal traces on differences.
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16.4.1. Models definition

We start from the trivial model (D0) based on marginal traces and introduced in sec-
tion 16.2.5, in which:

x % y ⇔ G([pi(xi, yi)]) ≥ 0.

We define the following variants:

– model (D1), by imposing thatpi(xi, xi) = 0 on (D0);

– model (D2), by imposing that eachpi is antisymmetric, i.e.pi(xi, yi) = −pi(yi, xi), on
(D1); and

– model (D3), by imposing thatG is odd, i.e.G(x) = −G(−x), on (D2).

In the same way as in section 16.3, we also consider the modelsobtained by assuming in
each variant (D0), (D1), (D2) and (D3), thatG is non-decreasing or increasing in each of its
n arguments which yields twelve models as defined in Table 16.2.

(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0
(D1) (D0) with pi(xi, xi) = 0
(D2) (D1) with pi(xi, yi) = −pi(yi, xi)
(D3) (D2) with G odd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D4) (D0) with G non-decreasing
(D8) (D0) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D5) (D1) with G non-decreasing
(D9) (D1) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D6) (D2) with G non-decreasing
(D10) (D2) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D7) (D3) with G non-decreasing
(D11) (D3) with G increasing

Table 16.2.Models using traces on differences

There are obvious implications linking these models; we do not detail them. As well as
these implications, the properties ofG in models (D1), (D2) and (D3) entail simple properties
of the relations representable in these models. We shall lean on these properties to characterize
the models.

Proposition 16.10. Characterization of (D1), (D2) and (D3)
A binary relation% on a product setX =

∏n
i=1Xi having at most the cardinality ofR can be

represented in
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1) model (D1) or model (D2) if and only if% is independent; and

2) model (D3) if and only if% is independent and complete.

Proof. Part (1). We havepi(xi, xi) = 0 in model (D1), which implies that(xi, a−i) %
(xi, b−i) ⇔ G(0, (pj(aj , bj))j 6=i) ≥ 0 ⇔ (yi, a−i) % (yi, b−i). As a consequence,% is
independent as soon as% is representable in model (D1).

Assume conversely that% is independent and let us construct a representation of% in model
(D2). We reconsider the construction of a representation described in the proof of part (2) of
proposition 16.2, and slightly modify it. The alteration isrelated to the specification of func-
tions pi. These functions separate the equivalence classes of∼∗∗

i : (xi, yi) ∼∗∗
i (zi, wi) ⇔

pi(xi, yi) = pi(zi, wi). Nothing prevents us from imposing onpi the verification ofpi(xi, xi) =
0 for a certainxi ∈ Xi. Since% is independent,(xi, xi) ∼∗∗

i (yi, yi) for all yi ∈ Xi

and hencepi(yi, yi) = 0 for all yi ∈ Xi. We can also impose onpi the verification of
pi(xi, yi) = −pi(yi, xi). Finally,G can be defined by equation (16.16) in the same way as
for the trivial model, i.e.

G([pi(xi, yi)]) =

{
+1 if x % y,
−1 otherwise.

Clearly,G is well-defined and yields a representation of% in model (D2).

Part (2). The completeness of% is a direct consequence of the definition of model (D3);
since model (D3) implies model (D1), % is independent. Reciprocally, let us assume that% is
independent and complete. If this is the case, we use the samefunctionspi as in part (1), but we
change the definition ofG as follows:

G([pi(xi, yi)]) =





+1 if x � y,
0 if x ∼ y,
−1 otherwise.

(16.35)

We show, using independence of% thatG is well defined. Since% is complete, functionG is
odd.�

The monotonicity properties ofG are linked with specific axioms, rather similar to those
defined in section 16.3.2. We introduce them in the next section.

16.4.2. Completeness of marginal traces on differences and monotonicity of G

There are two axioms for each attributei. As with AC1, AC2 andAC3, these axioms
appear as cancelation conditions. Their denomination,RC1,RC2 recalls the fact that they are
‘inteR-Criteria’ cancelation conditions.
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Definition 16.8. ConditionsRC1 andRC2
Let % be a binary relation on the setX =

∏n
i=1Xi. We say that this relation satisfies axiom:

RC1i if
(xi, a−i) % (yi, b−i)

and
(zi, c−i) % (wi, d−i)



 ⇒





(xi, c−i) % (yi, d−i)
or
(zi, a−i) % (wi, b−i),

andRC2i if
(xi, a−i) % (yi, b−i)

and
(yi, c−i) % (xi, d−i)



 ⇒





(zi, a−i) % (wi, b−i)
or
(wi, c−i) % (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and for alla−i, b−i, c−i, d−i ∈ X−i. We say that% satisfiesRC1
(respectively,RC2) if it satisfiesRC1i (respectively,RC2i) for all i ∈ {1, . . . , n}. We shall
sometimes useRC12 for the conjunction of conditionsRC1 andRC2.

ConditionRC1i suggests that(xi, yi) corresponds to a difference of preference at least
as large as(zi, wi) or vice versa. It is easily seen that assuming both Not(xi, yi) %∗

i (zi, wi)
and Not(zi, wi) %∗

i (xi, yi) leads to a violation ofRC1i. From this we can see thatRC1i is
equivalent to the completeness of%∗

i . The second axiom,RC2i, suggests that the ‘opposite’
differences(xi, yi) and(yi, xi) are linked. In terms of the marginal trace on differences%∗

i ,
this axiom tells us if the preference difference betweenxi andyi is not at least as large as that
betweenzi andwi, then the difference betweenyi andxi is at least as large as that betweenwi

andzi.

These observations are collected in the next lemma whose proof immediately results from
the definitions and is omitted.

Lemma 16.8. Completeness of the traces on differences
We have:

1) [%∗
i is complete] if and only ifRC1i;

2) RC2i if and only if[for all xi, yi, zi, wi ∈ Xi, Not (xi, yi) %∗
i (zi, wi)⇒ (yi, xi) %∗

i

(wi, zi)]; and

3) [%∗∗
i is complete] if and only if[RC1i andRC2i].

ConditionRC1 has been introduced in [BOU 86] under the nameweak cancelation. The
extension of conditionRC1 to subsets of attributes (instead of singletons) is of fundamental
importance in [VIN 91] where this condition receives the name of independence. Condition
RC2 was first proposed in [BOU 99, BOU 97, BOU 09].

We note below two easy yet important consequences ofRC1 andRC2 [BOU 05b].

