Chapter 16

Conjoint Measurement Models for Preference
Relations

16.1. Introduction

Conjoint measurement [KRA 71, WAK 89] is concerned with thedyg of binary relations
defined on Cartesian products of sets. Such relations atetenmany disciplines, for exam-
ple:

— multicriteria or multiattribute decision making, in whithe preference of the decision
maker is a relation that encodes, for each pair of alterestithe preferred option taking into
account all criteria [BEL 01, KEE 76, WIN 86];

— decision under uncertainty, where the preference rel@dmpares alternatives evaluated
on several states of nature [FIS 88, GUL 92, SHA 79, WAK 84, W8¥;

— consumer theory, dealing with preference relations tlhpare bundles of goods
[DEB 59];

— inter-temporal decision making, that uses preferenagiogls for comparing alternatives
evaluated at various instants in time [KOO 60, KOO 72, KEE &b

—inequality measurement, that compares distributions eflth across individuals
[ATK 70, BEN 94, BEN 97].

Let - denote a binary relation on a product sét= X; x X3 x --- x X,. Conjoint
measurement searches for conditions that allow numeegaésentations ¢f to be built and
possibly guarantee the uniqueness of such representafibasnterest of numerical represen-
tations is obvious. They not only facilitate the manipuatbf preference relations but also, in
many cases, the proofs that such representations existrstructive (or at least provide useful
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596 Decision Making

indications on how to build them). Very often, the condidor the existence of a representa-
tion can be empirically tested [KRA 71]. All these reasorstify the interest for this theory in
many research domains.

16.1.1. Brief overview of conjoint measurement models

In most classical models of conjoint measurement, theioglas assumed to beomplete
andtransitive The central model is thadditive utilitymodel in which we have:

wZy ey uir) 2 )iy, (16.1)

i=1 i=1
whereu; denotes a real-valued function defined on theXsgffor alli = 1, ..., n. z andy de-
note n-dimensional elements of the productsete.x = (z1,... ,2»)andy = (y1,...,Yn)-

The axiomatic analysis of this model is now well established additive utility (also called
additive value function) is at the root of many techniquesduim decision analysis [FRE 93,
KEE 76, WIN 86, WAK 89, POM 00].

This model has two main difficulties, however. The axiomatalysis of equation (16.1)
raises technical questions that are rather subtle yet itaporiMany systems of axioms have
been proposed in order to guarantee the existence of a empaéisn as described by equa-
tion (16.1) [KRA 71, WAK 89]. Two cases can be distinguished:

— If X is finite and no upper bound is fixedpriori on the number of its elements, Scott
and Suppes [SCO 64] have shown that the system of axioms cheeusists of an infinite
(countable) set ofancellationconditions, which guarantee (via the use of the theoremef th
alternative) that a system of (finitely many) linear equadipossesses at least one solution (see
also [KRA 71, chapter 9] and, for more recent contributi¢fts 96, FIS 97]). These conditions
are hardly interpretable or testable.

— The case in whiclX is infinite is quite different but raises other problems. Nmtessary
conditions are usually imposed dfi in order to guarantee that the structureXofis ‘close’ to
that of the real numbers and thgtbehaves consistently with this structure. In one approach,
an archimedean axiom is imposed together with solvabilitgditions [KRA 71, chapter 6].
In another approach, it is assumed tkatis a topological space and that is continuous
[DEB 60, WAK 89]. Using such ‘structural’ assumptions, itgessible to characterize model
equation (16.1) by means of a finite number of cancelatiomitions (for recent contributions
see [GON 96, GON 00, KAR 98]; for an alternative approach reiteg the technique used in
the finite case to the infinite one, see [JAF 74]). In theseragic systems, the necessary prop-
erties interact with structural, unnecessary assumpiiopesed onX [KRA 71, chapter 6],
which obscures the understanding of the model and does loot &r completely satisfac-
tory empirical tests [KRA 71, chapter 9]. In addition, theabysis of the two-dimensional case
(n = 2) differs totally from that of the cases whetds greater than or equal ®

As we shall see, it is possible to avoid imposing unneceskgpptheses (structural as-
sumptions) provided the requirement of an additive repragion is abandoned,; this is the idea
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followed by the authors of [KRA 71, chapter 7] when introchgthe followingdecomposable
model:

7y Ului(zr),uz(z), ..., un(zn)) > U(ur(y1), u2(y2), .- -y un(yn)) (16.2)

whereU is an increasing function of all its arguments.

There is another type of difficulty with the additive mode6(1) of a more fundamental
nature: this model excludes all preference relations thiatd be transitive or complete from
consideration. Several authors have now forcefully argnéavor of models tolerating intran-
sitive or incomplete preferences [MAY 54, TVE 69] and there multiple criteria decision
analysis methods that do not exclude such relations [ROREBY, 93].

Theadditive differencenodel proposed in [TVE 69] is among the first that does notrassu
transitive preferences; the preferencés supposed to satisfy:

n

vy Y Bilui(@) —uily)) >0 (16.3)

i=1

where®; are increasing and odd functions (which implies that théepemce”- is complete).
An axiomatic characterization of this model has been pregpty Fishburn [FIS 92]. Due to the
additive form of the representation, Fishburn could notdwmposing unnecessary structural
conditions in his characterization of model (16.3).

More recently, more general additive non-transitive medelve been proposed (allowing
in particular for incomplete preferences) [BOU 86, FIS 90& 90b, FIS 91, FIS 92, VIN 91].
They are of the type:

rZye > piziy) >0 (16.4)

=1

wherep; are real-valued functions defined 6fF; they may enjoy additional properties (e.g.
pi(zi,z;) =0 Vi€ {1,2,...,n} and forallz; € X3).

In the spirit of the decomposable model (16.2) that avoidgdifficulties of the axiomatiza-
tion of the additive models, Goldstein [GOL 91] has propoaegneralization of model (16.4)
in which the sum has been substituted by a functigfincreasing in its arguments. The under-
lying model is therefore:

T z Yy And G(pl(x1,y1),p2(x2,y2), e 7pn(xn7yn)) 2 O (165)

In decision analysis, methods that may lead to intransétivd/or incomplete preference re-
lations have been used for a long time [ROY 68, ROY 73]. Theykaown autrankingmeth-
ods [ROY 91, ROY 93], and are inspired by social choice pracesl especially the Condorcet
voting rule. In a basic version of theLECTRE method [ROY 68, ROY 73], the outranking
relation is obtained as follows:

Tnye Y. wi=A (16.6)
{i:x;S;yi}
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wherew; are weights associated with the criteria,andy; represent the performance of alter-
nativesr andy on criterioni, S; is a binary relation that orders the levels on the scale térioin

1 and\ is a majority threshold (callecbncordance threshojdgenerally assigned a value larger
than 50% of the sum of the weights. Clearly, binary relatiob&ined in this way may fail to
be transitive or complete. Consider for instance the casevh = 3, p1 = p2 = p3s = %
x=(3,2,1),y =(2,1,3), 2 = (1, 3,2), S; is the usual order on the set of the real numbers
and\ = 60%. Denoting by the asymmetric part of; (¢ = bif a 77 b and notb = a)
and applying rule (16.6) yields > y, y > z, but notz > z: i.e. relation> is not transitive.
Moreover, since: > z, it has cycles. This is a version of the Condorcet paradopeagng
in a multiple criteria decision making context. In the saneespective, considering = 2,
p1=p2= 3,2 =(21),y = (1,2) andX = 60%, we have that neither - y nory - z: the
relation’ is not complete.

As is easily verified, note that outranking relations okgdirthrough equation (16.6) are
representable in the additive non-transitive model (1.6etjing:

w; — 2 if szlyz

n

pi(wi, yi) = (16.7)
—2  otherwise

16.1.2. Chapter contents

Our goal is to propose a general framework as well as quitergéanalytical tools that
allow the study of binary relations defined on a Cartesiampebin a conjoint measurement
perspective. Our framework encompasses most methods ahatdeen proposed in multiple
criteria decision analysis to construct a global prefeeenetation.

We consider two main families of models of relations on a pobdcset. To support the
reader’s intuition, consider the various manners of coingaobjects characterized by their
description on a set of attributes. Letr = (x1,z2,...,2») andy = (y1,y2,...,yn) be
two alternatives described by-dimensional vectors. In a first approach, in view of deadin
whether r is at least as good a8, we may try to assess the ‘value’ of either alternative athea
attribute and then combine these values in appropriatéfashis important to emphasize what
we mean by ‘value’; the ‘value’ of alternativeon criterion: is not simply the label describing
this alternative on attribute(which is denoted by;) but an assessment that reflects the way
this label is perceived by a decision maker in a given dec#icontext, taking into account
their objectives and preferences. Abandoning for the morokssical requirements such as
transitivity or completeness, we may consider a model irctvhi

7y e Flui(zi),uz(z2), .. s un(zn), u1(y1), u2(y2), - . -, un(yn)) >0, (16.8)

wherew; are real-valued functions oR; and F' is a real-valued function on the product set

[T, ui(Xi)Q-

Another strategy relies on the idea of ‘measuridifferences of preferendetween: andy
on each attribute separately and then combining thesediffes in order to determine whether
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the balance of these is in favor ofor y. This suggests a model in which:
z f>\: y < G(pl(x17y1)7p2(x27 y2)7 e 7pn(xn7 y'ﬂ)) 2 O (169)

wherep; are real-valued functions aK? andG is a real-valued function oh[}-, pi(X3).

Of course, the strategies just outlined are not incompatiblcan reasonably be expected
that the differences of preference on each criterion caxpeessed in terms of values assigned
to the alternatives on each criterion. In the model thatghggests, we have:

x 2y < H(pi1(ui(z1),ui(yr)), p2(uz(r2), u2(y2)), - - - s @n (Un(Tn), un(yn))) > 0
(16.10)

whereu; are real-valued functions ai;, o; are real-valued functions am (X;)? andH is a
real-valued function ofi[7_, v;(u: (X:)?).

As long as no additional property is imposed to the variougtions that intervene in the
above three models, these models are exceedingly gendtad gense that any relation 6o
(provided thatX is finite or denumerable) can be represented in all three InodeX is not
denumerable, the generality of the models is only resttibie technical conditions (that are
necessary and sufficient).

Consequently, to make these models interesting, we shpthssadditional properties on
the involved functions. For instance:

—in model (16.8), we shall impose thatis non-decreasing in its first arguments and
non-increasing in its last arguments;

— in model (16.9), we shall require th@tis an odd function or that it is non-decreasing in
its n arguments or thas; is antisymmetric;

—in model (16.10), we shall consider the cases in wtitls an odd function or is non-
decreasing in its arguments or the cases in whigh are odd functions or functions that are
non-decreasing in their first argument and non-increasirigair second one.

By adding such requirements, a large variety of models catebred. A selection of them
will be studied in the sequel. In particular, certain vatsaare rather close to classical models
alluded to in section 16.1.1. Note, however, that our goabisto characterize exactly classical
models but instead to establish general frameworks in whicth a characterization could be
elaborated. The advantage of general frameworks is to &tloa better understanding of what
is common to classical models and what distinguishes them.

Note that the frameworks (16.8), (16.9) and (16.10) relyumdamental objects that pos-
sess nice interpretations in terms of preference and pénmianalysis of preference relations
on a product set. For understanding of the classical additue function modelnarginal
preferencas the crucial notion. This relation, defined on each facfpiof the product sekX as
a projection (in a certain sense) of the global preferenam each attribute, is the relation that
is numerically represented by the functions in model (16.1). The process of ‘elicitation’ of
an additive value function model, relies in an essentialmeaon marginal preferences.
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In models (16.8) and (16.9), the central role is no longeygdaby marginal preferences
since these relations do not enjoy, in these models, theepiep that facilitate their interpreta-
tion in the additive value function model (16.1). In gengtlgy are not transitive or complete.
They are ‘too rough’ to allow for a sufficiently detailed ayeib of the global preference, as we
shall see in the following.

In our three frameworks (16.8), (16.9) and (16.10), the ntadh for analyzing the prefer-
ence relation is th&race a notion that admits different variants. In model (16.8, stall use
themarginal traceof the preference on each componéfy this relation provides an ordering
of the labels of the scal&’; of each attribute. In model (16.9), we shall be concerned with
traces on each Cartesian prodiXct of each attribute scale with itself; here the trace ranlersd
the differences of preference between two alternativestoibate:. Finally, in model (16.10),
both types of traces appear and interact.

The contents of this chapter are the following. In sectior2 1&e introduce the main tools
for analyzing preference relations: marginal traces oelteand marginal traces on differences.
We discuss the position of the more classical marginal peafees w.r.t. these traces. We then
show how any preference relation can be represented in aine dhree general models intro-
duced above.

We briefly describe various specializations of model (1&/&) their axiomatic characteri-
zations. We shall see in section 16.2 that some of these axiodeed express a fundamental
requirement of aggregation procedures, namely that tlatioal obtained through aggregation
should contain the dominance relation. The rest of the @eahows how the marginal traces
on levels tend to become increasingly similar to marginafgrence relations while additional
requirements are imposed on the model, driving it closeiécadditive value function model.

Section 16.4 studies model (16.9). Much as in the previocsosg we characterize several
variants of the model. We show that the numerical repretientaof type (16.9) are well-suited
to understand outranking methods.

In section 16.5, we consider the relations that can be destrvithin model (16.10). We
characterize some of their variants and analyze the pogificome well-known models such
as the model of additive differences (16.3) and some ouitngnkethods in this framework.