Lemma 16.9. Consequences ofRC1 andRC2
We have the following:

1) if % satisfiesRC1i then% is weakly separable fori; and

2) if % satisfiesRC2 then% is independent and either reflexive or irreflexive.
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AxiomsRC1 andRC2 allow us to analyze all the remaining models with the exception of
the more constrained model (D11). We observe that the properties of non-decreasingness and
increasingness with respect to the traces on differences donot lead to different models except
in the more constrained case (models (D7) and (D11)).

Proposition 16.11. Characterization of models (D4) to (D10)
A binary relation% on a denumerable setX =

∏n
i=1Xi can be represented in

1) model (D4) or model (D8) if and only if% satisfiesRC1;

2) model (D5) or model (D9) if and only if% is independent and satisfiesRC1;

3) model (D6) or model (D10) if and only if% satisfiesRC1 andRC2;

4) model (D7) if and only if% is complete and satisfiesRC1 andRC2.

Proof. Part (1). Model (D4) verifiesRC1. Assume that(xi, a−i) % (yi, b−i) and(zi, c−i) %
(wi, d−i). Using model (D4) we have:

G(pi(xi, yi), (pj(aj , bj))j 6=i) ≥ 0 and

G(pi(zi, wi), (pj(cj , dj))j 6=i) ≥ 0.

If pi(xi, yi) ≥ pi(zi, wi) then, using the non-decreasingness ofG, we obtainG(pi(xi, yi),
(pj(cj , dj))j 6=i) ≥ 0, hence(xi, c−i) % (yi, d−i). If pi(zi, wi) > pi(xi, yi), we have
G(pi(zi, wi), (pj(aj , bj))j 6=i) ≥ 0, hence(zi, a−i) % (wi, b−i). Consequently,RC1 is veri-
fied.

The second part of the proof constructs a representation in model (D8) of a relation% pro-
vided it verifiesRC1. UsingRC1, we know that%∗

i is a weak order. As functionpi, we choose
a numerical representation of%∗

i (which exists sinceXi has been supposed to be denumerable):
(xi, yi) %∗

i (zi, wi)⇔ pi(xi, yi) ≥ pi(zi, wi).We then defineG onpi(X
2
i ) as follows:

G([pi(xi, yi)]) =

{
+ exp(

∑n
i=1 pi(xi, yi)) if x % y,

− exp(−∑n
i=1 pi(xi, yi)) otherwise.

(16.36)

We see thatG is well defined using lemma 16.2(3) and the definition of thepi. To show that
G is increasing, let us assume thatpi(zi, wi) > pi(x,i , yi), i.e. that(zi, wi) �∗

i (xi, yi). If
x % y, lemma 16.2(2) implies that(zi, x−i) % (wi, y−i) and the conclusion follows from
the definition ofG. If Not x % y, we have either Not(zi, x−i) % (wi, y−i) or (zi, x−i) %
(wi, y−i). In both cases the conclusion follows from the definition ofG.

Part (2). Since model (D5) implies models (D1) and (D4), the necessity of the indepen-
dence condition and ofRC1 is straightforward. Under these hypotheses, we can build a repre-
sentation of% in model (D9), as in part (1), with the exception that we require thatpi verifies
pi(xi, xi) = 0 (which is made possible as a consequence of the independenceproperty; see
lemma 16.2(1)).

Part (3). We readily check that if% is representable in model (D6), it satisfiesRC1 and
RC2. ForRC1, it is a consequence of the fact that model (D6) implies model (D4). ForRC2,
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we can proceed as for part (1) forRC1. The necessity of conditionsRC1 andRC2 is thus
proven.

Under the hypothesis that% satisfiesRC1 andRC2, we can construct a representation of
% in model (D10) as follows. By lemma 16.8(3), we know that relations%∗

i and%∗∗
i are weak

orders. Since setsXi are supposed to be denumerable, there exist functionsqi : Xi → R that
represent%∗

i ; we choose one such function for eachi and we definepi throughpi(xi, yi) =
qi(xi, yi) − qi(yi, xi). It is clear that these functionspi are antisymmetric and provide nu-
merical representations of relations%∗∗

i . Using these functionspi, we defineG through equa-
tion (16.36). Lemma 16.2(5) shows that this definition makessense. To show thatG is increas-
ing, let us assume thatpi(zi, wi) > pi(xi, yi), i.e. that(zi, wi) �∗∗

i (xi, yi). This construction
implies that(zi, wi) %∗

i (xi, yi). The increasingness ofG can then be proven as in part (1).

Part (4). The necessity of the completeness of% results from proposition 16.10(2) and from
the fact that model (D7) implies model (D3). The necessity ofRC1 andRC2 is a consequence
of the fact that model (D7) implies model (D6) and of part (3). Making these hypotheses on%,
a representation of% in model (D7) is obtained as for model (D10). The only difference lies
in the definition of functionG. We defineG as follows:

G([pi(xi, yi)]) =





+exp(
∑n

i=1 pi(xi, yi)) if x � y,
0 if x ∼ y,
− exp(−∑n

i=1 pi(xi, yi)) otherwise.

(16.37)

Since% is complete,G is odd;G is well defined as a consequence of the definition of thepi

and of lemma 16.2(5). It is non-decreasing due to lemma 16.2,parts (2) and (4).�

16.4.3. Characterization of model (D11)

Distinguishing between models (D7) and (D11) requires the introduction of a new axiom.
It is similar to axiomsTAC1 andTAC2, introduced in section 16.3.2, for studying the models
based on traces on levels. Here, axiomTC will only deliver its full power for complete prefer-
ences. It is useful for characterizing the model in which increasingness with respect to marginal
traces on differences is distinguished from non-decreasingness.

Definition 16.9. ConditionTC
Let % be a binary relation on the setX =

∏n
i=1Xi. We say that this relation satisfies axiom:

TCi if
(xi, a−i) % (yi, b−i)

and
(zi, b−i) % (wi, a−i)

and
(wi, c−i) % (zi, d−i)




⇒ (xi, c−i) % (yi, d−i),

for all xi, yi, zi, wi ∈ Xi and for alla−i, b−i, c−i, d−i ∈ X−i. We say that% satisfiesTC if
it satisfiesTCi for all i ∈ {1, . . . , n}.

ConditionTCi (Triple Cancelation) is a classical cancelation condition that has often been
used [KRA 71, WAK 89] in the analysis of the additive value function model (16.1) or the
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additive utility model. In the next lemma, we state without proof two properties involvingTC.
See [WAK 88, WAK 89] for a detailed analysis of this axiom, including its interpretation in
terms of differences of preference.

Lemma 16.10. Strict monotonicity with respect to traces on differences

1) If % is complete,TCi impliesRC1i andRC2i.