A brief conclusion summarizes the main advantages of the cmwepts for analyzing
relations on a product set. Various applications are dssmlis

All our results have elementary proofs. We present sometwhie feel useful for under-
standing the new concepts. The reader interested in moagdgistinvited to refer to a series
of articles in which all proofs are given: [BOU 02b, BOU 04k)B 05a, BOU 05b, BOU 09].
These articles contain a complete study of the general,deosmerable case as well as the
proof that our axioms are independent. We shall pay littlersion to the latter aspects in this
chapter.
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16.2. Fundamental relations and trivial models
16.2.1. Binary relations on a product set

As far as binary relations are concerned, we adopt the tetody and definitions used
in Chapter 2. Hence, we shall use notions such as reflexiedleixive, complete, symmetric,
asymmetric, transitive, Ferrers and semi-transitivetia@tawith the same meaning. We also
assume that the definitions of (complete) weak order, intexder and semiorder are familiar
to the reader (see also Chapter 2 for these definitions).

We generally work with binary relations on a product &et= X; x X2 x ... x X,,. The
setsX;, 1 = 1,2,...,n, may be sets of arbitrary cardinality andis assumed to be at least
equal to2. The elements oK aren-dimensional vectorst € X with z = (z1,x2,...,%n).
We interpret them as alternatives described by their vadnesattributes.

A binary relation on the seX will usually be denoted by, its asymmetric part by- and
its symmetric part by~. A similar convention holds for the asymmetric and symnaeeparts
of a relation when the symbgt is subscripted or superscripted. Relatforis interpreted as a
preference relation and - b reads: & is at least as good @&

For any subsef of the set of attribute$l, 2, ..., n}, we denote byX; (respectively,X _)
the product sef][, ., X: (respectively]],,; X:). We denote bz, a—;) the vectorw € X
such thatv; = z; if ¢ € I andw; = a; otherwise. IfI is a singletor{:}, we simply writeX _;
and(z;, a—;), abusing notation.

16.2.2. Independence and marginal preferences

A preference relatiorr;, on a product seX induces relations callegharginal preferences
on the subspaceX;, for any subset of attributels The marginal preference; induced by
on X is defined for alke, yr by:

xr mryr < (vr,2-1) 7 (yr,2—1), forall z_; € X_. (16.11)

We do not assume in general that preferences have speqmrfes such as completeness
or transitivity. Even if2- is complete, this property is not necessarily inheritedtbyriarginal
preferences:;. Let us define two properties that confer some regularity éoginal prefer-
ences.

Definition 16.1. Let - be a preference relation on a product &tand let/ be a subset of
attributes.

— We say thai: is independent fo¥ if, for all =7, yr € X7,

(xr,2-1) Z (y1,2-1), forsomez_; € X_;]
= [(a:z,w,I) i (yj,wfj), forall w_; € ij].
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— We say thai: is separable forl if, for all z7, yr € X7,

((xr,2-1) > (y1,2-1), forsomez_; € X_j]
= Not[(yr,w-1) > (z7,w-1)], forall w_; € X_;.

— If 2z is independent (respectively, separable) for all subseittobutes/, we say that
= is independent (respectively, separable)zlfis independent (respectively, separable) for
all subsets consisting of a single attribute, we say thé weakly independent (respectively,
weakly separable).

Independence is a classical notion in measurement thexdujtively, it means that common
values on a subset of attributes do not influence preferdisavell known that independence
implies weak independence, but not the converse [WAK 891il&rly, independence implies
separability but the converse is false. Separability is akering of the independence property.
It is an interesting property since aggregation modelsdasethemax or min operator yield
preferences that are separable but not independent. ®éparrohibits strict reversal of the
preferences while letting common values on some attribvteg Separability entails weak
separability but the converse is not true.

Independence and separability are of course related to letenpss of marginal prefer-
ences. The following results are either well known or obsgiou

Proposition 16.1. Let - be a binary relation onX.
— If = is complete and independent for attribute, is complete;

— -, is complete if and only if; is weakly separable and satisfies the following condition:
forall z;,y; € X; andforalla_; € X_;,

(zi,a—i) Z (yi,a—i) Of (yi,a—i) 2 (@i, a—3). (16.12)

Marginal preferences on each attributexpress the results of the pairwise comparison of
levelsz; andy; when these levels are adjoined common levels on all othebatits €eteris
paribusreasoning). We shall see in the next section that margimdéépnces:,; do not exploit
all the information contained ify relatively to attribute, contrary to marginal traces on levels.

16.2.3. Marginal traces on levels

Various kinds of marginal traceg (", -, and’=) on X; are defined as follows.

)~

Definition 16.2. For allz;,y; € X;,foralla_; € X_;, forall z € X,
i 25 i e ((yisa—i) 2 2= (zi,a-0) 2],
T Z; Yo 2T (@i a—) = 2 5 (i, a-0)],
(Yisa—i) Z 2= (zi,a-4) T 2,
= yie{ and
25 (wiya—i) = 2 2 (i, a—i).
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These definitions clarify the difference between margimafgrences and marginal traces.
Marginal traces use all the information availablejrin order to compare; with y;. These two
levels inX; are adjoined the same evaluationsXn, and one observes how such alternatives
compare with all other alternatives. In contrast, margmaference results from the comparison
of alternatives, evaluated by leve] on attributei, with alternatives that are evaluated by level
y;. Both alternatives are adjoined the same evaluationX on (ceteris paribuscomparison).
The latter mode of comparison does not take into accountehawor of such alternatives with
respect to others. Under a very weak hypothesis, namelyirgfieof -, we have indeed that
xi oF g (orx; o7 y;) entailsz; >2; y,. This is readily verified starting e.g. froty,, a—;) =

~1 ~

(yi,a—:). Applying the definition of-;", we obtain(z;, a—;) = (yi, a—;). Similarly, starting

~1

from (z;,a—;) 7 (i, a—;) and using the definition of ;, we obtain the other entailment.

~ ~ )

Using their definitions, it is not difficult to see that;", =7 and - are reflexive and
transitive relations.

According to our conventions, we denote the asymmetripéetively, symmetric) part of
=+ by - (respectively~;") and similarly for- and-F. In the following lemma we note a
few links between marginal traces and the preference oelati These properties, which will
be used in the sequel, describe the ‘responsiveness’ ofdéifierpnce with respect to the traces.
The proof of this lemma is left to the reader.

Lemma 16.1. Foralli € {1,...,n} andz,y,z,w € X:
Diezy oz zf wl= (z0-0) 2y

~1

2) [z Zyyi Zp wil = x5 (Wi y—i),

T2y = (2,2-0) 5 (Wi, y-i),
3) [ZZ ?\:,Li Xi, Yi izi ’LUZ‘] = < and
=y = (2,2-:) = (Wi, y—i),
T Y-Sz w,
4) [Zz N?: iy Yi N?: ’LUI,VZ S {17 s 7”}] = and
Ty z-w.

Marginal traces are not necessarily complete relationseeWthis is the case, this has im-
portant consequences as we shall see in section 16.3.

16.2.4. Marginal traces on differences

Wakker [WAK 88, WAK 89] has demonstrated the importance atés on differences for
understanding conjoint measurement models. We introdugedlations on preference differ-
encesz; andz;* for each attributé. These relations compare pairs of levels; they are subsets
of X7 x X7.

Definition 16.3. For allx;, y:, zi, wi € X,

(zi,y:) =7 (zi,w;) ifand only if
Va_iboi € X4, (zi,a-:) 7 (wi,b—i) = (@s,a—:) 7 (i, b—s);
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(wi,y:) i (zi,wi) ifandonlyif  [(zs,v:) 2Z7 (20, wi) and(wi, z:) 27 (yi, )]

Intuitively, we interpret(z;,y;) =i (zi,w;) as stating that the difference of preference

~1

between levels:; andy; is at least as large as that betwegrand w;. By definition, =7 is

1~

reflexive and transitive while, in contrast, there is no sseey link betweeriz;, y;) and the
‘opposite’ differencdy;, z;); that is why we introduce relation; ™.

As for marginal traces on levels, the preference relatipis monotone with respect to
marginal traces on differences. Moreover, traces on lewetstraces on differences are not
unrelated. The following lemmas describe the former andkttter links; their elementary proof
is left to the reader.

Lemma 16.2. For all z,y € X and all z;, w; € X,
1) - isindependent if and only (fcs, z:) ~; (vi,v:), Vi € {1,...,n},
2) [z Z yand (zi, wi) Z7 (zi,y:)] = (20, 7-3) 2 (Wi, y—i),
3) [(zi, wi) ~ (i, ue), Vie{l,...,n}] = [z Zy e 22w,
4) [z = yand (zi,wi) 27" (zi,y:)] = (2, 2-3) = (wi, y—i),
[z Zyezzw
5) [(zi, wi) ~i* (zi,y:), Vie {1,...,n}] = < and
[z =y <z > w],

Lemma 16. 3 Foralli e {1,...,n}and allz;,y; € X;,

Doai 2f yi o [(wi,wi) 27 (yi, wi), Yws € X,

2 xi 7] yi © [(wi,y) ZF (wi, z4), Yws € X5,

3) zi Nf yi & [(wa,wi) Z77 (yi, wi), Vwi € X,
4) [6: 2 wiand (2, yi) 27 (2i,w0)] = (G, yi) 27 (20, wi),
5) lyi =i Giand (@i, y:) 27 (26, wi)] = (@i, 6) Zi (20, wi)
6) [zi i €iand (wi,yi) Z7 (20, wi)] = (wi,9:) 7 (s, wi),
7 [ ;7 wiand(zi, yi) 7 (zi, wi)] = (x4, 9:) 27 (24, 4i),
8) [xs ~] 2z andy; ~; wi] = (x4, ) ~F (25, w5),

9) [z Nli zi andy; Nli wi) = (i, ys) ~i" (2zi, ws).

Marginal traces on differences are not generally comp\&fteen they are, this has interest-
ing consequences that will be studied in section 16.4.
16.2.5. Three models for general relations on a Cartesian product

Provided the cardinal oK is not larger than that of the set of real numbers, every pinar
relation on X can be represented in the three models described by equdfi6r8—16.10).
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As we shall see in the proof of the following proposition, giaal traces on levels play a
fundamental role for representation (16.8). Marginalésagn differences play a similar role in
representation (16.9) and both types of traces are imgddamodel (16.10). The importance
of this role will be strengthened when we impose the compéts of the traces in the following
three sections.

We use the notatiofu; (z;)] to denote ther-components vectaui (x1), . . ., un(zn)).

Proposition 16.2. Trivial representations on product sets
Let be a binary relation on the set = ], X;, the cardinal of which is at most that &f

1) There are real-valued functions; on X; and a real-valued functior’ defined on
([T, ui(X;)]? such that, for alls,y € X,

z 2y F(lui(z)]; [wi(y:)]) > 0. (L0)

2) There are real-valued functions; on X? and a real-valued functiorG defined on
" pi(X7}) suchthat, for alle,y € X,

z Zy < G(lpi(zi, yi)]) = 0. (D)

3) There exist real-valued functioms on X;, real-valued functions»; onu;(X;)? and a
real-valued function] defined o 7", ¢:(u:(X;)?) such that, for allz,y € X,

x 7y H([pi(ui(2i),wi(y:))]) > 0. (LODO)

+

Proof. Part (1). Let; € {1,...,n}. By construction~;" is an equivalence relation since it

is reflexive, symmetric and transitive. Sindge has at most the cardinality @, there exists a
functionw; from X; to R such that for alle;, y; € X;:

i~ yi e ui(@i) = ways). (16.13)

Foralli € {1,...,n}, letu; be a function that satisfies equation (16.13). We definfeom
T, wi(X:)]? toR by:

Pl ={ 1] Gremse (16.14)

Lemma 16.1(4) guarantees thats well defined.

Part (2). Sincev; ™ is an equivalence relation and in view of the cardinalityXgf for all
i there is a functiom; from X? to R that separates the equivalence classes;of i.e. that is
such that for alle;, y;, z:, wi € X;:

(ziyyi) ~i" (20, w3) & pi(@i, yi) = pi(zi, wi). (16.15)
Using lemma 16.2(5), the following functiad is well defined:

1 ifary,
G([pi(xi,yi)]):{ "1 otherares (16.16)
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Part (3). Let us consider, for alla functionu, that satisfies equation (16.13) and a function
pi that satisfies equation 16.15. We defineon u; (X;)? by:

pilui(zi),wi(y:)) = pi(@i, yi) (16.17)

for all z;,y; € X;. Let us show thal; is welldefined i.e. that; (z;) = wi(z:) andu;(y;) =

wi (w;) imply pi(zi,y:) = pi(zi, w:). By construction, we have; ~F z; andy;, ~F wi;
lemma 163(9) y|e|d$l’l7 yi) Nf* (Zi, wi), hencqm-(xi, yi) = pi(zi, wi).
Finally, we defined on T}, ¢i(ui(Xi), u:(X:)) by:
N 41 itz oy,
Aot = { 7] el (16.18)

Using lemma 16.2(3), we see thdtis well definede

Remark16.1 The limitation on the cardinality of imposed in proposition 16.2 is not a
necessary condition. This condition can be weakened indlf@aing way. For model 0), it

is sufficient that the number of equivalence classes of tiatioas ~F is not larger than the
cardinal ofR; in the same way, for modellJ0), it is necessary and sufficient to impose the
same restriction on the number of equivalence classesaifars~;*. For model {0D0), the
two previous restrictions are required.