2) If % is complete and verifiesTCi, we have:[x % y and(zi, wi) �∗∗
i (xi, yi)] ⇒

(zi, x−i) � (wi, y−i).

The second of the above properties clearly underlines thatTC is related to the strict mono-
tonicity of % with respect to its traces%∗∗

i (as soon as% is complete). It shows thatTC is the
missing link that will allow us to characterize model (D11).

Proposition 16.12. Characterization of model (D11)
A binary relation% on a denumerable product setX =

∏n
i=1Xi is representable in model

(D11) if and only if% is complete and satisfiesTC.

Proof. The necessity of these conditions is straightforward. Assuming that% is complete and
verifiesTC, we obtain by lemma 16.10(1) that% verifiesRC1 andRC2. We thus definepi

andG as in the proof of part (4) of proposition 16.11. The increasingness ofG is a consequence
of lemma 16.10(2).�

For the reader’s convenience, we summarize the characterization of all the models based on
marginal traces on differences in Table 16.3.

16.4.4. Remarks

16.4.4.1.Goldstein’s model

Models (D8) and (D4) were introduced by Goldstein [GOL 91] as particular cases of his
‘decomposable model with thresholds’; the equivalence of models (D8) and (D4) had been
noticed.

16.4.4.2.Marginal preferences

Which role is played by marginal preferences%i in the models based on traces on differ-
ences? They certainly do not play a central role but some monotonicity properties linking them
to the global preference% can nevertheless be established. We present some of them, without
proof, in the next proposition.

Proposition 16.13. Properties of models using differences

1) If % is representable in model (D5) then: [xi �i yi for all i]⇒ Noty % x.

2) If % is representable in model (D6) then:
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Model Definition Conditions
(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0 ∅

. . . . . . . . . . . . . . . . . . . . . . . . . .
(D1) (D0) with pi(xi, xi) = 0
m independent
(D2) (D0) with pi antisymmetric

. . . . . . . . . . . . . . . . . . . . . . . . . .
(D3) (D0) with pi antisymmetric complete, independent

andG odd
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D8)⇔ (D4) (D0) with G(↗↗) RC1
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D9)⇔ (D5) (D1) with G(↗↗) RC1, independent
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D10)⇔ (D6) (D2) with G(↗↗) RC12
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D7) (D3) with G(↗) complete,RC12
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D11) (D3) with G(↗↗) complete,TC

Table 16.3.Characterization of the models using traces on differences(↗: non-decreasing,
↗↗: increasing)

- %i is complete; and
- [xi �i yi for all i]⇒ [x % y].

3) If % is representable in model (D11) then:
- [xi %i yi for all i]⇒ [x % y]; and
- [xi %i yi for all i and there existsj ∈ {1, . . . , n} such thatxj �j yj ]⇒ [x � y].

The reader might feel somewhat disappointed while looking at the monotonicity proper-
ties of our models, except for model (D11). One must however keep in mind that we address
preferences that are not necessarily transitive or complete. In such a framework, properties that
could be seen as natural requirements for preferences couldsimply be undesirable. For example,
when the marginal indifference relations∼i are not transitive, it may be inadequate to require a
property such as:

[xi ∼i yi for all i]⇒ [x ∼ y].

Were such a property verified, it would forbid that tiny but actual differences on several criteria,
none of which yield a preference when taken separately, could interact or ‘cooperate ’ and
yield global preference. Let us consider, for example, comparing tripletsx = (x1, x2, x3)
of numbersxi belonging to the[0, 1] interval. We decide to compare these triplets using the
following majoritarian method:x % y if and only if xi ≥ yi for at least 2 values of indexi
out of 3. We clearly have, on each dimensioni, that%i=∼i i.e. that there is no strict marginal
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preference, all pairs of levels being indifferent. Indeed,(xi, z−i) ∼ (yi, z−i) for all xi, yi and
z−i. However, the global preference relation% is not reduced to indifference between all pairs
of triplets (for example,1 %i 0 for all i = 1, 2, 3, but(1, 1, 1) � (0, 0, 0)).

For broader views on this topic, see [GIL 95] or [PIR 97]. As emphasized in section 16.3,
marginal preferences are not a sufficiently refined tool to analyze preferences that are not nec-
essarily transitive or complete; we have to use the marginaltraces%±

i instead. In the example
introduced above, the traces%±

i are, on each dimensioni, the natural order on the[0, 1] inter-
val. The monotonicity properties of the preference with respect to marginal traces have been
described in lemmas 16.1 and 16.5(4).

16.4.4.3.Uniqueness of the representation

Regarding the models on levels, the uniqueness properties of the representations described
in propositions 16.11 and 16.12 are quite weak. In model (D8), for instance, we may always
take any numerical representation of the weak order%∗

i (at least, in the finite or countable case)
for pi(xi, yi). Regarding the models on levels, we shall call a representation in whichpi is a
numerical representation of%∗

i , for all i, regular. Other choices can be made, but it is necessary
(and sufficient) thatpi satisfies the condition:

(xi, yi) �∗
i (zi, wi)⇒ pi(xi, yi) > pi(zi, wi). (16.38)

In other terms, the chosen numerical representation must beat least as discriminant as re-
lation�∗

i . In more constrained models such as (D7) or (D10), a similar condition, involving
�∗∗

i instead of�∗
i , is needed. For more details, see [BOU 05b, lemma 5.5].

16.4.5. Examples

Among all the models described in the introduction, the onlyone that does not use traces
on differences is the decomposable model (16.2), since thismodel aggregates the levels of each
alternative independently of other alternatives. We briefly review the other models.

Let us start with the additive non-transitive preference model (16.4), which we recall here:

x % y ⇔
n∑

i=1

pi(xi, yi) ≥ 0.

If we do not assume any property of functionspi, the appropriate model is (D8) (equivalent
to (D4)); thepi functions represent the traces%∗

i that are weak orders; and functionG, which
reduces to addition of itsn components, is strictly increasing. Assuming additional properties
of functionspi, such aspi(xi, xi) = 0 or antisymmetry, leads us to models (D9) (equivalent to
(D5)) and (D11), respectively. In the latter model,pi represents the weak order%∗∗

i instead of
representing%∗

i (functionG is odd).

Tversky’s model of additive differences (16.3) is a particular case of the latter model. Func-
tionspi reduce to algebraic differencesui(xi)− ui(yi) of marginal value functions that repre-
sentant the traces on levels. This is therefore a model whichis based both on traces on differ-
ences and on traces on levels. Such models will be investigated in the next section.
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Rewriting the additive value function model (16.1) as

x % y ⇔
n∑

i=1

(ui(xi)− ui(yi)) ≥ 0,

we observe that it is a particular case of the additive differences model, in which functionsΦi

reduce to identity. The differences of marginal value functions(ui(xi)− ui(yi)) represent the
traces%∗∗

i .