16.3. Models using marginal traces on levels
16.3.1. Definition of the models

In model (L0), the role ofu; consists only of associating a numerical ‘label’ to eachequ
alence class of relation*. The role of F' is only to determine whether the profilfs.; (z;))],
[(ui(yi))] correspond to a preference (see definitiofr'ah equation (16.14)) or not. Things be-
come more interesting when additional properties are imgos . We consider the following
models:

— model (1), obtained by imposing’([u;(z:)]; [ui(x;)]) > 0 on model £0); and

— model 2), obtained by imposing” ([u;(z:)]; [ui(y:)]) = —F ([wi(y:)]; [ui(x:)]) on
model (L1).

Moreover, in each of the model4.Q), (L1) and (L2), we consider the consequences of im-
posing thatF' is non-decreasing (respectively, increasing) in its firsirguments and non-
increasing (respectively, decreasing) in its lastrguments. The resulting eight new models are
defined in Table 16.1.

A number of implications between these models result imatet)i from their definitions.
We do not detail them here. We note in the following proposith number of consequences of
the properties of" introduced to define modeld.{) and (L2).

Proposition 16.3. A binary relation’ on a product sefX = ]}, X;, the cardinal of which
is bounded by that dk, can be represented in
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(L3) (LO) with F' non-decreasing, non-increasing,
(L4) (LO) with F increasing, decreasing,
(L5) (L1) with F' non-decreasing, non-increasing,
(L6) (L1)with F increasing, decreasing,
(L7) (L2)with F non-decreasing, non-increasing,
(L8) (L2) with F'increasing, decreasing,

Table 16.1.Models using traces on levels

1) model 1) if and only if— is reflexive;
2) model {2) if and only if>- is complete.

Proof. Reflexivity and completeness ¢f are clear consequences of moddld )Y and (L2),
respectively. Reflexivity of: is evidently sufficient for modell{1). It remains to be shown that
completeness is a sufficient condition for modg2). This is readily done by reconsidering the
construction of the representation’fin the proof of proposition 16.2; we simply change the
definition of ', equation (16.14), to:

+1  ifx >y,
F([wi(za)]; [ui(yi)]) = { 0 ifz~y, (16.19)
—1 otherwise.

Using the completeness gf, we readily verify that" is still well defined and satisfies

F([ui (za)); [wiy)]) = —F ([ui(ya)]; [ui(@:)])-

In the next section, we introduce properties that are irttsgaconnected to the monotonic-
ity of F'. Interestingly, the same properties ensure the complgserfanarginal traces.
16.3.2. Completeness of marginal traces and monotonicity/of

We introduce the following three axioms for each dimengion

Definition 16.4. ConditionsAC1, AC2 and AC3
Let 27 be a binary relation ooX' = [, X;. Fori € {1,...,n}, we say that relatiof;
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satisfies:AC1; if

TZyY (zi,x—i) Ty
and = or
ZZw (zi,2-i) Z w,
AC2; if
TZy x 7 (i, y—i)
and = or
zZw 2 7 (Yi, w—s),
andACS3; if
2 7 (ws,a—3) 2z 7 (wi,a—;)
and = or
(i, b-s) Zy (wi,b—:) Z Y,

forallz,y,z,w € X, foralla_;,b_; € X_; and for allz;, w; € X;.

We say also that; satisfiesAC1 (respectively,AC2, AC3) if it satisfies AC'1; (respec-
tively, AC2;, AC3;) foralli € {1,...,n}. We useAC'123 as short-hand for the conjunction
of propertiesAC'1, AC2 and AC3.

These three conditions are calleahcelation conditionswhich is classical terminology in
conjoint measurement theory. The denomination of the agxioomes from the fact that these
axioms express ‘intrA-Criterion’ cancelation conditiofis contrast to axioms RC - ‘inteR-
Criterion’ cancelation conditions; see section 16.4). @oons AC1, AC2 and AC'3 were
initially introduced in [BOU 99, BOU 97] and then used in [GRE].

Condition AC'1; suggests that the elementsXf can be ordered taking into account ‘up-
ward dominance’:£; upward dominates;’ means that if(z;, c_;) = w, then(z;, c—;) = w.
Condition AC2; has a similar interpretation taking into account ‘downwedaininance’: y;
downward dominates);’ if = = (y:, c—;) entailsz = (w;, c—;). Condition AC3; ensures that
it is possible to rank-order the elementsXf taking into account both upward and downward
dominance; these are not incompatible. It can be shown [B@W) Bppendix A] thatAC'1,
AC?2 and AC3 are logically independent axioms.

ConditionsAC'1, AC2, AC3 have consequences on marginal traces. We describe them in

the following proposition.

Lemma 16.4. Completeness of marginal traces
Let - be a binary relation onX. We have:
1) = is complete if and only if; verifiesAC1;;
2) . is complete if and only if; verifiesAC2;;
3) [Notz; = yi = yi 157 4] if and only if - verifiesAC3;;

4) ?wi is complete if and only if; verifiesAC1;, AC2; and AC3;.
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Proof. To prove part (1), it is sufficient to observe that the negatb AC'1; is equivalent to
the negation of the completenessgf . Part (2) is proven in a similar way.

Part (3). Assume that Nat; tj’ y;; then there exist € X anda—_; € X_; such that
(yi,a—i) 7 z and Not(x;,a—;) = 2. If w = (yi,b—s), then AC3; entails(z;,a—;) = z or
w 7 (xi,b—;). Since by hypothesis, Nét:;,a—;) - z, we must havev = (z;,b—;) hence
Z; xi. The converse implication results from the fact that theatieg of AC3; is equivalent
to the existence of;, y; € X; such that Noy; =7 «; and Notz; 2=, v;.

~1

Part (4) is a direct consequence of the first three parts.

ConditionsAC'1, AC2 and AC3 together imply that the marginal tracggt induced by,
are (complete) weak orders. We can expect that these axiamesdonsequences on marginal
preferenceg:;. Note, however, that marginal preferences and marginets$ran levels do not
generally coincide, even under conditiod€’'123. The following results are given without
proofs (these can be found in [BOU 04b, proposition 3]).

Proposition 16.4. Properties of marginal preferences
We have:

1) If = is reflexive and verifieslC'1; or AC2; for all ¢ € {1,...,n}, thenz is weakly
separable and satisfies condition (16.12).

2) If = is reflexive and verified C'1; or AC2; then; is an interval order.
3) If, in addition, - satisfiesAC3;, thenz; is a semiorder.

From part (1), using proposition 16.1, we infer thgtis complete as soon gsis reflexive
and verifiesAC'1; or AC?2;.

We know that if- is reflexive and satisfied C'123, the marginal traces * are weak orders
(lemma 16.4(4)). Under the same conditions, part (3) of tle@ipus proposition tells us that
marginal preferenceg; are semiorders. This suggests that marginal traces andrgnees
are distinct relations, which is confirmed by examples in (B@1b]; we shall see conditions
ensuring that these relations are identical below. If theydistinct, we have seen that i} Yi
entailsz; =; y; as soon ag; is reflexive. Since undedC123, »=F and>-, are complete, this
means that under these conditidns is more discriminant thajy; (in the sense that = C ~;:
more pairs are indifferent with respect to marginal prefeesthan to marginal trace).

Axioms AC'123 are not only related to the completeness of marginal tragealbo to the
monotonicity properties of the functiof' that appears in models of type (16.8). In the next
proposition, we establish a characterization of modals @nd (L6). We prove the result only
for the case wher& is a countable set.

Proposition 16.5. Characterization of [.5) and (L6)

Let z be a binary relation on the countable s&t= ]} , X;. We have tha}; verifies model
(L6) if and only if - is reflexive and satisfiedC1, AC2 and AC3. Models {5) and (L6) are
equivalent.
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Proof. Model (L5) is a particular case of modeL{); hence in that model the preference re-
lation 7 is reflexive (proposition 16.3(1)). It is easily checkedttaay relation representable
in model (L5) verifies AC'123. Conversely, if- is reflexive and verifiesiC'123, we can con-
struct a numerical representation that follows mode)( As functionu;, we select a numerical
representation of the weak ordgtjt, i.e.Vx;,y; € X;, we have:

wi Sy e wi@) > u(yi). (16.20)

Such a representation does exist since we have assumel that countable set. We then
defineF on ([, ui(X;)]* by setting:

Nty = § Hexp(is (i) —wiy)  fr Dy,

Plusa) ) = { F PR (ol vl oS s
That F' is well defined results from lemma 16.1(4). The fact thais increasing in its first
arguments and decreasing in its lasirguments is a consequence of the definitiof'@nd of
lemma 16.1(3)o

The case in whiclX is not denumerable does not raise serious difficulties. As&ary and
sufficient condition for its representability is that thengiaal traces of are representable on
the real numbers, which is equivalent to imposing an ‘oxsrsity’ condition. We say tha@ii
satisfies the ‘order-density’ conditiaﬁDii if there is a denumerable sub3&§tC X; such that
V.Z‘i, zi € X;,

Z; >—Z~i Zi = Elyi € Y; such thate; -+ Yi Z,Li Zi. (1622)

~1

Conditional to this additional condition imposed dyfor all i € {1,...,n} is that the charac-
terization of the above models remains valid.

Note also that the slightly more general case of mode8 @nd (L4) is dealt with very
similarly. These models are equivalent and the preferetiwascan be represented in these
models are those that verifgC'1, AC2 and AC3 (they need not be reflexive).

16.3.3. Model (L8) and strict monotonicity w.r.t. traces

In order to obtain a characterization of the more constthmedel in Table 16.1, we intro-
duce two new axioms that are effective only when the prefarerlation is complete. These
axioms follow the scheme of the classical ‘triple cancelgtaxioms that are used in the char-
acterization of additive value function models. That is thason why we denote them by the
acronymT’AC (Triple intrA-Criteria annulation).

Definition 16.5. ConditionsTAC1, TAC?2
We say that: satisfies

TAC1; if
(wiya—i) Zy
and
y % (zisa—i) p = (@i,0-4) T w,
and
(Zi,bfi) > w

~
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and TAC?2; if
(ziya—i) Zy
and
R (Z*’iva*’i) :>wi (Zi7b—i)7
and
w 2 (i, b-i)

forall z;,z; € X;,foralla_;,b_; € X_; and for ally, w € X.

We say that- satisfiesTAC'1 (respectively,TAC?2) if it satisfies TAC1; (respectively,
TAC?2;)foralli € {1,...,n}. We use alsd’AC12 as short-hand fof’AC'1 and TAC2.

The first two conditions in the premise GfAC'1; and TAC2; suggest that levet; is not
lower than levek;. TAC1; (respectively,TAC?2;) entail thatz; should then upward (respec-
tively, downward) dominate;.

We give without proof a few consequencesT™d C'1 and TAC2. These axioms will only
be imposed to complete relations; without this hypothekesy have rather limited power.

Lemma 16.5. Strictly positive responsiveness to the traces on levels
If =~ is a complete binary relation o =[]}, X; then:

1) TACL; = [ACL, andACSl]
2) TACZ; = [ACZ, andACSl]
3) TAC1; is equivalent to the completeness of relatbﬁ together with the condition:

[z = yandz = xi] = (zi,2-:) = y. (16.23)
4) TAC?2; is equivalent to the completeness of relat@ﬁ together with the condition:
[z - yandy; =, wi] = = = (wi,y—;). (16.24)

5) If TAC1, or TAC?2;, then is independent fofi} andz; is a weak order. Moreover,
if we haveTAC'12 thent,; = ==

~T T

As we can see, as soon’gss complete, the conjunction &fAC'1; and TAC2; guarantees
that>- responds in a strictly increasing manner to the marginabl;ref. These properties also
imply that - is weakly independent on criteriofi} and that the marginal preferengg is
a weak order and identical to the marginal tragg. We do not examine in detail here the
relationship betweelAC1;, TAC2; on the one hand andC1;, AC2;, AC3; on the other.
We shall return to this in section 16.3.6. It can be shown [B®b, appendix A] that for a
complete relation]AC1 andT'AC?2 are logically independent properties.

Note that the above system of axioms does not imply that théemnce, has strong
properties such as transitivity or even semi-transitieitghe Ferrers property. In these models
(even in the more constrained i.e. modBBY), the preference cannot even be supposed to be
an interval order. The previous results lead directly todharacterization of modeLg).
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Proposition 16.6. Characterization of [.8)
LetZ be a binary relation on the denumerable sét= []?"_, X;. The relationz, verifies model
(L8) if and only if - is complete and satisfi@&AC'1 and TAC2.

Proof. The proof follows exactly the same scheme as that of prdposli6.5. The only differ-
ence lies in the definition of functioR' which has to be altered in order to take into account the
completeness of,. We defineF" on [[}"_, u:(X;)]”, substituting equation (16.21) by:

+exp(doil, (wi(ws) —wi(yi))  ifz 2y,
F([wi(za)]; [wi(yi)]) = 0 if z~y, (16.25)
—exp(>_i (ui(ys) —us(xs))) otherwise.

Parts (3) and (4) of lemma 16.5 entail tHats strictly increasing (respectively, decreasing) in
its first (respectively, lasty arguments since, in this construction, thehave been chosen to
be numerical representations of the weak ordefs o

16.3.4. Complete characterization of the models on levels

To be complete, we give without proof [see BOU 04b] a charaztton of all the models
on levels described in Table 16.1. We limit ourselves to #sedn which the seX is denumer-
able. The non-denumerable case can be dealt with withowrrdéficulty by imposing order
density conditions on the traces, starting from model)(

Theorem 16.1. Models based on traces on levels
Let be a binary relation on the denumerable sét= []’"_, X;. This relation can be repre-
sented in

1) model 1) if and only if - is reflexive;

2) model {2) if and only if>- is complete;

3) model (4) if and only if - verifiesAC1, AC2 and AC3; models (.3) and (L.4) are
equivalent;

4) model {6) if and only if- is reflexive and verified C'1, AC2 and AC3; models {5)
and (L6) are equivalent;

5) model {7) if and only if2Z is complete and verified C1, AC2 and ACS3;

6) model {8) if and only if>Z is complete and verifie¥AC'1 and TAC2.

Let us observe that increasing or non-decreasing (respsgtilecreasing or non-increasing)
do not make a difference in our models unless funcfibis also supposed to be antisymmetric
(i.e. F([ui(%:)]; [wi(ys)]) = —F ([wi(y:)]; [ui(z4)]))- In this case, the valu@* plays a special
role, which is to represent indifference. This is what ledasdifferentiate the increasing case
from the non-decreasing one.
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16.3.4.1.Uniqueness and regular representations

All these models have obviously rather poor propertiesndigg uniqueness of numerical
representation. A large variety of functions can of courseubed forF' as well as for the
u;. Nevertheless, it is not difficult to determine necessany suifficient conditions that these
functions must fulfill. Let us consider, for instance, mo@&t). Our proof of proposition 16.5
shows that it is always possible to use functianshat verify:

wi mE g e i@ > ui(yi). (16.26)

Let us refer to a representation in which the functiansrerify equation (16.26) agegular.
According to our proof, any strictly increasing transfotioa of a functionu, verifying this
condition can also be used and yields another valid reptasem Other choices can be made,
however. It is easy to see that any functigrthat satisfies

wi = i = wiw) > ui(yi) (16.27)
can be used in a representatior;pfn model (L.6).

Regarding functior¥’, we can substitute the exponential of the sum of the difiezerof
the2n arguments, that appears in equation (16.21), by any réa¢dgositive function defined
onR?" (or at least on the subsgi]"_, u:(X;)]?) that is increasing in its first arguments and
decreasing in its last ones. It is also clear that only such functions can be used.

The representations described above are the only possietefor model 1.6). It is easy to
adapt the reasoning that we have just used to cover all thelsiodnsidered here [BOU 04b].

16.3.5. Relations compatible with dominance

Why should we be particularly interested in moddl$), (L6) and (.8)? The major reason
is related to the application of conjoint measurement nsttemultiple criteria decision anal-
ysis. In this field of application the preference is usuatipstructed; it is not knowa priori.
The process of constructing the preference relies upon(tietibare the evaluations of the alter-
natives on the various attributes recognized as relevatihéodecision) and their interpretation
in terms of preference on each criterion.

We emphasize that we have not assumedaapyiori structure on the set¥;. We did not
suppose that they are sets of numbers; they may be ordesedrseten nominal scales. The
interpretation of the evaluations of the alternatives nmte of preference requires at least the
definition of an ordering of the elements &f, an order that would correspond to the direction
of increasing preference of the decision maker on the view@ttached to that attribute. The
setX; endowed with this interpretation is what we cabiriterion [ROY 93].

We expect of course the existence of certain logical coimmestetween the criteria and
global preferenceRespect of dominands such a natural connection [ROY 85, ROY 93] and
[VIN 89]. (This notion of dominance must not be confused wiiht introduced just after def-
inition 16.4. The latter only deals with the relative pasits of the levels on the scale of a
single attribute. We called it ‘upward dominance’ and ‘devand dominance’ due to the lack
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of a more appropriate term.) In conjoint measurement thearyrder isa priori postulated on
the setsX;. Would it exist, such an order should be compatible with glgiveference. We can
therefore formulate the principle of the respect of domaesim a conjoint measurement context
as follows.

Definition 16.6. A reflexive binary relatiori; on a setX = []}_, X; is compatible with a
dominance relationf for all ¢ € {1,...,n}, there is a weak orde$; on X; such that for all
z,y € X and allz;, w; € Xj,

[ Z v, z:S:z; andy; S;w; foralli € {1,...,n}] = z 7 w. (16.28)

We say that this compatibility istrict if the conclusion of condition (16.28) is modified in>
w as soon as, for somee {1,...,n}, z; Pjz; ory; Pjw; (WhereP; denotes the asymmetric
part of S;).

This definition requires a comment. It could be thought thegasonable definition of the
compatibility with a dominance relation would require toéiflment of the following condition
instead of condition (16.28):

[z:Siy; foralli € {1,...,n}| =z Z y. (16.29)

The reader will easily be convinced that defining compatibih this way would make this
notion too weak in case the preference relation cannot beoseagl transitive. Indeed, if has
cycles in its asymmetric part, it is possible that this ielatverifies condition (16.28) while
there exist alternatives, y, z € X such thattAy, y > z andz > x (where the dominance
relationzAy is defined by{z;S;y; foralli € {1,...,n}]). In such a case, the non-dominated
alternatives (w.r.t. relatiod\) need not always be considered as good choices in a multiple
criteria choice decision problem sinegecould be non-dominated while there would exist an
alternativez such that: > .

Definition 16.6 avoids this drawback since, using conditipf.28),x Ay andy > z imply
x - z, which contradictg > z.

In view of the results in section 16.3.2, establishing a lekween relationgf and the
monotonicity of ', we can expect that when a preferencés compatible with a dominance
relation, the relations; in definition 16.6 are related to the marginal tra@jsf. It is indeed
the case as shown in the next proposition (in which we limiselves to reflexive preference
relations; the case of asymmetric relations could be tdesitailarly).

Proposition 16.7. Compatibility with dominance

A reflexive binary relatior; on a setX = []!_, X; is compatiblewith a dominance relation
if and only if it satisfiesAC'1, AC2 and AC3. In such a caseS; is compatible witht} in the
following sense:

zi =¥ yi = Noty;Siz;. (16.30)
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Proof. The necessity 0AC'1, AC2 andAC3 is almost immediate. Consider the caseddf1,
the cases of the other axioms being similar. Assume (thata—;) = y and (z;,b—;) 7 w.
RelationsS; being complete, we have eitheyS;z; or z;S;z;. If we havez; S;x; then, using the
definition of compatibility with dominance(z;,a—;) = y entails(z;,a—;) = y. If we have
xSz, then(z;, b—;) 7 w entails(z;,b_;) 7> w. As a consequencelC'1 is verified.

The fact thatAC'1, AC2 and AC3 are sufficient conditions is clear. We can indeed take
S; ==Fforalli € {1,...,n}. Under AC'123, the relations=F are complete weak orders
(lemma 16.4(4)) and, using lemma 16.1(3), we get equati6r2g).

To show equation (16.30), let us suppose on the contranthbat exist;, y; € X; with
xT; hi y; andy;S;x;. From the former relation we deduce that there exist eithere X_;
andz € X such that(z;,a—;) = z and Not(y;,a—;) = 2z, 0rb_; € X_; andw € X
such thatw = (y:,b—;) and Notw = (x;,b—;). In both cases, using;S;z; and applying
equation (16.28) leads to a contradiction.

From this result we deduce, when the preferenés compatible with a dominance relation,
thatfu.i cannot be finer tha®;. In other words,S; C if. From a practical point of view, if
we consider that a global preferencecompatible with a dominance relation is the result of
the aggregation of relationS; defining the criteria, we understand thgtcannot induce a
trace onX; that would contradictS;; =, cannot even create a preference wh&renly sees
indifference. Even although, for a reflexive preferencesahg AC'123, we cannot guarantee
the uniqueness of the relatiolss, we see that such relations are strongly constraisSedan

only be a weak order included jp:-.

With the previous proposition, modeL{) (or the equivalent modell(5)) can be seen as
a natural framework for describing preferences compatiite a dominance relation. This
prompts the question of a similar framework for preferertbas arestrictly compatible with a
dominance relation. Surprisingly, the natural framewanksuch preferences is not modég)).
This model imposes complete preferences which is not, ahelesee, a necessary condition
for strict dominance.

16.3.6. Strict compatibility with dominance

Strict compatibility with dominance requires, of courgeosger axioms thalCy, AC2, ACs.
We refer to the following strengthening dfC'3 as AC4.

Definition 16.7. Condition AC'4

We say thai; satisfiesAC'4; if - verifiesAC3; and if, whenever one of the consequences in
AC3; is false, then the other consequence is strictly satisfiedwith - instead of—. We say
that; satisfiesAC4 if it satisfiesAC4; foralli € {1,...,n}.

The following lemma that we state without proof [see BOU 04bllects a few conse-
guences ofAC4.

Lemma 16.6. Consequences ofC4
If 2 is a relation onX, we have:
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1) If 7 is reflexive,AC4; is equivalent to the completenessm;f and the conjunction of
the following two conditions:

[x Z yandz; >ii zi] = (23, 2—3) = v, (16.31)

[z 7y andy; - wi] = = = (wi,y—i). (16.32)
2) If = isreflexive and satisfiedC4; then

- = isindependent fofi},

- ~; is aweak order and

3) If - is complete[TAC1; andTAC?2;] & AC4,.

As soon ag; is reflexive, conditionAC4 (which, by definition, is stronger thaaC'3) also
entailsAC'1 and AC?2 since it implies the completeness of relati(jg'ﬁ (lemmas 16.6(1) and
16.4(4)). If - is complete,AC4 is equivalent taI’AC'1 and TAC2, which also provides (see
proposition 16.6) an alternative characterization of m¢dea): >~ satisfies {.8) if and only if
z is complete and verifiedC'4.

AC'4 has the advantage ov&AC'1 andTAC2 that it implies a strictly positive response
to marginal traces even when is incomplete. It is the condition that we look for in view of
obtaining a characterization of strict compatibility witbminance.

Proposition 16.8. Strict compatibility with dominance

A reflexive binary relatiori; on a setX = J[ | X; is strictly compatiblewith a dominance
relation if and only if it satisfiesiC4. In such a case, the relatiorts are uniquely determined
andS; =, for all 4.

~t !

The proof of this proposition is similar to that of propositi16.7; [see BOU 04b].

Let us observe that the conditions ensuring strict compigfilvith a dominance relation do
not, however, guarantee thgtpossesses ‘nice’ properties such as completeness ottitraysi
It is straightforward, using examples inspired by Condtsgearadox [e.g. SEN 86], to build
a binary relationz; that is strictly compatible with a dominance relation and bacuits in its
asymmetric part (building for example via the majority rule applied to relatiorts).

16.3.7. The case of weak orders

Visiting more classical models of preferences, i.e. moutelghich the preference is a weak
order, we examine how this hypothesis combines with ourragioNVhenz is a weak order,
the marginal tracgf is identical to the marginal preferenge. We give the following results
without proof [see BOU 04b].

Lemma 16.7. Case of a weak order
If - is a weak order on the sef =[], X, we have:
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1) [ is weakly separable< [z satisfiesAC1] < [z satisfiesAC2] < [z satisfies
ACS3]; and

2) [ is weakly independents> [ satisfiesAC4] « [ satisfiesTAC1 and TAC2].

In the case of weakly independent weak orders, we can neglastdering marginal traces;
we do not need tools more refined than marginal preferencesntdyzing preferences when
these are weakly independent weak orders. Note that theofageak orders is highly spe-
cific: see [BOU 04b, appendix A] for examples of weakly sepbrgeven weakly independent)
semiorders which violatelC'1, AC2 and AC3. In this slightly less constrained case, weak
separability is not equivalent tdC'1, AC2 or AC3.

Using these observations, it is easy to prove the followirggppsition.

Proposition 16.9. Let -, be a weak order on a denumerable sét= ], X;. There exist
real-valued functions,; defined onX; and a real-valued functiot” on [T}, u;(X;) such that
forall z,y € X,

e Zy e Ulu(e), . un(@n)) 2 Uua(yr), - - un(yn)) > 0. (16.33)

FunctionU in equation (16.33) can be chosen to be:
1) non-decreasini all its arguments if and only if; is weakly separable; and
2) increasingn all its arguments if and only if; is weakly independent.

Proof. We start with applying Cantor’s classical result [CAN 95jyaveak ordei_ on a denu-
merable sefX admits a numerical representation, i.e. there exists aiim¢ : X — R such
thatz - y < f(z) > f(y). Inthe general case, a factorizationfodisU (u1 (z1), - . . , un(zn))
obtains, as in the proof of proposition 16.2(1), the followi We choose functions; that sep-
arate the equivalence Classesipj; (see condition (16.13)z; Nf yi < u(xi) = ui(y:))
and we defindJ settingf(z) = U(ui1(z1),. .., un(zxs)). In the weakly separable and weakly
independent cases; will be a numerical representation of the marginal prefeegthe weak
order; or the marginal tracgfE which is equivalent here. We defiié as before. Combin-
ing the results of lemmas 16.4, 16.6 and 16.7 we showlth@tnon-decreasing (respectively,
increasing) in each of its arguments.

The non-denumerable case requires the adjunction of tred bgpothesis limiting the car-
dinality of X and guaranteeing the existence of numerical represemsafioo the weak orders
2~ andz; (order-density condition).

While the case of a representation with an increasing fanéfi is well known in the liter-
ature [KRA 71, theorem 7.1], the result in the case of norraingU generalizes a theorem
obtained by [BLA 78] under the hypothesis thatC R".



618 Decision Making

16.3.8. Examples

Models (16.1), (16.3) and (16.6) enter into the frameworlowf models using traces on
levels. Among them, the additive value function model (l6slthe only one in which the
preference is a weak order. However, all three models havginatraces- that are weak
orders.