The additive value function model sharply differentiates differences of preference since
each value of the difference(ui(xi) − ui(yi)) corresponds to a specific equivalence class of
relation%∗∗

i . In contrast, outranking methods obtained by means of condition (16.6) distinguish
differences of preference in a very rough manner. In the caseof the majoritarian model (16.6),
pi represents%∗

i and distinguishes only two classes of differences of preference, as shown
by equation (16.7). Either difference(xi, yi) is ‘positive’, in which case the whole weight of
criterioni is assigned to this difference (diminished by a fraction of the majority threshold), or
else this difference is ‘negative’ in which case it counts for nothing. Notice that equation (16.7)
provides a representation of the preference obtained by themajoritarian method in model (D8)
while the properties of such a preference would allow it to berepresented in model (D10).
Relations%∗∗

i have three equivalence classes and can be represented by function:

pi(xi, yi) =





wi if xi > yi

0 if xi = yi

−wi if xi < yi.
(16.39)

We then defineG as:

G(p1, . . . , pn) = 1−
∑

i:pi<0

pi − λ. (16.40)

Using this representation, we obtain the same relation as that defined by condition (16.6). In-
deed, assuming normalized weights (

∑
wi = 1), we see thatG computes (in a somewhat

bizarre way) the sum of the weights of the criteria in which difference(xi, yi) is ‘positive’,
diminished by thresholdλ.

These elementary observations open the way to a characterization of majoritarian methods
within the framework of model (D10). These methods are characterized by traces on differences
%∗∗

i that distinguish no more than three classes of differences of preference [BOU 01, BOU 05a,
BOU 07].

The ELECTREmethods, as they appear in literature [ROY 68, ROY 73, ROY 91,ROY 93],
involve an additional element with respect to pure majoritarian methods. In order to decide
whetherx is preferred toy (x ‘outranks’ y), we ‘weigh’ the arguments in favor ofx which
corresponds to the majoritarian model (16.6). If this weight is large enough, we then verify that
no ‘strong argument’ opposes the statement thatx is preferred toy. By ‘strong argument’, we
mean a difference(xi, yi) on some criterioni that is ‘very negative’, in disfavor ofx. If xi and
yi represent numerical assessments of alternatives on criterion i, a ‘very negative difference’
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may for instance result from trespassing a thresholdνi, calledveto threshold; we cannot state
thatx is preferred toy if, on at least one criterioni, we have:

xi < yi − νi.

We observe that the idea of a ‘very negative difference’ introduced a third class of preference
differences in%∗

i , corresponding to a ‘veto’. Relations%∗
i can therefore be represented by

pi(xi, yi) =





wi if xi ≥ yi

0 if yi − νi ≤ xi < yi

−M if xi < yi − νi,
(16.41)

whereM is a large positive number. We defineG as:

G(p1, . . . , pn) =
∑

i

pi − λ. (16.42)

We easily verify thatx % y if and only if the sum of the weights of the criteria on whichx is
at least as good asy passesλ and there is no criterion on which the level ofx goes beyond that
of y by more than the veto threshold (the value assigned to−M is such that it prevents theλ
threshold being reached as soon as it appears in any of the termspi).

A relation% obtained through the above-definedmajoritarian rule with vetocan be repre-
sented in model (D10). Relations%∗

i distinguish at most three classes of preference differences;
relations%∗∗

i at most five. Such preference relations can be fully characterized within model
(D10) [BOU 08, GRE 01a].

These examples show that models using traces on differencesare well suited for describing
and understanding outranking methods. We shall return to these models at the end of the follow-
ing section where we shall show how relations obtained by comparing differences can generally
be related to the description of the alternatives by levels on attributes. (We have assumed above
that theXi are sets of real numbers endowed with their natural order which was supposed to be
compatible with the decision maker’s preferences).

16.5. Models using both marginal traces on levels and on differences

After studying models based on marginal traces on levels andthose based on marginal traces
on differences in the previous sections, it is quite naturalto discuss models based on both types
of traces. This is done by expressing the differences of preference in terms of the traces on the
levels.

We recall the definition of the general model (L0D0) presented in section 16.1.1; in this
model, the preference relation% is defined as follows:

x % y ⇔ H([ϕi(ui(xi), ui(yi))]) ≥ 0. (L0D0)
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This model can be seen as a particular case of model (D0), in which functionspi(xi, yi)
have been substituted by functionsϕi(ui(xi), ui(yi)). It is also possible to view it as a gener-
alization of the additive differences model (16.3) in whichthe simple addition and subtraction
operations have been substituted by general, appropriately monotonic, functions.

A model in whichpi(xi, yi) is substituted byϕi(ui(xi), ui(yi)) corresponds to each of the
twelve models (D0) to (D11) studied in section 16.3, without imposing any additional property.

This allows us to define models (L0D0) to (L0D11). These ‘new’ models have in fact very
little interest since they are equivalent (if the cardinality of the set of alternativesX is not larger
than that of the real numbers) to the corresponding models based on traces on differences (D0)
to (D11). They simply provide another representation of the same models. Indeed, starting with
a given functionpi(xi, yi) defined onXi ×Xi, it is always possible to factorize it by means of
a real-valued functionui defined onXi. The only condition thatui must fulfill is to separate the
elements ofXi that belong to different equivalence classes of the marginal trace%±

i . Notice
that we do not assume the completeness of the traces on levels%±

i (at the moment). More
formally, the functionsui must verify the following condition:

ui(xi) = ui(yi) ⇒ xi ∼±
i yi.

For any functionui satisfying this basic requirement and for any given function pi, we define
unambiguously the functionϕi on subsetui(Xi)× ui(Xi) of R2 by setting:

pi(xi, yi) = ϕi(ui(xi), ui(yi)).

Consequently, starting from any representationG([pi(xi, yi)]) of a relation% in one of
the models based on traces on differences, we automaticallyobtain a representation of this
relation in the corresponding model based on traces on differences and levels. This is done by
substitutingpi(xi, yi) by the functionϕi(ui(xi), ui(yi)) we have just defined. Let us note that
functionH is identical toG. Notice also that this substitution can be done without problem
only when the cardinality ofX does not exceed that ofR, and if no additional requirement is
imposed onϕi. At this stage, we do not even assume thatϕi is monotonic in its two arguments.