In contrast, in the additive non-transitive model (16.A% marginal traces of the preference
relation are not necessarily complete. Postulating therlabndition in this model drives us
closer to Tversky’s additive differences model (16.3).

Let us briefly review the three models cited above, for the @iilustration.

The additive value function model (16.1) belongs to mods)( the more constrained of
our models based on levels. In addition, the preferenceseptable by an additive value
function are weak orders. In view of lemma 16.6, marginalésaand marginal preferences are
identical and are weak orders. The functianghat appear in (16.1) are numerical representa-
tions of the marginal preferences (or traces). The preferegacts in a strictly positive way to
any progress of an alternative on any marginal trace.

Tversky's additive differences model (16.3) toleratesansitive preferences. Like the addi-
tive value function it belongs to the more constrained atdigsodels (.8). Lemma 16.6 applies
also to this model, in which marginal traces and prefereacesdentical; the functions; that
appear in (16.3) are numerical representations of thesgimahmpreferences (or traces). We
shall turn again to this model in section 16.5.2 since its$®dlased on the traces of differences
(represented by the functiods).

Although the models based on levels are not the most adefpratiescribing relations
obtained by outranking methods (a basic version of whichecdbed by condition (16.6)),
such relations nevertheless possess marginal tracesr¢hateak orders. The preference rela-
tions representable in model (16.6) belong to cldss) or (L6). The asymmetric part of their
marginal preferences; is usually empty. Indeed, the marginal preference on difoansdoes
not discriminate at all between levels unless the wejghof criterion j is ‘dominant’, i.e. if

L wi > A, while Ei;i;&j w; < A

At this stage, it may come as a surprise to see that the aglddive function model and the
additive differences model belong to the same clds) 6f models on the levels. In particular,
for those models, there is no distinction between marginaflepences and traces. Does this
mean that the only interesting class of models on the lege(g8), if we except the models
inspired by the majoritarian methods in Social Choice (sa&the EECTREmMethods)? If the
answer were positive, the more refined analysis made herel{whnsists of carefully distin-
guishing marginal traces from marginal preferences) windd a great deal of its interest. As
well as the fact that our approach allows us to understandritapt issues such as the respect of
a dominance relation (section 16.3.5), there exist motielsare both genuinely interesting and
cannot be described satisfactorily in terms of margindguemces. Let us consider for instance
a preference; which is representable in an additive value function mod# & threshold:

Ty & Z;’::l ui(zi) > Zle ui(yi) +¢ (16.34)
r~y e | i) - Y wiy)| <e,
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wheree is a positive number representing a threshold above whidffexehce of preference
becomes noticeable; differences that do not reach thishbte escape perception and lead to
an indifference judgementy). The preferenceg that can be described by such a model are
not weak orders but semiorders. The asymmetric padf the preference is transitive, while
indifference~ is not [LUC 56, PIR 97]. Such a model can be used e.qg. for dasgra statistical
test for the comparison of means (taking into account thahis context, relatiorr, should not

be interpreted as a preference but rather as a comparatigeient on two quantities). It is
impossible to analyze such a relation in terms of marginafigsences. Indeed, the latter can be
represented by

Ti i i = ui(T) > ui(ys) — &,

which implies that each marginal preference relationis a semiorder. Generally, marginal
traces are more discriminant. They are weak orders; if thefs@ternatives is sufficiently rich
(it is the case, for instance, when the image sg{sX;) are intervals of the real line), they
can be represented by the functians(i.e. z; zii yi < ui(zi) > wui(y:)). In this model,
preference, is complete and its marginal traces are complete; hencéoibge to model 7).
Itis likely that the reason why such models have receivéid kittention is related to the fact that
the dominant additive value function model does not requaicds more refined than marginal
preferences for its analysis. In the next section, we aegasted in another fundamental tool
for analyzing preferences: traces on differences.

Before closing this section, there is a final issue to be dised. In the last part of this
section, devoted to preferences that are weak ordersqeeli3.7), we distinguished weakly
separable and weakly independent weak orders. The reagervomaler if there are interesting
preference relations that are weak orders, weakly semalaliinot weakly independent. The
answer is definitely positive. Consider for instance thetaddvalue function model (16.1) and
substitute the sum by a ‘minimum’ or a ‘maximum’ operator. Yhlen obtain a weak order
that is weakly separable but not independent. IndeedXe} = [0, 10] andu;(z;) = z; for
i = 1,2. Preference; compares the alternatives only taking into consideratiwir tweak
point’, that isz - y if and only if min z; > miny;. Clearly, marginal traces and marginal
preferences are identical and correspond to the usual ofdke real numbers of the interval
[0,10]. Letz = (3,5) andy = (7, 3); we haver ~ y, but preference- does not strictly react
if e.g. we raise the level of on the second dimension. Even if we sgtto 10, we still have
(3, 10) indifferent to(7, 3).

Other decision rules of practical importance, such as ‘Maxior ‘LexiMax’, the Choquet
integral, the Sugeno integral (see section 17.5) lead iemgémo weak orders that are weakly
separable but not weakly independent.

16.4. Models using marginal traces on differences

In this section we study preference models obtained in daimmanner to those in the pre-
vious section; we simply substitute marginal traces onl$slvg marginal traces on differences.
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16.4.1. Models definition

We start from the trivial model Ip0) based on marginal traces and introduced in sec-
tion 16.2.5, in which:

z Zy < G([pi(zi yi)]) 2 0.

We define the following variants:
— model (O1), by imposing thap; (z:, z;) = 0 on (DO0);

— model (02), by imposing that each; is antisymmetric, i.ep;(x;, yi) = —pi(ys, ), ON
(D1); and

— model (D3), by imposing that7 is odd, i.e.G(x) = —G(—x), on (D2).

In the same way as in section 16.3, we also consider the mobt&ed by assuming in
each variant D0), (D1), (D2) and (D3), thatG is non-decreasing or increasing in each of its
n arguments which yields twelve models as defined in Table. 16.2

(DO) =z Zy < G(lpi(zi,y:)]) 20
(D1) (DO) with p;(z;, ;) = 0

(D2) (DY) with p; (2, yi) = —pi(ys, 74)
(D3) (D2)with G odd

(D4) (DO0) with G non-decreasing
(D8) (D0) with G increasing

(D5) (D1) with G non-decreasing
(D9) (D1) with G increasing

(D6) (D2) with G non-decreasing
(D10) (D2) with G increasing

(D7) (D3)with G non-decreasing
(D11) (D3) with G increasing

Table 16.2.Models using traces on differences

There are obvious implications linking these models; we dbdetail them. As well as
these implications, the properties@fin models O1), (D2) and (D3) entail simple properties
of the relations representable in these models. We shalldeahese properties to characterize
the models.

Proposition 16.10. Characterization of D1), (D2) and (D3)
A binary relation’; on a product se = ]}, X; having at most the cardinality & can be
represented in
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1) model (O1) or model (02) if and only if> is independent; and
2) model O3) if and only if- is independent and complete.

Proof. Part (1). We have;(z;,z;) = 0 in model (D1), which implies that(z;,a—;) =
(zi,b-:) < G(0, (pj(a;,b;))=%i) = 0<% (yi,a—i) = (yi,b—;). As a consequence; is

~

independent as soon gsis representable in modeD(l).

Assume conversely that is independent and let us construct a representatigninimodel
(D2). We reconsider the construction of a representation destin the proof of part (2) of
proposition 16.2, and slightly modify it. The alterationredated to the specification of func-
tions p;. These functions separate the equivalence classesof (z;,v:) ~;* (zi,w:) <
pi(zi,y:) = pi(zi, w;). Nothing prevents us from imposing pnthe verification of; (z;, z;) =
0 for a certainz; € X;. Since’ is independent(z;,x;) ~;* (yi,y;) for all y; € X;
and hencep; (y;,y:;) = 0 for all y; € X;. We can also impose op; the verification of
pi(zi,yi) = —pi(yi, z:). Finally, G can be defined by equation (16.16) in the same way as
for the trivial model, i.e.

+1 ifz 2z,
G([pi(zi,y:)]) :{ -1 otherw:?se.

Clearly, G is well-defined and yields a representatiorioin model (D2).

Part (2). The completeness ofis a direct consequence of the definition of modeBy;
since model D3) implies model P1), 7 is independent. Reciprocally, let us assume thad
independent and complete. If this is the case, we use thefseuttéonsp; as in part (1), but we
change the definition aff as follows:

+1  ifx >y,
G([pi(wi, yi)]) = 0 ifz~y, (16.35)
—1 otherwise.

We show, using independenceofthat G is well defined. Sincé; is complete, functiors is
odd.o

The monotonicity properties df are linked with specific axioms, rather similar to those
defined in section 16.3.2. We introduce them in the next@ecti
16.4.2. Completeness of marginal traces on differences and monatay of G

There are two axioms for each attributeAs with AC'1, AC2 and AC3, these axioms
appear as cancelation conditions. Their denominafititil, RC?2 recalls the fact that they are
‘inteR-Criteria’ cancelation conditions.
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Definition 16.8. ConditionsRC'1 and RC2
Let 2 be a binary relation on the s&f = []"_, X;. We say that this relation satisfies axiom:

RC1; if
(zi,a—i) Z (i, b—i) (ziyc—i) Z (yi,d—i)
and = or
(2, ¢-i) Z (wiy d—i) (zi,a-i) Z (wi, b—s),
andRC2; if
(wiya—i) Z (i, b—s) (ziya—i) Z (wi, b-)
and = or
(Yisc—i) T (@i, d—si) (wiyc—) Z (2i,d—s),

for all =i, ys, zi, w; € X; and for alla—;,b—;,c—;,d—; € X_;. We say thaf; satisfiesRC'1
(respectively,RC?2) if it satisfiesRC'1; (respectively,RC2;) for all i € {1,...,n}. We shall
sometimes us&(C'12 for the conjunction of condition®C'1 and RC'2.

Condition RC'1; suggests thafz;,y;) corresponds to a difference of preference at least
as large asz;, w;) or vice versa. It is easily seen that assuming both Moty:) =7 (zi, w;)

and Not(z;, w;) 77 (x4, y:) leads to a violation oRC1;. From this we can see th&C'1; is
equivalent to the completenessof. The second axiomRC2;, suggests that the ‘opposite’
differences(z;, y;) and (y;, z;) are linked. In terms of the marginal trace on differenggs
this axiom tells us if the preference difference betweeandy; is not at least as large as that
betweenz; andw;, then the difference between andz; is at least as large as that between

andz;.

These observations are collected in the next lemma whos# jpnonediately results from
the definitions and is omitted.

Lemma 16.8. Completeness of the traces on differences
We have:

1) [=7 is completgif and only if RC'1;;

2) RC2; if and only if[for all =, yi, z;, w; € X;, Not (i, y:) 55 (26, wi) = (yi, 1) 257
(w3, 2;)]; and

3) [Z;* is completgif and only if[RC'1; and RC2;].

Condition RC'1 has been introduced in [BOU 86] under the nawesak cancelationThe
extension of conditiorRC'1 to subsets of attributes (instead of singletons) is of fumetatal
importance in [VIN 91] where this condition receives the eaof independenceCondition
RC2 was first proposed in [BOU 99, BOU 97, BOU 09].

We note below two easy yet important consequencd?3®@f and RC2 [BOU 05b].

Lemma 16.9. Consequences ¢tC1 and RC2
We have the following:

1) if - satisfiesRC'1; then; is weakly separable far, and
2) if - satisfiesRC2 then; is independent and either reflexive or irreflexive.
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Axioms RC'1 and RC2 allow us to analyze all the remaining models with the exceptif
the more constrained modeD( 1). We observe that the properties of non-decreasingness and
increasingness with respect to the traces on differencemtiead to different models except
in the more constrained case (moddl¥/j and (D11)).

Proposition 16.11. Characterization of modeld¥4) to (D10)
A binary relation’z on a denumerable sef = ]}, X; can be represented in

1) model (D4) or model (O8) if and only if- satisfiesRC'1;

2) model O5) or model (09) if and only if— is independent and satisfié&'1;
3) model O6) or model (010) if and only if satisfiesRC'1 and RC2;

4) model O7) if and only if - is complete and satisfid3C'1 and RC2.

Proof. Part (1). Model D4) verifiesRC'1. Assume thafx;,a—;) 7 (y:,b—;) and(zi,c—;) =
(ws, d—3). Using model D4) we have:

G(pi(zi,yi), (pi(aj, b;)) ) > 0and
G(pi(zi, wi), (pi(cj, dj))ji) > 0.

If pi(xs,y:) > pi(zi, ws) then, using the non-decreasingnesé&/pfve obtainG (p; (z:, vi),
(pj(cj,dj))jzi) > 0, hence(zi,c—i) % (yisd—i). If pi(zi,wi) > pi(ws,yi), we have

G(pi(zi,ws), (pj(az,bj))j2i) > 0, hence(zi, a—;) 2 (ws, b—;). ConsequentlyRC1 is veri-
fied.

The second part of the proof constructs a representatiordeh{D8) of a relation’- pro-
vided it verifiesRC'1. Using RC'1, we know thatz; is a weak order. As functiop;, we choose
a numerical representation of’ (which exists since; has been supposed to be denumerable):
(xi,9:) 28 (zi,wi) < pi(xs, y:) > pi(zi, w;). We then defines onp;(X?) as follows:

oy ) Hexp(il pil@i, vi) if =y,
Glpilen ) = {—exp(— > pi(zs,y:)) otherwise. (16.36)

We see that7 is well defined using lemma 16.2(3) and the definition of gheTo show that
G is increasing, let us assume thaz:;, wi) > pi(w,,yi), i.e. that(zi, ws) =§ (i, y:). If
z 7 y, lemma 16.2(2) implies thatz;, x—;) = (w:,y—:) and the conclusion follows from
the definition ofG. If Not « - y, we have either Notz;, z_;) = (ws, y—i) Of (zs,2—i)

(ws, y—3). In both cases the conclusion follows from the definitiorfof

Part (2). Since modell§5) implies models D1) and (D4), the necessity of the indepen-
dence condition and dRC'1 is straightforward. Under these hypotheses, we can buidghieer
sentation of~ in model (D9), as in part (1), with the exception that we require thaverifies
pi(zi,z;) = 0 (which is made possible as a consequence of the indepengenperty; see
lemma 16.2(1)).

Part (3). We readily check that }f is representable in modeD), it satisfiesRC'1 and
RC2. For RC1, itis a consequence of the fact that modeb] implies model 04). For RC?2,
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we can proceed as for part (1) f®C1. The necessity of conditionRC1 and RC2 is thus
proven.

Under the hypothesis that satisfiesRC'1 and RC2, we can construct a representation of
= in model (D10) as follows. By lemma 16.8(3), we know that relatiops and’Z;™* are weak
orders. Since setX; are supposed to be denumerable, there exist functions<; — R that
represent;;; we choose one such function for eachnd we define; throughp; (z;,y:) =
gi(xi,yi) — qi(ys, xs). It is clear that these functions are antisymmetric and provide nu-
merical representations of relatiohs *. Using these functiong;, we defineG through equa-
tion (16.36). Lemma 16.2(5) shows that this definition madessse. To show th&t is increas-
ing, let us assume that(z;, w;) > pi(zs,y:), i.€. that(z;, w;) =1* (z:,y:). This construction
implies that(z;, w;) 7 (xs,y:). The increasingness ¢f can then be proven as in part (1).

Part (4). The necessity of the completeness oésults from proposition 16.10(2) and from
the fact that modellp7) implies model P3). The necessity oRC1 and RC2 is a consequence
of the fact that modellp7) implies model D6) and of part (3). Making these hypotheseson
a representation df in model (D7) is obtained as for model§10). The only difference lies
in the definition of functionz. We defineG as follows:

+exp(doi pi(i, yi)) if x>y,
G([pi(wi,yi)]) = 1 0 if z~y, (16.37)
—exp(— >, pi(zs,y:)) otherwise.

Since’ is complete G is odd; G is well defined as a consequence of the definition ofgthe
and of lemma 16.2(5). It is non-decreasing due to lemma pau2s (2) and (4

16.4.3. Characterization of model P11)

Distinguishing between model®({) and (D11) requires the introduction of a new axiom.
It is similar to axiomsI’AC1 andT'AC2, introduced in section 16.3.2, for studying the models
based on traces on levels. Here, axi®@ will only deliver its full power for complete prefer-
ences. Itis useful for characterizing the model in whichiéasingness with respect to marginal
traces on differences is distinguished from non-decrgasiss.

Definition 16.9. ConditionT'C
Let 7 be a binary relation on the s&t = [, X;. We say that this relation satisfies axiom:
TC;if
(s, a-3) Z (yi,b-i)
and
(2i,b-3) Z (wisa—i) ¢ = (zi,c—i) Z (yi, d—i),
and
(wi,c—i) Z (zi,d—i)
for all 24, yi, zi,w; € X; and foralla_;,b_;,c—;,d—; € X_;. We say that; satisfiesI"C if
it satisfiesT'C; forall i € {1,...,n}.

ConditionT'C; (Triple Cancelatiof is a classical cancelation condition that has often been
used [KRA 71, WAK 89] in the analysis of the additive value dtion model (16.1) or the
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additive utility model. In the next lemma, we state withouqf two properties involving'C'.
See [WAK 88, WAK 89] for a detailed analysis of this axiom, linting its interpretation in
terms of differences of preference.

Lemma 16.10. Strict monotonicity with respect to traces on differences

1) If - is completeT'C; impliesRC'1; and RC2;.
2) If - is complete and verifie$'C;, we have:[z = yand(z;,ws) =i (xs,y:)] =
(zi,2-i) = (Wi, y—i).

The second of the above properties clearly underlinesithais related to the strict mono-
tonicity of 77 with respect to its traces; ™ (as soon ag; is complete). It shows th&fC is the
missing link that will allow us to characterize modéb{1).

Proposition 16.12. Characterization of modell§11)
A binary relation’z on a denumerable product sa&t = []"_, X; is representable in model
(D11) if and only ifZ is complete and satisfi&gsC'.

Proof. The necessity of these conditions is straightforward. Ageg that- is complete and
verifiesT'C, we obtain by lemma 16.10(1) that verifies RC'1 and RC2. We thus define;
andG as in the proof of part (4) of proposition 16.11. The incregeess of~ is a consequence
of lemma 16.10(2)¢

For the reader’s convenience, we summarize the charaatienzf all the models based on
marginal traces on differences in Table 16.3.

16.4.4. Remarks

16.4.4.1.Goldstein’s model

Models (D8) and (D4) were introduced by Goldstein [GOL 91] as particular caddsi®
‘decomposable model with thresholds’; the equivalence ofl@s (O8) and (D4) had been
noticed.

16.4.4.2.Marginal preferences

Which role is played by marginal preferences in the models based on traces on differ-
ences? They certainly do not play a central role but some toaitity properties linking them
to the global preference can nevertheless be established. We present some of thémutvi
proof, in the next proposition.

Proposition 16.13. Properties of models using differences

1) If - is representable in model}5) then:[z; >=; y; for all i] = Noty = .
2) If - is representable in model)6) then:
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Model Definition Conditions

(D0) zZy e G(pi(ziy)]) >0 90

(D1) (DO) with p; (z;, z;) = 0

Ky independent

(D2) (D0) with p; antisymmetric

(D3) (D0) with p; antisymmetric complete, independent
andG odd

(D8) & (D4) (D0)with G(,/ /) RC1

(D9) < (D5) (D1)with G(,” ) RC1, independent

(D10) & (D6) (D2) with G(,/ /) RC12

(D7) (D3) with G(,7) complete, RC12

(D11) (D3)with G(, ) complete’C

Table 16.3.Characterization of the models using traces on differerfjcésnon-decreasing,
/" /" increasing)

- ~; is complete; and
- @i = ys forall i) = [z 7 y].
3) If = is representable in model{11) then:
- [xs zZi ys forall §] = [z 2 y]; and
- [x; s ys for all ¢ and there existg € {1,...,n} suchthat; >; y;] = [z > y].

The reader might feel somewhat disappointed while lookinth@ monotonicity proper-
ties of our models, except for moddD{1). One must however keep in mind that we address
preferences that are not necessarily transitive or complesuch a framework, properties that
could be seen as natural requirements for preferences sioytdly be undesirable. For example,
when the marginal indifference relatiors are not transitive, it may be inadequate to require a
property such as:

[.Z‘i ~; y; for all ’L] = [1’ ~ y].

Were such a property verified, it would forbid that tiny butueat differences on several criteria,
none of which yield a preference when taken separatelydcmtéract or ‘cooperate ' and
yield global preference. Let us consider, for example, camng tripletsx = (x1,z2,x3)

of numbersz; belonging to th€0, 1] interval. We decide to compare these triplets using the
following majoritarian methodz - y if and only if z; > y; for at least 2 values of indek
out of 3. We clearly have, on each dimensipthat’-;=~; i.e. that there is no strict marginal
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preference, all pairs of levels being indifferent. Inded, z—;) ~ (y:, 2—;) for all z;, y; and
z—;. However, the global preference relatignis not reduced to indifference between all pairs
of triplets (for examplel Z; 0 forall: = 1,2, 3, but(1,1, 1) > (0,0, 0)).

For broader views on this topic, see [GIL 95] or [PIR 97]. Asprasized in section 16.3,
marginal preferences are not a sufficiently refined tool tyae preferences that are not nec-
essarily transitive or complete; we have to use the margianas-* instead. In the example
introduced above, the tracgs’ are, on each dimensianthe natural order on th@, 1] inter-
val. The monotonicity properties of the preference wittpees to marginal traces have been
described in lemmas 16.1 and 16.5(4).

16.4.4.3.Uniqueness of the representation

Regarding the models on levels, the uniqueness propeftibe cepresentations described
in propositions 16.11 and 16.12 are quite weak. In mod#)( for instance, we may always
take any numerical representation of the weak orde(at least, in the finite or countable case)
for pi(z:, y;). Regarding the models on levels, we shall call a representat which p; is a
numerical representation &f;, for all 7, regular. Other choices can be made, but it is necessary
(and sufficient) thap; satisfies the condition:

(@i, 41) =7 (zi,wi) = pi(zs, yi) > pi(zi, wi). (16.38)

In other terms, the chosen numerical representation muat least as discriminant as re-
lation >-;. In more constrained models such @3¥7§ or (D10), a similar condition, involving
=" instead of-, is needed. For more details, see [BOU 05b, lemma 5.5].

16.4.5. Examples

Among all the models described in the introduction, the g that does not use traces
on differences is the decomposable model (16.2), sincertbdel aggregates the levels of each
alternative independently of other alternatives. We byiefl/iew the other models.

Let us start with the additive non-transitive preferencelei@16.4), which we recall here:

rzye Y pizi,y) > 0.
=1

If we do not assume any property of functions the appropriate model igX8) (equivalent
to (D4)); thep; functions represent the traces that are weak orders; and functiéh which
reduces to addition of ita components, is strictly increasing. Assuming additiomalperties
of functionsp;, such a®; (z;, z;) = 0 or antisymmetry, leads us to model3{) (equivalent to
(D5)) and (D11), respectively. In the latter model; represents the weak order ™ instead of
representing_; (functionG is odd).

Tversky’s model of additive differences (16.3) is a patfticicase of the latter model. Func-
tionsp; reduce to algebraic differencas(z;) — u;(y;) of marginal value functions that repre-
sentant the traces on levels. This is therefore a model whibhsed both on traces on differ-
ences and on traces on levels. Such models will be investigatthe next section.
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Rewriting the additive value function model (16.1) as

Ty Z(ul(ﬂcz) —wui(y:)) >0,

=1

we observe that it is a particular case of the additive difiees model, in which functions;
reduce to identity. The differences of marginal value fiowe (u; (x;) — ui(y:)) represent the
traces—; ™.

The additive value function model sharply differentiatéedences of preference since
each value of the differende:; (z;) — u:(y:)) corresponds to a specific equivalence class of
relationZ;™. In contrast, outranking methods obtained by means of tiond{16.6) distinguish
differences of preference in a very rough manner. In the ohtee majoritarian model (16.6),
p; representsz; and distinguishes only two classes of differences of pesieg, as shown
by equation (16.7). Either differende;, y;) is ‘positive’, in which case the whole weight of
criterion is assigned to this difference (diminished by a fractionhef inajority threshold), or
else this difference is ‘negative’ in which case it countsrfothing. Notice that equation (16.7)
provides a representation of the preference obtained byé#jeritarian method in model¥8)
while the properties of such a preference would allow it torégeresented in modell{10).
Relations—;* have three equivalence classes and can be representedchgriun

w; i x> Yi
pi(xi, yi) = 0 if zi=y (16.39)
—W; if i < Y.

We then defin&: as:

Gp1,...,pn) =1— Y pi—A (16.40)

i:p; <0

Using this representation, we obtain the same relationasdéfined by condition (16.6). In-
deed, assuming normalized weigh}s (v; = 1), we see thatG computes (in a somewhat
bizarre way) the sum of the weights of the criteria in whicffedence(z;, y;) is ‘positive’,
diminished by threshold.

These elementary observations open the way to a charattenof majoritarian methods
within the framework of modellp10). These methods are characterized by traces on differences
=i " that distinguish no more than three classes of differentyeeéerence [BOU 01, BOU 05a,
BOU 07].

The B.ECTREmMethods, as they appear in literature [ROY 68, ROY 73, ROYRZ1Y 93],
involve an additional element with respect to pure majaata methods. In order to decide
whetherz is preferred toy (z ‘outranks’ i), we ‘weigh’ the arguments in favor of which
corresponds to the majoritarian model (16.6). If this weigltarge enough, we then verify that
no ‘strong argument’ opposes the statement thistpreferred tay. By ‘strong argument’, we
mean a differencéz;, y;) on some criterion that is ‘very negative’, in disfavor of. If z; and
yi represent numerical assessments of alternatives onianitera ‘very negative difference’
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may for instance result from trespassing a threshegjdalledveto thresholgdwe cannot state
thatz is preferred tqy if, on at least one criteriofy we have:

Ti < Yi — V.

We observe that the idea of a ‘very negative differencebititiced a third class of preference
differences inz;, corresponding to a ‘veto’. Relatiorts; can therefore be represented by

w; i x>y
pi(wi, yi) = 0 if yi—vi<zi<y (16.41)
-M if ;< Yi — Vi,

whereM is a large positive number. We defingas:

G(pr,--,pn) = _pi— A (16.42)

We easily verify thate - y if and only if the sum of the weights of the criteria on whiehs
at least as good aspasses\ and there is no criterion on which the levelofjoes beyond that
of y by more than the veto threshold (the value assignedé is such that it prevents the
threshold being reached as soon as it appears in any of thepex.

A relation - obtained through the above-definedjoritarian rule with vetacan be repre-
sented in modellp10). Relationsz; distinguish at most three classes of preference diffegence
relations’-;* at most five. Such preference relations can be fully chatiaetd within model
(D10) [BOU 08, GRE 01a].