To makeϕi more similar to subtraction, we consider two variants of each of the twelve
models (L0D0) to (L0D11). In the first variant we impose thatϕi is non-decreasing in its first
argument and non-increasing in its second argument. This leads to models (L1D0) to (L1D11).
In the other variant, we impose that functionsϕi must be increasing in their first argument and
decreasing in their second argument. This yields models (L2D0) to (L2D11).

In summary, we have now defined3 × 12 = 36 new models (see Table 16.4) using both
marginal traces on levels and marginal traces on differences. Skipping the first twelve models
that are not interesting as already mentioned, we study the others in the rest of this section after
discussing the relationships between traces on differences and traces on levels.
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(L0D0) x % y ⇔ H([ϕi(ui(xi), ui(yi))]) ≥ 0
(L0D1) (L0D0) with ϕi(u(xi), ui(xi)) = 0
(L0D2) (L0D1) with ϕi antisymmetric
(L0D3) (L0D2) with H odd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D4) (L0D0) with H non-decreasing
(L0D5) (L0D0) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D6) (L0D1) with H non-decreasing
(L0D7) (L0D1) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D8) (L0D2) with H non-decreasing
(L0D9) (L0D2) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D10) (L0D3) with H non-decreasing
(L0D11) (L0D3) with H increasing

Table 16.4.Models based both on traces on levels and on differences. Models (L1Dx)
correspond to models (N0Dx) whereϕi(↗,↘); models (L2Dx) correspond to models

(L0Dx) whereϕi(↗↗,↘↘)

16.5.1. Relationships between traces on differences and on levels

The traces on differences%∗
i and%∗∗

i are binary relations on the product setXi ×Xi. We
may define their own traces on levels in the usual way. For%∗

i , we denote

– the left (respectively, right, left-right) trace on the first dimension by(%∗
i )

+
1 (respectively,

(%∗
i )

−
1 , (%∗

i )
±
1 );

– the left (respectively, right, left-right) trace on the second dimension by(%∗
i )

+
2 (respec-

tively, (%∗
i )

−
2 , (%∗

i )
±
2 ).

Their definition is a straightforward transposition of definition 16.3 applied to%∗
i instead of%

as follows.

Definition 16.10. Left and right traces of the traces on differences
Let % be a preference relation on the product setX and%∗

i its trace on differences relative to
theith dimension. The traces of%∗

i are defined as follows. For allxi, yi ∈ Xi,

1) xi (%∗
i )

+
1 yi if ∀si, ti, zi ∈ Xi, (yi, si) %∗

i (zi, ti)⇒ (xi, si) %∗
i (zi, ti);

2) xi (%∗
i )

−
1 yi if ∀si, ti, zi ∈ Xi, (zi, ti) %∗

i (xi, si) ⇒ (zi, ti) %∗
i (yi, si);

3) xi (%∗
i )

+
2 yi if ∀si, ti, zi ∈ Xi, (si, yi) %∗

i (ti, zi) ⇒ (si, xi) %∗
i (ti, zi);

4) xi (%∗
i )

−
2 yi if ∀si, ti, zi ∈ Xi, (ti, zi) %∗

i (si, xi) ⇒ (ti, zi) %∗
i (si, yi).

The traces of%∗∗
i are defined similarly.
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Are there relationships between these traces and the traceson levels of%? The answer is
positive as suggested by lemma 16.3. Referring to definitions 16.2 and 16.3 of%+

i ,%
−
i and%∗

i ,
it is easy to see that the traces on levels%+

i and%−
i can be defined in terms of%∗

i as follows:

xi %+
i yi if and only if ∀zi ∈ Xi, (xi, zi) %∗

i (yi, zi)
xi %−

i yi if and only if ∀wi ∈ Xi, (wi, yi) %∗
i (wi, xi).

(16.43)

This means that%+
i and the inverse of relation%−

i , (%−
i )−1, can be interpreted as the

marginal relations of relation%∗
i defined onXi ×Xi: they play the same role with respect to

%∗
i as that played by the marginal preferences%i with respect to%.

The following result can easily be proven using lemma 16.3(5–8).

Proposition 16.14. For all i ∈ N , for all xi, yi ∈ Xi we have:

1) xi %+
i yi if and only if xi (%∗

i )
+
1 yi if and only if xi (%∗

i )
−
1 yi if and only if

xi (%∗
i )

±
1 yi; and

2) xi %−
i yi if and only ifyi (%∗

i )
+
2 xi if and only ifyi (%∗

i )
−
2 xi if and only ifyi (%∗

i )
±
2 xi.

As a consequence,%±
i =%+

i ∩ %−
i is the intersection of the (left-right trace) of%∗

i on the
first dimension,(%∗

i )
±
1 , and the inverse of the (left-right) trace of%∗

i on the second dimension
(%∗

i )
±
2 :

xi %±
i yi if and only if xi (%∗

i )
±
1 yi andyi (%∗

i )
±
2 xi. (16.44)

Regarding%∗∗
i , it is not difficult to see that its left-right trace on the first dimension is

identical to%±
i , while its left-right trace on the second dimension is the inverse of%±

i , (%
±
i )−1.

We emphasize that these observations are true without making any hypothesis on traces;
in particular, they are true even if traces are incomplete. In the case where%∗

i is a weak order
(hence, when% satisfies axiomRC1i), we may apply proposition 16.9 to%∗

i . This relation
therefore admits a numerical representation of the type

(xi, yi) %∗
i (zi, wi) if and only ifϕi(ui(xi), ui(yi)) ≥ ϕi(ui(zi), ui(wi)),

whereui is a function that separates the equivalence classes of the traces of%∗
i . In view of

equation (16.44) we can take a function that separates the equivalence classes of%±
i for ui.

The fact that%∗
i is a weak order on the product setXi × Xi, i.e. a product of a set by itself,

allows us to use the same functionui on both dimensions.

Assume that%∗
i is weakly separable (since the product set on which%∗

i is defined has
only two dimensions, ‘weakly separable’ is equivalent to ‘separable’ and ‘weakly independent’
is equivalent to ‘independent’). Using the rest of proposition 16.9, we can build a numerical
representation of%∗

i by a functionψi(vi1(xi), vi2(yi)), wherevi1 is a numerical representation
of the trace(%∗

i )
±
1 , vi2 is a numerical representation of the trace(%∗

i )
±
2 andψi is a function of

two variables that is non-decreasing in both variables.
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Since%+
i = (%∗

i )
±
1 and%−

i = ((%∗
i )

±
2 )−1, we can alternatively represent%∗

i byφi(ui1(xi),
ui2(yi)), whereui1 is a numerical representation of%+

i , ui2 is a numerical representation of
%−

i andφi is a function of two variables that is non-decreasing in its first variable and non-
increasing in the second. (We can take, for instance,ui1 = vi1, ui2 = −vi2 andφi = ψi.)
The latter opens the door to a representation of%∗

i by a functionϕi(ui(xi), ui(yi)), with the
same functionui on both dimensions. Indeed, as soon as%+

i and%−
i are not incompatible, i.e.

as soon as%±
i is a weak order, we can use forui a numerical representation of the weak order

%±
i .

The case of%∗∗
i is simpler. As above, its trace on the first dimension is%±

i and on the
second dimension is(%±

i )−1. Hence, as soon as%∗∗
i is a weakly separable weak order and%+

i

a weak order, we can build a representation of%∗∗
i of the typeϕi(ui(xi), ui(yi)), whereui is

a numerical representation of the weak order%±
i andϕi is non-decreasing in its first argument

and non-increasing in its second one.

In the framework of our models, it is on% that we have to determine conditions which
guarantee the separability or the independence of%∗

i or%∗∗
i . Separability conditions for%∗

i and
%∗∗

i are stated in the following proposition. In contrast (and this may sound strange initially)
the independence of%∗∗

i is a consequence of none of our models, even the more constrained
model (L2D11). We shall discuss this issue after we prove proposition 16.15 below.

Proposition 16.15. If Xi is denumerable and% verifiesAC123i andRC1i, then%∗
i is a

separable weak order onX2
i and any numerical representationpi(xi, yi) of %∗

i factorizes into

pi(xi, yi) = ϕi(ui(xi), ui(yi)), (16.45)

whereui is a numerical representation of weak order%±
i and ϕi is a function defined on

ui((Xi)
2), non-decreasing in its first argument and non-increasing inits second one.

If, in addition,% satisfiesRC2i, the same can be said of relation%∗∗
i and of its numerical

representations.

Proof. We know that% verifiesRC1i if and only if %∗
i is a complete weak order onX2

i . This
weak order is separable if, for allxi, yi, zi, wi in Xi, neither of the following conjunctions
occurs:

1) (xi, zi) �∗
i (yi, zi) and(yi, wi) �∗

i (xi, wi)

2) (zi, xi) �∗
i (zi, yi) and(wi, yi) �∗

i (wi, xi).

Since%∗
i is a complete relation, forbidding conjunction (1) is equivalent to ensuring that:

(xi, zi) %∗
i (yi, zi)

and
(yi, wi) %∗

i (xi, wi)



⇒





(yi, zi) %∗
i (xi, zi)

or
(xi, wi) %∗

i (yi, wi).

We know that%±
i is the intersection of the first trace(%∗

i )
±
1 of %∗

i and of the inverse of its
second trace(%∗

i )
±
2 . Since% verifiesAC123i, %±

i is a weak order. As a consequence, either
xi %±

i yi or yi %±
i xi. In the former case, starting from(yi, wi) %∗

i (yi, wi) and using
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definition (16.43), we obtain(xi, wi) %∗
i (yi, wi). In the latter case, starting from(xi, zi) %∗

i

(xi, zi), we obtain(yi, wi) %∗
i (xi, wi).

We can show that conjunction (2) is also false in a similar way.

Let pi(xi, yi) andui(xi) be any numerical representation of the weak orders%∗
i and%±

i ,
respectively. Using the above conclusions, we verify directly that setting

ϕi(ui(xi), ui(yi)) = pi(xi, yi)

defines unambiguously a functionϕi onui(Xi)
2 and that this function is non-decreasing in its

first argument and non-increasing in its second one.

Regarding%∗∗
i , the same considerations apply as soon as%∗∗

i is a weak order, which is
ensured byRC2i. �

Let us now consider model (L2D11). It is straightforward that any preference% repre-
sentable in this model is complete and satisfiesTAC12 andTC. Hence, using lemmas 16.5(3),
16.5(4) and 16.10(2), we know that such a preference reacts in a strictly positive manner both
to the traces on levels and to the traces on differences, i.e.if (yi, a−i) % (zi, b−i), then

xi �+
i yi ⇒ (xi, a−i) � (zi, b−i),

zi �−
i wi ⇒ (yi, a−i) � (wi, b−i)

and (xi, zi) �∗
i (yi, zi) ⇒ (xi, a−i) � (zi, b−i).

We cannot deduce from this, however, thatxi �+
i yi ⇒ (xi, si) �∗

i (yi, si) for all levels
si or thatzi �−

i wi ⇒ (ti, wi) �∗
i (ti, zi) for all levelsti. In the former case (the other case

being similar), for some levelssi, it may indeed occur that comparing the difference(xi, si)
to the difference(yi, si) does not reveal thatxi is at a higher level thanyi. One situation in
which the higher level ofxi is certainly revealed is the following. If there exista−i, b−i ∈
X−i, such that(yi, a−i) ∼ (si, b−i) then, using the strict monotonicity of% with respect
to %+

i , we have(xi, a−i) � (si, b−i) hence(xi, si) �∗
i (yi, si). If such a situation never

occurs, it may happen that for alla−i, b−i ∈ X−i we always have either(yi, a−i) � (si, b−i)
and (xi, a−i) � (si, b−i) or Not[(yi, a−i) % (si, b−i)] and Not[(xi, a−i) % (si, b−i)]. In
such a case,(xi, si) ∼∗

i (yi, si) while this is not in contradiction withxi �+
i yi [BOU 04a,

example 17].

Conditionxi �±
i yi ⇒ (xi, wi) �∗

i (yi, wi) is, however, necessary for the independence
of %∗∗

i . Indeed,%∗∗
i is independent if and only if for allxi, yi, zi, wi in Xi, (xi, zi) %∗∗

i

(yi, zi) ⇔ (xi, wi) %∗∗
i (yi, wi) and (zi, xi) %∗∗

i (zi, yi) ⇔ (wi, xi) %∗∗
i (wi, yi). But

xi �±
i yi implies xi �+

i yi or xi �−
i yi (or both). In the former case, there exist levels

a−i and an alternativew such that(xi, a−i) % w and Not(yi, a−i) % w. Hence, we have
(xi, wi) �∗

i (yi, wi). The latter case entails a similar conclusion. Hence, the independence of
%∗∗

i implies that for allzi, (xi, zi) �∗
i (yi, zi).