These examples show that models using traces on differaneegell suited for describing
and understanding outranking methods. We shall returretsetmodels at the end of the follow-
ing section where we shall show how relations obtained bypawing differences can generally
be related to the description of the alternatives by levelattributes. (We have assumed above
that theX; are sets of real numbers endowed with their natural ordectwivas supposed to be
compatible with the decision maker’s preferences).

16.5. Models using both marginal traces on levels and on défences

After studying models based on marginal traces on levelstaysk based on marginal traces
on differences in the previous sections, it is quite nattraliscuss models based on both types
of traces. This is done by expressing the differences okepeete in terms of the traces on the
levels.

We recall the definition of the general modél(D0) presented in section 16.1.1; in this
model, the preference relatignis defined as follows:

r 7y H([pi(ui(2i),wi(y:))]) > 0. (LODO)
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This model can be seen as a particular case of mdde),(in which functionsp; (x;, y:)
have been substituted by functiops(u; (), ui(y:)). It is also possible to view it as a gener-
alization of the additive differences model (16.3) in whible simple addition and subtraction
operations have been substituted by general, appropriahotonic, functions.

A model in whichp; (x5, y:) is substituted byp; (u;(x;), u;(y;)) corresponds to each of the
twelve models DO0) to (D11) studied in section 16.3, without imposing any additiomalerty.

This allows us to define model&(D0) to (LOD11). These ‘new’ models have in fact very
little interest since they are equivalent (if the cardityadif the set of alternativeX is not larger
than that of the real numbers) to the corresponding modsischan traces on difference®()
to (D11). They simply provide another representation of the samgatsolndeed, starting with
a given functiorp; (z;, y;) defined onX; x X, it is always possible to factorize it by means of
areal-valued functiom; defined onX;. The only condition that; must fulfill is to separate the
elements ofX; that belong to different equivalence classes of the margiaee - *. Notice
that we do not assume the completeness of the traces on feyelat the moment). More
formally, the functions.; must verify the following condition:

wi(z:) = uilyi) = zi ~; yi.

For any functionu, satisfying this basic requirement and for any given functig we define
unambiguously the functiop; on subset:; (X;) x u;(X;) of R? by setting:

pi(@i, yi) = i (ui(zi), wi(yi))-

Consequently, starting from any representati®fip; (z:,y:)]) of a relation; in one of
the models based on traces on differences, we automatiohdfin a representation of this
relation in the corresponding model based on traces orrelifées and levels. This is done by
substitutingp; (z, ;) by the functionp; (u; (), ui(y:)) we have just defined. Let us note that
function H is identical toG. Notice also that this substitution can be done without |emob
only when the cardinality o' does not exceed that &, and if no additional requirement is
imposed onp;. At this stage, we do not even assume thais monotonic in its two arguments.

To makep; more similar to subtraction, we consider two variants ofheatthe twelve
models (.0DO0) to (LOD11). In the first variant we impose that; is non-decreasing in its first
argument and non-increasing in its second argument. Téis ® models1.00) to (L1D11).

In the other variant, we impose that functiopsmust be increasing in their first argument and
decreasing in their second argument. This yields model$Q) to (L2D11).

In summary, we have now defin@dx 12 = 36 new models (see Table 16.4) using both
marginal traces on levels and marginal traces on diffeer8kipping the first twelve models
that are not interesting as already mentioned, we studyttiein the rest of this section after
discussing the relationships between traces on diffesesicd traces on levels.
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(LOD0) z z y < H([pi(ui(zi), ui(y:))]) =0
(LOD1) (LODO) with ¢;(u(x;), ui(x;)) =0
(LOD2) (LO0D1)with ¢; antisymmetric
(LOD3) (L0D2)with H odd

(LOD4) (L0DO0)with H non-decreasing
(LOD5) (LODO0) with H increasing
(LOD6) (LO0D1)with H non-decreasing
(LOD7) (LOD1)with H increasing
(LOD8) (L0D2)with H non-decreasing
(LODY9) (LO0D2)with H increasing
(L0D10) (L0D3) with H non-decreasing
(LOD11) (LO0D3) with H increasing

Table 16.4.Models based both on traces on levels and on differenceselI@ll D)
correspond to models\0Dz) wherep; (7, \,); models {.2Dz) correspond to models

(LODz) whereg; (", \\\)

16.5.1. Relationships between traces on differences and on levels

The traces on differences; and-;* are binary relations on the product sét x X;. We
may define their own traces on levels in the usual way.zFgrwe denote

— the left (respectively, right, left-right) trace on thesfidimension b;(z;‘)j (respectively,
(=H7 (DY)
— the left (respectively, right, left-right) trace on thesad dimension byzy); (respec-

*

tively, (7)5 . (Z1)3)-

Their definition is a straightforward transposition of défan 16.3 applied ta-; instead of
as follows.

Definition 16.10. Left and right traces of the traces on differences
Let - be a preference relation on the product Zeénd - its trace on differences relative to
theith dimension. The traces ¢f; are defined as follows. For all;, y; € X,

1) z; (Nl) yi f Vsi, ti, 20 € X, (yi, 80) 70 (26, t:) = (w4, 83) 757 (24, 64);
2)xi (Z7); vi it Vsiti, 2z € Xi, (zi,ta) 27 (x4, 88) = (2i,t:) 7 (Y, 84);
3) wi (57)s yiif Vs ti, 2 € Xi, (si,y:) 7 (tiy z0) = (si,@3) 27 (ti, 2);
4) xi (Z7)g yi it Vsiti, 2o € Xa, (8, 20) 727 (s6,20) = (te,21) 227 (84, 4).

The traces of;;* are defined similarly.
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Are there relationships between these traces and the toackesels of2-? The answer is
positive as suggested by lemma 16.3. Referring to defimitiéh2 and 16.3 0‘=F+ = andzy,

itis easy to see that the traces on levels and>;; can be defined in terms ¢f; as follows:

i

i 7] Fy; ifandonlyif Vz € Xi, (zi,2:) =i (yz,zz)

T fﬂ yi ifandonlyif Vw; € X, (wi,y:) 27 (ws, x;). (16.43)

This means thal;;” and the inverse of relatiofr;”, (>7;) ™", can be interpreted as the
marginal relations of relatiofr; defined onX; x X;: they play the same role with respect to
=7 as that played by the marginal preferenggswith respect ta-.

The following result can easily be proven using lemma 16-8)5

Proposition 16.14. For all i € N, for all z;,y; € X; we have:
Dz = y if and only if x; (NZ) yi if and only if z; (27)] v: if and only if

~1

i (27} vi; and
2) €T; -

= )3 x;ifand only ify; (=}); «:ifand onlyify; (:=7)3

~t

yi ifand only ify; (27

~t

Zi.

As a consequenc%f:tj’ N 7, is the intersection of the (left-right trace) df; on the
first dimension,(zg‘)li, and the inverse of the (left-right) trace of on the second dimension

(mhE:

z; =

~t

yi if and only if z; (Nl) yi andy; (NZ)jE Zi. (16.44)

Regarding=;™, it is not difficult to see that its left-right trace on the fidimension is

~T

identical to>-*, while its left-right trace on the second dimension is theise of=F, (=-F) !

We emphasize that these observations are true without gnakin hypothesis on traces;
in particular, they are true even if traces are incompleteéhé case wherg; is a weak order
(hence, wheri; satisfies axiomRC'1;), we may apply proposition 16.9 tg;. This relation
therefore admits a numerical representation of the type

(ws,y:) i (zi,wi) ifand only if o; (i (), wi(yi)) > @i(ui(zi), wi(wi)),

wherew; is a function that separates the equivalence classes ofdgbestof-;. In view of
equation (16.44) we can take a function that separates thieadéence classes %i for u;.
The fact thatz; is a weak order on the product s& x X;, i.e. a product of a set by itself,
allows us to use the same functianon both dimensions.

Assume thatz; is weakly separable (since the product set on whighis defined has
only two dimensions, ‘weakly separable’ is equivalent &parable’ and ‘weakly independent’
is equivalent to ‘independent’). Using the rest of progositl6.9, we can build a numerical
representation of,; by a functiomy; (vi1 (x:), vi2(y:)), wherev;: is a numerical representation
of the trace( )f, v;2 IS @ numerical representation of the tratgg-if) andv; is a function of
two variables that is non-decreasing in both variables.
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Since=f = (=1)F and= = ((=7)F) !, we can alternatively represent by é; (w1 (x:),
wi2(y:)), whereu;:1 is a numerical representation of', u;» is a numerical representation of
z; andg; is a function of two variables that is non-decreasing in itst frariable and non-
increasing in the second. (We can take, for instam¢e,= v;1, w2 = —vi2 andeg; = ;.)
The latter opens the door to a representatiopr pfby a functiony; (u;(z;), ui (y:)), with the
same functioru; on both dimensions. Indeed, as soortg*sandi; are not incompatible, i.e.

asisoon agf is a weak order, we can use for a numerical representation of the weak order
=+

The case of;* is simpler. As above, its trace on the first dimensiori§ and on the
second dimension ig-F)~!. Hence, as soon gs;* is a weakly separable weak order ang
a weak order, we can build a representatiofr¢f of the typep; (u;(z:), ui(y:)), whereu; is
a numerical representation of the weak orgé’r andy; is non-decreasing in its first argument
and non-increasing in its second one.

In the framework of our models, it is ofy that we have to determine conditions which
guarantee the separability or the independenge;adr 2-;*. Separability conditions for;; and
;" are stated in the following proposition. In contrast (ani@ thay sound strange initially)
the independence ¢f ;* is a consequence of none of our models, even the more caorestrai
model (L2D11). We shall discuss this issue after we prove propositiof3.6elow.

Proposition 16.15. If X; is denumerable anig verifies AC123, and RC'1;, thenZ] is a

~1

separable weak order oR? and any numerical representatign(z;, y;) of >=; factorizes into
pi(@i, yi) = pi(ui(z:), ui(yi)), (16.45)
whereu; is a numerical representation of weak order” and ¢; is a function defined on

u:((X;)?), non-decreasing in its first argument and non-increasingssecond one.

If, in addition, 2 satisfiesRC2;, the same can be said of relatigri ™ and of its numerical
representations.

Proof. We know that= verifies RC'1; if and only if -} is a complete weak order o¥?. This
weak order is separable if, for all;, y;, z;, w; in X;, neither of the following conjunctions
occurs:

1) (@i, 2:) =5 (yi, ) and(ys, wi) =7 (24, wi)
2) (zisz:) =5 (25, y:) and(ws, ys) = (wi, T4)-

Since’; is a complete relation, forbidding conjunction (1) is eqlént to ensuring that:

(wi,2:) 227 (Yis 21) (Yi,21) 27 (@i, 23)
and = or
(yi, wi) Z7 (s, wsi) (@i, wi) Z7 (yi, ws).

We know that-* is the intersection of the first trac(gf)f of -7 and of the inverse of its
second tracéiz‘)j Since’; verifies AC123;, ==+ is a weak order. As a consequence, either

~T

x; =F y; ory; =F x;. In the former case, starting frofy:, w:) =7 (y:,w;) and using

~1 ~1
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definition (16.43), we obtaifw;, w;) Z; (vs, w;). In the latter case, starting frofw;, z;) =;

~T ~T

(3,’7;, Zi), we obtain(yi, 11}7,) = (3,’7;, wi).

We can show that conjunction (2) is also false in a similar.way

Let pi(x:,y:) andu;(z;) be any numerical representation of the weak orgersand = £,
respectively. Using the above conclusions, we verify diyebat setting

pi(ui(zi), ui(ys)) = pi(zi, ys)

defines unambiguously a functign onw;(X;)? and that this function is non-decreasing in its
first argument and non-increasing in its second one.

Regarding-;*, the same considerations apply as soor@s is a weak order, which is

I~

ensured byRC?2;. ¢

Let us now consider modelL@D11). It is straightforward that any preferenge repre-
sentable in this model is complete and satistid€'12 and7'C'. Hence, using lemmas 16.5(3),
16.5(4) and 16.10(2), we know that such a preference reaasirictly positive manner both
to the traces on levels and to the traces on differences, (&, a—:) = (zi, b—:), then

Z; >—;r Yi = (xi,a_i) - (Zi,b_i),
Zi > Wi = (yi,a-i) = (wi,b—)
and (xl,zl) %: (yi,zi) = (a:i,a,i) - (Zi,bfi).

We cannot deduce from this, however, that- y; = (x,:) =7 (v, s:) for all levels
s; orthatz; =, w; = (i, wi) =; (ti,2;) for all levelst;. In the former case (the other case
being similar), for some levels;, it may indeed occur that comparing the differerjesg, s;)
to the difference(y;, s;) does not reveal that; is at a higher level thag;. One situation in
which the higher level ofc; is certainly revealed is the following. If there exist;,b_; €
X_;, such that(y;,a—;) ~ (si,b—s) then, using the strict monotonicity ¢f with respect
to >, we have(z;,a—;) = (s;,b—;) hence(x:,s;) =F (vi,s:). If such a situation never
occurs, it may happen that for all;,b_; € X_; we always have eithdly;, a—;) > (s:,b—;)
and (xi,a,i) - (Si,bfi) or NOt[(yi,a,i) ?\: (Si,bfi)] and Not(xi,a,i) ?\: (Si,bfi)]. In
such a case(z;, si) ~; (yi,s:) while this is not in contradiction wit; =} y; [BOU 04a,
example 17].