Although we are unable to characterize the independence of%∗∗
i in terms of relation%

and the previously introduced axioms (or the independence of %∗
i ), this will have no influence
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ModelsE ModelsL0Dx, L1Dx andL2Dx Conditions
(D0) ⇔ (L0D0)⇔ (L1D0)⇔ (L2D0) ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
(D1) ⇔ (L0D1)⇔ (L1D1)⇔ (L2D1)
m m independent

(D2) ⇔ (L0D2)⇔ (L1D2)⇔ (L2D2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

(D3) ⇔ (L0D3)⇔ (L1D3)⇔ (L2D3) complete, independent

Table 16.5.Models equivalent to (D0), (D1), (D2) and (D3)

on the characterization of our models as we shall see. The only consequence is that we cannot
guarantee the existence ofregular representations for model (L2D11) (i.e. of representations
in whichui represents%±

i andϕi(ui(xi), ui(yi)) represents%∗∗
i ).

16.5.2. Study of models (L1D0) to (L1D11) and (L2D0) to (L2D11)

In this section, we assume thatX is at most denumerable. The difficulties of the general case
are mainly technical; they are fully dealt with in [BOU 04a].Let us start with the study of the
models whereH is not supposed to be monotonic, i.e. models (L1D0) to (L1D3) and (L2D0)
to (L2D3). It is easily understood that these models contribute nothing new with respect to the
corresponding models on differences, that is models (D0), (D1) (which is equivalent to (D2))
and (D3). Indeed, the monotonicity of functionsϕi does not impose any additional constraint,
since we do not require that functionH reacts monotonically to the variations of functionsϕi.
We can easily build the new representations on the basis of those of the models on differences by
substitutingϕi(ui(xi), ui(yi)) to pi(xi, yi). The models equivalences are noted in Table 16.5;
the equivalences with models (L0D0), (L0D1), (L0D2) and (L0D3) are also noted as well as
the models characterizations.

As soon as we assume thatH is non-decreasing, variations ofϕi are transmitted and addi-
tional constraints appear and impact on the characterization of the preference relations. Model
(L1D4) is the first interesting one; it is equivalent to models (L1D8), (L2D4) and (L2D8).
We verify immediately that a preference representable in model (L1D4) satisfiesAC123 and
these conditions, together withRC1, are necessary and sufficient for this model. To obtain a
representation of a relation satisfyingRC1 andAC123 in model (L1D8), let us start with the
representation in model (D8) obtained through equation (16.36), i.e.

G([pi(xi, yi)]) =

{
+ exp(

∑n
i=1 pi(xi, yi)) if x % y,

− exp(−∑n
i=1 pi(xi, yi)) otherwise

wherepi is a numerical representation of%∗
i for all i.

Using proposition 16.15, we can decomposepi(xi, yi), which is any numerical represen-
tation of %∗

i , into ϕi(ui(xi), ui(yi)) in which ui represents weak order%±
i andϕi is non-

decreasing in its first argument and non-increasing in its second one. This shows that model
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(L1D8) is not more constrained than model (L1D4). We can show, starting from the just con-
structed representation, that it is possible to change functionsϕi into functions that are increas-
ing in their first argument and decreasing in their second one. This is possible without making
any additional hypothesis on relation% [BOU 04a]. Note that this modified function will no
longer, in general, be a numerical representation of%∗

i . This proves that model (L2D8) is not
more constrained than model (L1D4) and thus establishes the announced equivalence of the
four models as well as their characterization.

Passing to model (L1D5) and the equivalent models (L1D9), (L2D5) and (L2D9), we
first observe that independence of% is a necessary condition, in addition toRC1 andAC123.
Assuming that these conditions are fulfilled, we then construct a representation of% in model
(L1D9) as in the previous paragraph. The only difference is thatpi(xi, yi) is no longer any
numerical representation of%∗

i : the chosen representation satisfies an additional property, that
is pi(xi, xi) = 0. Using proposition 16.15, we decomposethis numerical representation of%∗

i

intoϕi(ui(xi), ui(yi)) whereui represents weak order%±
i andϕi is non-decreasing in its first

argument and non-increasing in its second one. We have in addition thatϕi(ui(xi), ui(xi)) =
0. As before,ϕi(ui(xi), ui(yi)) can be modified into a function that is increasing in its first
argument and decreasing in its second one, while preservingthe additional propertyφi(ui(xi),
ui(xi)) = 0. A representation of% in model (L2D9) is therefore obtained.

Model (L1D6) impliesRC12 andAC123. The independence of% is a consequence of
RC12 (as in model (D6) of which it is a specialization). The procedure used with the previous
models also applies here to characterize models (L1D6), (L1D10), (L2D6) and (L2D10) and
show that they are equivalent. Let us start with equation (16.37). Here, functionpi is a represen-
tation of%∗∗

i ; it is antisymmetric. The antisymmetry ofpi is transferred toϕi(ui(xi), ui(yi))
(as a consequence of proposition 16.15).

The last four models are not all equivalent. We distinguish three classes among them:
(L1D7) and (L2D7) are equivalent; the last two are distinct models. Notice first that all these
models correspond to complete relations. Models (L1D7) and (L2D7) correspond exactly to
the complete relations% that fulfill conditionsRC12 andAC123. A numerical representation
can be constructed as before, starting from a representation in model (D7).

For a preference% representable in model (L1D11), it is clear thatTC and AC123 are nec-
essary since (L1D11) is a special case of models (L1D10) and (D11). Under these hypotheses,
the construction process used for model (L1D7) leads to a representation in model (L1D11).

Finally, for model (L2D11), TC andTAC12 are necessary conditions. The construction
of a representation starts as for model (L1D7); we then transform functionϕi into a function
non-decreasing in its first argument and non-increasing in its second one, which no longer is, in
general, a numerical representation of%∗∗

i .

Table 16.6 summarizes all characterization and equivalence results relative to models (L1D4)
to (L1D11) and (L2D4) to (L2D11).
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ModelsL1Dx ModelsL2Dx Conditions
(L1D4)⇔ (L1D8) ⇔ (L2D4)⇔ (L2D8) RC1,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D5)⇔ (L1D9) ⇔ (L2D5)⇔ (L2D9) independent,RC1,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D6)⇔ (L1D10) ⇔ (L2D6)⇔ (L2D10) RC12,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D7) ⇔ (L2D7) complete,RC12,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D11) complete,TC,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .

(L2D11) complete,TC, TAC12

Table 16.6.Equivalences and characterization of models (L1D4) to (L1D11) and (L2D4) to
(L2D11)

16.5.3. Examples

Tversky’s additive differences model (16.3) and the additive value function model (16.1)
both use marginal traces on levels and on differences. They both verify, as we have seen in
sections 16.3.8 and 16.4.5, the hypotheses of the more constrained models (L8) and (D11).
As a result they belong to category (L1D11) in the models using both traces on levels and on
differences.

The additive differences model can be viewed as a particularcase of model (16.4); functions
pi(xi, yi) that occur in the latter factorize into algebraic differences:pi(xi, yi) = Φi(ui(xi)−
ui(yi)) where functionsui represent the marginal traces%±

i that are identical (in this case) to
marginal preferences%i.

In the versions of outranking methods described in literature, differences of preference are
generally expressed in terms of the levels. In the simple versions that we have presented, the ma-
joritarian method without veto (condition (16.6)) or with veto (equations (16.41) and (16.42)),
we have assumed that preference differences can be expressed directly in terms of the alterna-
tive description on the relevant attributes, i.e. as a difference between corresponding coordinates
of vectorsx andy. In other words, it has been assumed implicitly thatui(xi) = xi. It is easy of
course to adapt the descriptions of the outranking methods in order to show explicitly a coding
of the descriptions (i.e. of the elements ofXi) by functionsui. These transform the possibly un-
structured setsXi into subsets of the real numbersui(Xi). To do this, we simply substitutexi

andyi by ui(xi) andui(yi), respectively, in expressions (16.6), (16.41) and (16.42). Through
this, we obtain models on the levels and on the differences oftype (L1D10) or, equivalently,
of type (L2D10). Note that the representations in models as constrained aspossible are not al-
ways the most natural or the most useful ones, as already observed with models on differences.
(Compare equations (16.39) and (16.40) to (16.6)).
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16.6. Conclusion

In this chapter, we have presented a general approach for describing binary relations on a
product set. This approach is based on conjoint measurementmodels that do not exclude in-
transitive or incomplete preferences. The main tools for analyzing such preferences are simple:
we use two types of marginal traces induced on each dimensionby the global preference. These
tools are powerful: they permit a complete analysis of a rather large variety of models as we
have shown, limiting ourselves to the case whereX is denumerable.

Our project was to discover how far it is possible to go, in terms of numerical representations
of relations, by using only a small number of cancelation conditions and without imposing
transitivity conditions to the relations or unnecessary structural properties on the set of objects
X. Surprisingly, we can go rather far while remaining in the relatively poor setting that we have
chosen. In addition, the cancelation conditions that we areusing (RC1, RC2, independence,
TC, AC1, AC2, AC3, TAC1, TAC2, AC4) are reasonably simple and remain close to the
conditions used in traditional conjoint measurement models.

The framework that has been developed and the results obtained are promising in terms of
applications and further developments. Some of them have been evoked above; let us emphasize
the following in particular:

– The characterization of all relations compatible with a dominance relation: such a char-
acterization has been obtained using the models based on themarginal traces on levels (see
sections 16.3.5 and 16.3.6; see also [BOU 04b]).

– The characterization of preference relations that can be obtained by means of an ‘ordinal
aggregation model’ using marginal traces on differences: such models can be used for analyz-
ing majoritarian methods and outranking relations such as those obtained by methods of the
ELECTRE type. We illustrate how this suggestion can be put into practice in section 16.4.5 (see
also [BOU 01, BOU 05a, BOU 08]). This offers an alternative tothe approach developed in
[DUB 01, DUB 02a, DUB 03b, FAR 01].

– The characterization of ‘ordinal’ models for decision in the uncertain (Chapter 11). The
models described in this chapter adapt to the decision in theuncertain; it is sufficient to suppose
that all componentsXi of the product setX are copies of a single set. Then components of the
vector describing an alternative correspond to the evaluations of this alternative in the various
‘states of Nature’ [BOU 03a, BOU 03b, BOU 04c]. As for ordinalaggregation, models of the
type studied in this chapter offer an alternative to the approach developed in [DUB 97, FAR 99,
DUB 02b, DUB 03a].

– The characterization of some particular functional formsfor F , G or H [BOU 02a]: for
instance, the cases whereF ,G orH are sums, themin operator, etc.

It is of course impossible to develop all these points here. The reader who will have followed
us up to this point will not have any difficulty in imagining the spirit of these results.

Let us summarize in a few words the main message of this chapter:

– Faced with a non-transitive or incomplete relation, it is advisable to work with its marginal
traces on levels and/or on differences.
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– Conjoint measurement techniques can also be used to study non-transitive and incomplete
relations.

– Setting aside the efficiency of elicitation procedures, weobserve that substituting the
additivity hypothesis by simple decomposability requirements often permits the fundamental
features of a model to be captured in a simple way.

– Substituting additivity by a mere decomposability hypothesis amounts to using models
that are intimately linked to rule-based modeling of preferences [GRE 99, GRE 01b, GRE 02].
In this way, one can consider the construction of elicitation procedures, using a machinery of
rules induction issued from artificial intelligence.

The general framework and the results presented also contribute to a general theory of
conjoint measurement. They allow us to outline a broad panorama of conjoint measurement
models (Figure 16.1). The models are grouped according to whether:

– they use the traces on differences, in which case their functional form can be written in
order to be non-decreasing in the functionspi(xi, yi);

– they use the traces on levels, in which case their functional form can be written in order
to be non-decreasing in the functionsui(xi) and non-increasing in the functionsui(yi); or else

– they are transitive.

x % y ⇔
∑n

i=1 ui(xi) ≥
∑n

i=1 ui(yi)
T,L,D

x % y ⇔ U([ui(xi)]) ≥ U([ui(yi)]) x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0

T,L,D T, L,D

x % y ⇔ U(x) ≥ U(y) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0 x % y ⇔ G([pi(xi, yi)]) ≥ 0

T,L,D T,L, D T,L,D

x % y ⇔ T (x, y) ≥ 0

T,L,D

Figure 16.1.Summary of preference models:T means ‘transitive’;L means ‘uses marginal
traces on levels’;D means ‘uses marginal traces on differences’; and for a property P, P

means ‘NotP’

In Figure 16.1,T denotes a transitive model,L a model that has complete marginal traces
on levels andD a model that has complete marginal traces on differences.

In the family L, all relations are weakly separable but it may happen that they are not
weakly independent (and,a fortiori, not independent either). In contrast, familyD contains
only independent relations as soon as axiomRC2 is imposed. Marginal preference relations of
preferences in familyL tend to enjoy nice properties: they are complete and often semi-orders
(as soon as axiomsAC3 and eitherAC1 orAC2 are in force). The situation is quite different
in family D.



640 Decision Making

Note that all combinations ofT, L andD have been studied in literature except for the
combinationT,L,D. This is not surprising since, whenD is in force, most models also use
RC2; hence they are independent. When these properties are joined to transitivity and com-
pleteness of%, %i is a weak order, identical to%±

i . As a consequence, such models necessarily
have complete marginal traces on levels.
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