Conditionz; >} yi = (x5, ws) =5 (yi, w;) is, however, necessary for the independence
of =;*. Indeed,;* is independent if and only if for alt;, yi, z;, w; in X;, (zi,2:) =;°

(Yi,zi) & (@i, wi) Zi" (yo,wi) and (zi, i) 27" (2i,9:) < (wi,@i) 27" (wi, y:). But

x; >f y; implies z; >2‘ yi Or z; > y; (or both). In the former case, there exist levels
a—; and an alternativev such that(z;,a—;) =~ w and Not(y;,a—;) - w. Hence, we have
(zi,ws) =7 (yi, w;). The latter case entails a similar conclusion. Hence, tlegandence of

Z i implies that for allz;, (zi, zi) > (yi, 2:)-

Although we are unable to characterize the independencg;6fin terms of relationz
and the previously introduced axioms (or the independefng¢gd this will have no influence
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ModelsE ModelsLODzx, L1Dx andL2Dx Conditions
(D0) & (LODO0) & (L1D0) & (L2D0) &
(D1) & (LOD1) < (L1D1) < (L2D1)
Ky independent
(D2) & (LOD2) < (L1D2) < (L2D2)
(D3) & (LOD3) < (L1D3) < (L2D3) complete, independent

Table 16.5.Models equivalent tolp0), (D1), (D2) and (D3)

on the characterization of our models as we shall see. Theconisequence is that we cannot
guarantee the existence reyular representations for modeL2D11) (i.e. of representations
in whichu; representg. = ande; (u: (), i (y;)) represents ;™).

16.5.2. Study of models{,1D0) to (L1D11) and (L2DO0) to (L.2D11)

In this section, we assume thtis at most denumerable. The difficulties of the general case
are mainly technical; they are fully dealt with in [BOU 044&gt us start with the study of the
models wherdd is not supposed to be monotonic, i.e. modél$1p0) to (L1D3) and .2D0)
to (L2D3). Itis easily understood that these models contributeingthew with respect to the
corresponding models on differences, that is modB)( (D1) (which is equivalent tolD2))
and (D3). Indeed, the monotonicity of functions; does not impose any additional constraint,
since we do not require that functidii reacts monotonically to the variations of functiaps
We can easily build the new representations on the basi®séthf the models on differences by
substitutingp; (u: (z:), ui(ys:)) to pi(zs, y;). The models equivalences are noted in Table 16.5;
the equivalences with model&@D0), (L0D1), (L0D2) and (LOD3) are also noted as well as
the models characterizations.

As soon as we assume thdtis non-decreasing, variations @f are transmitted and addi-
tional constraints appear and impact on the charactesizafithe preference relations. Model
(L1D4) is the first interesting one; it is equivalent to modeld D), (L2D4) and (L2D8).

We verify immediately that a preference representable ideh@.1D4) satisfiesAC'123 and
these conditions, together witRC'1, are necessary and sufficient for this model. To obtain a
representation of a relation satisfyifiy”1 and AC'123 in model (L1D8), let us start with the
representation in modelJ8) obtained through equation (16.36), i.e.

(e i \]) — +exp(3;, pi(@i, yi)) fzZy,
G(pi(wi,y:)]) = {_ exp(— Y, pi(zi,ys)) otherwise

wherep; is a numerical representation of; for all <.

Using proposition 16.15, we can decompgsér;, y;), which is any numerical represen-
tation of ==, into i (us (2:), ui(y;)) in which u; represents weak ordér: and ¢; is non-

~T

decreasing in its first argument and non-increasing in iters@ one. This shows that model



636 Decision Making

(L1D8) is not more constrained than modéli(D4). We can show, starting from the just con-
structed representation, that it is possible to changetifumep; into functions that are increas-
ing in their first argument and decreasing in their second ©his is possible without making
any additional hypothesis on relatign [BOU 04a]. Note that this modified function will no
longer, in general, be a numerical representatioly bf This proves that modell2 D8) is not
more constrained than moddl{D4) and thus establishes the announced equivalence of the
four models as well as their characterization.

Passing to modelI{1 D5) and the equivalent modeld.{D9), (L2D5) and (2D9), we
first observe that independence’pis a necessary condition, in addition &1 and AC'123.
Assuming that these conditions are fulfilled, we then camsta representation @f in model
(L1D9) as in the previous paragraph. The only difference is thét;, y;) is no longer any
numerical representation gf;: the chosen representation satisfies an additional psoytleat
is pi(z:, z;) = 0. Using proposition 16.15, we decompdhés numerical representation &f;
into o; (u; (), ui(y:)) whereu, represents weak orders andy; is non-decreasing in its first
argument and non-increasing in its second one. We have iti@dthatp; (v (z;), ui(z:)) =
0. As before,p; (u;(x;), u:(y;)) can be modified into a function that is increasing in its first
argument and decreasing in its second one, while presetivingdditional property; (u;(x;),
u;i(x:)) = 0. A representation of; in model (L2D9) is therefore obtained.

Model (I.1D6) implies RC'12 and AC'123. The independence ¢f is a consequence of
RC12 (as in model D6) of which it is a specialization). The procedure used with phevious
models also applies here to characterize modeld6), (L.1D10), (L2D6) and (.2D10) and
show that they are equivalent. Let us start with equatior8{@6Here, functiom, is a represen-
tation of Z;*; it is antisymmetric. The antisymmetry of is transferred ta; (u; (z;), ui(ys))

~T

(as a consequence of proposition 16.15).

The last four models are not all equivalent. We distinguisteé¢ classes among them:
(L1D7) and L.2D7) are equivalent; the last two are distinct models. Notics fimat all these
models correspond to complete relations. Modél$97) and (L2D7) correspond exactly to
the complete relations that fulfill conditions RC'12 and AC'123. A numerical representation
can be constructed as before, starting from a represemiatimodel (O7).

For a preferencg, representable in model.{ D11), itis clear thatl’C and AC123 are nec-
essary sincel{1D11) is a special case of models1D10) and (D11). Under these hypotheses,
the construction process used for model D7) leads to a representation in modéll(D11).

Finally, for model .2D11), TC andTAC12 are necessary conditions. The construction
of a representation starts as for model D7); we then transform functiop; into a function
non-decreasing in its first argument and non-increasintg iseicond one, which no longer is, in
general, a numerical representatiorygf*.

Table 16.6 summarizes all characterization and equivalesgults relative to model& { D4)
to (L1D11) and (L2D4) to (L2D11).
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ModelsL1Dx ModelsL2Dx Conditions
(L1D4) < (L1D8) <« (L2D4) < (L2D8) RC1,AC123

(L1D5) < (L1D9) < (L2D5) < (L2D9) independentkRC1, AC123

(L1D7) & (L2D7) complete,RC12, AC123
(L1D11) complete’'C, AC123
(L2D11) complete’'C, TAC12

Table 16.6.Equivalences and characterization of moddlg D4) to (L1D11) and (L2D4) to
(L2D11)

16.5.3. Examples

Tversky's additive differences model (16.3) and the adéditialue function model (16.1)
both use marginal traces on levels and on differences. Th#y \erify, as we have seen in
sections 16.3.8 and 16.4.5, the hypotheses of the moreramest models 18) and (D11).

As a result they belong to categorf{D11) in the models using both traces on levels and on
differences.

The additive differences model can be viewed as a particalse of model (16.4); functions
pi(zi, y;) that occur in the latter factorize into algebraic differesip; (z;, yi) = ®;(ui(z:) —
u; (y;)) where functions.; represent the marginal tracgéf that are identical (in this case) to
marginal preferences;.

In the versions of outranking methods described in litesgtdifferences of preference are
generally expressed in terms of the levels. In the simplsiors that we have presented, the ma-
joritarian method without veto (condition (16.6)) or witbte (equations (16.41) and (16.42)),
we have assumed that preference differences can be expissetly in terms of the alterna-
tive description on the relevant attributes, i.e. as a difiee between corresponding coordinates
of vectorsz andy. In other words, it has been assumed implicitly thgtr;) = z;. Itis easy of
course to adapt the descriptions of the outranking methodsder to show explicitly a coding
of the descriptions (i.e. of the elementsXf) by functionsu;. These transform the possibly un-
structured set(; into subsets of the real numbers(X;). To do this, we simply substitute;
andy; by u;(z;) andw;(y;), respectively, in expressions (16.6), (16.41) and (16.A2)ough
this, we obtain models on the levels and on the differencegpaf (L1.10) or, equivalently,
of type (L2D10). Note that the representations in models as constrainpdsssble are not al-
ways the most natural or the most useful ones, as alreadyvaloseith models on differences.
(Compare equations (16.39) and (16.40) to (16.6)).
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16.6. Conclusion

In this chapter, we have presented a general approach forilnieg binary relations on a
product set. This approach is based on conjoint measuremedels that do not exclude in-
transitive or incomplete preferences. The main tools fayaing such preferences are simple:
we use two types of marginal traces induced on each dimebgithre global preference. These
tools are powerful: they permit a complete analysis of aenatrge variety of models as we
have shown, limiting ourselves to the case wh&res denumerable.

Our project was to discover how far it is possible to go, im®pof numerical representations
of relations, by using only a small humber of cancelationditions and without imposing
transitivity conditions to the relations or unnecessaryctiral properties on the set of objects
X. Surprisingly, we can go rather far while remaining in thiatieely poor setting that we have
chosen. In addition, the cancelation conditions that weuaneg (RC'1, RC2, independence,
TC, AC1, AC2, AC3, TAC1, TAC2, AC4) are reasonably simple and remain close to the
conditions used in traditional conjoint measurement madel

The framework that has been developed and the results ebitaie promising in terms of
applications and further developments. Some of them hame &eoked above; let us emphasize
the following in particular:

— The characterization of all relations compatible with andwance relation: such a char-
acterization has been obtained using the models based anatginal traces on levels (see
sections 16.3.5 and 16.3.6; see also [BOU 04b]).

— The characterization of preference relations that carbtered by means of an ‘ordinal
aggregation model’ using marginal traces on differencesh snodels can be used for analyz-
ing majoritarian methods and outranking relations sucthase obtained by methods of the
ELECTREtype. We illustrate how this suggestion can be put into fzadéh section 16.4.5 (see
also [BOU 01, BOU 05a, BOU 08]). This offers an alternativethe approach developed in
[DUB 01, DUB 02a, DUB 03b, FAR 01].

— The characterization of ‘ordinal’ models for decision liee tuncertain (Chapter 11). The
models described in this chapter adapt to the decision inrnibertain; it is sufficient to suppose
that all component&(; of the product seK are copies of a single set. Thecomponents of the
vector describing an alternative correspond to the evialusif this alternative in the various
‘states of Nature’ [BOU 03a, BOU 03b, BOU 04c]. As for ordirgagregation, models of the
type studied in this chapter offer an alternative to the aagin developed in [DUB 97, FAR 99,
DUB 02b, DUB 03a].

— The characterization of some particular functional foforsF’, G or H [BOU 02a]: for
instance, the cases whelffe GG or H are sums, thenin operator, etc.

Itis of course impossible to develop all these points hene.rEader who will have followed
us up to this point will not have any difficulty in imaginingelspirit of these results.

Let us summarize in a few words the main message of this ahapte

— Faced with a non-transitive or incomplete relation, idgiaable to work with its marginal
traces on levels and/or on differences.
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— Conjoint measurement technigues can also be used to staelyansitive and incomplete
relations.

— Setting aside the efficiency of elicitation procedures, akserve that substituting the
additivity hypothesis by simple decomposability requiesnts often permits the fundamental
features of a model to be captured in a simple way.

— Substituting additivity by a mere decomposability hym@sils amounts to using models
that are intimately linked to rule-based modeling of prefees [GRE 99, GRE 01b, GRE 02].

In this way, one can consider the construction of elicitapwocedures, using a machinery of
rules induction issued from artificial intelligence.

The general framework and the results presented also lbotdrio a general theory of
conjoint measurement. They allow us to outline a broad panarof conjoint measurement
models (Figure 16.1). The models are grouped according &theh:

— they use the traces on differences, in which case theitifurad form can be written in
order to be non-decreasing in the functignéc;, v;);

— they use the traces on levels, in which case their fundtiona can be written in order
to be non-decreasing in the functiomg x; ) and non-increasing in the functions(y;); or else
— they are transitive.

e Zy e U(ui(z)]) 2 U(lui(y)) = 2y H([¢i(uwilwi), wi(y:))]) 20

T,L,D T,L,D
rZye U@ >0y zZye Flule));uw@)]) >0 =Zye G(pilei,vi)]) >0
T,L,D T,L,D T,L,D
zZmye T(z,y) >0
T,L,D

Figure 16.1. Summary of preference modelB:means ‘transitive’;L means ‘uses marginal
traces on levels’D means ‘uses marginal traces on differences’; and for a priypB, P
means ‘NotP’

In Figure 16.1,T denotes a transitive moddl, a model that has complete marginal traces
on levels and a model that has complete marginal traces on differences.

In the family L, all relations are weakly separable but it may happen that Hre not
weakly independent (and, fortiori, not independent either). In contrast, famlly contains
only independent relations as soon as axiBai2 is imposed. Marginal preference relations of
preferences in famil. tend to enjoy nice properties: they are complete and oftem-eeders

(as soon as axiomdC'3 and eitherAC'1 or AC?2 are in force). The situation is quite different
in family D.
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Note that all combinations dI', L and D have been studied in literature except for the
combinationT, L, D. This is not surprising since, whdn is in force, most models also use
RC?2; hence they are independent. When these properties arjtintransitivity and com-
pleteness of;, -; is a weak order, identical tgf. As a consequence, such models necessarily
have complete marginal traces on levels.
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