
Chapter 4
Building Recommendations

Denis Bouyssou, Thierry Marchant, Marc Pirlot, Alexis Tsoukiàs,
and Philippe Vincke

Abstract This chapter briefly presents a number of techniques that can be used
to build recommendations in each of three classical problem statements (choosing,
ranking, and sorting) on the basis of a preference model. We start with the simple
case of a preference model based on a value function. We then turn to more complex
cases.

4.1 Introduction

In Chap. 3, various preference models for alternatives evaluated on several
attributes/criteria were presented. Two main types of preference models were
analyzed:

• preference models based on value functions leading to a weak order on the set of
alternatives,

• preference models in which incomparability and/or intransitivity may occur.

This chapter is based on Bouyssou et al. (2006, , Chap. 7).
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Preference models are tools built by the analyst in the course of a decision aiding
study, the main phases of which were described in Chap. 2. Having built one or
several preference models does not mean that the work of the analyst is over. Going
from a preference model to recommendations requires many different tasks. Some
of them are rather informal, involving, e.g., a good communication strategy with
the actors in the decision process, the need for transparency in this process, a sound
management of multiple stakeholders, etc. We discuss here the formal tasks that are
involved in the elaboration of a recommendation.

The nature of this recommendation that is looked for will be of crucial impor-
tance in this phase of the decision aiding study. The central element here is the
problem statement that has been agreed upon at the problem formulation stage of
the decision aiding process (see Chap. 2). We will restrict our attention here to the
three main problem statements introduced in Roy (1996).

4.1.1 Choosing

The first problem statement, choosing, is quite familiar in Operational Research and
in Economics. The task of the analyst is formulated in such a way that he either tries
to isolate, in the set A of potential alternatives, a subset A0 that is likely to contain
the most desirable alternatives in A given the information available or to propose a
procedure that will operate such a selection.

Examples in which such a problem statement seems appropriate are not difficult
to find: a recruiter wants to select a unique applicant, an engineer wants to select the
best possible technical device, a patient wants to choose the best possible treatment
among those offered in a hospital, a manager wants to optimise the supply policy
of a factory (for other examples, see Chaps. 7 and 14 in this volume). In all these
examples, the selection is to be made on the sole basis of the comparison of potential
alternatives. In other words, the “best” alternatives are not defined with respect to
norms but with respect to the set of alternatives A; the evaluation is only relative.
Therefore, it may occur that the subset A0, while containing the most desirable
alternatives within A, only contains poor ones.

4.1.2 Ranking

The second problem statement, ranking, is also familiar in Operational Research and
Economics. The problem is formulated in such a way that the analyst tries to rank
order the set of potential alternatives A according to their desirability or to propose
a procedure that will operate such a ranking. The evaluation is performed, as in
the preceding problem statement, on a relative basis: the top ranked alternatives are
judged better than the others while nothing guarantees that they are “satisfactory”.
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It is not difficult to find examples in which this problem statement seems
appropriate. A sports league wants to rank order the teams at the end of the season.
An academic programme has to select a number of applicants: a competitive exam
is organized which leads to rank ordering the applicants according to an “average
grade” and applicants are then selected in the decreasing order of their average
grades until the size of the programme is reached. An R&D department has to
finance a number of research projects subject to a budget constraint: research
projects are then rank ordered and financed till the budget constraint is binding.
In practice, some authors tend to use a ranking problem statement whereas a choice
problem statement would seem more natural (see Chap. 12 in this volume). This
is often motivated by the fact that the ranking problem statement leads to richer
information than the choice problem statement.

4.1.3 Sorting

The third problem statement, sorting, is designed to deal with absolute evaluation.
The problem is here formulated in such a way that the analyst tries to partition the
set of alternatives into several categories, the definition of these categories being
intrinsic, or to propose a procedure that will generate such a partition. The essential
distinctive characteristics of this problem statement therefore lie in the definition of
the categories. Two main cases arise.

The definition of the categories may not refer to the desirability of the alter-
natives. Many problems that arise in pattern recognition, speech recognition or
diagnosis are easily formulated in this way. We will only discuss here the case in
which the definition of the categories refers to the desirability of the alternatives,
e.g., a credit manager may want to isolate “good” risks and “bad” risks, an academic
programme may wish to only enroll “good” students, etc. A crucial problem here
will lie in the definition of the categories, i.e., of the norms defining what is a “good”
risk, what is a “good” student. Several chapters in this volume (see Chaps. 15 and 19)
adopt this problem statement.

4.1.4 Outline

In Sect. 4.2, we tackle the simple case in which the preference model takes the form
of a value function. Section 4.3 is devoted to the case of making a recommendation
on the basis of several value functions. Such a situation frequently arises when using
Linear Programming-based assessment techniques of an additive value function. In
Sect. 4.4 we deal with the more delicate case of deriving a recommendation on the
basis of less well-structured preference models like the ones that are obtained with
the so-called outranking methods, which includes the ELECTRE methods.
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4.2 A Single Value Function

Many of the preference models envisaged in Chap. 3 are based on value functions.
This means that the analyst has built a real-valued function V on the set of
alternatives A that induces binary relation % on A, interpreted as an “at least as
good” relation letting, for all a; b 2 A:

a%b, V.a/ � V.b/: (4.1)

Such a relation % is a weak order (it is complete and transitive). It is therefore
simple to use it to build a recommendation involving only a relative evaluation of
the alternatives, the hard work involved in the assessment of a value function being
rewarded at this stage of the decision aiding process.

In this section, we suppose that the value function V is only constrained
by (4.1). This means that any increasing transformation of V would carry the same
information as V .

4.2.1 Choosing

In a choosing problem statement, it is natural to look for alternatives that would be
“at least as good” as all other alternatives, i.e., to identify the set G.A; %/ of greatest
alternatives in A given the binary relation % defined by:

G.A; %/ D fa 2 A W a%b;8b 2 Ag:

Since % is complete and transitive, G.A; %/ will, in general,1 be nonempty. Finding
the alternatives in G.A; %/ is equivalent to finding the solutions to the following
optimisation problem:

max
a2A

V.a/:

Note that the set of solutions to this optimisation problem is unchanged if V is
replaced by any value function satisfying (4.1), i.e., by any value function obtained
from V applying to it an increasing transformation.

The set G.A; %/ may contain more than one element. In this case, all alternatives
in G.A; %/ are indifferent and compare in the same way to all other alternatives.
Therefore, the preference model defined by V offers no means of distinguishing

1This is true when A is finite. The general case may be more tricky: while the relation � on R

is complete and transitive, G.�;R/ is clearly empty. The same is true with � on the open �0; 1Œ

interval.
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between them. All alternatives in G.A; %/ are strictly preferred to all alternatives
outside G.A; %/. The rejection of the latter therefore seems fully justified: all
recommended alternatives are judged strictly better than all rejected alternatives.

The set of maximal alternatives M.A; %/ in A, given the binary relation %, is
defined by:

M.A; %/ D fa 2 A W NotŒ b�a � ;8b 2 Ag;

where � is the asymmetric part of %. It is often presented as the central notion in
a choosing problem statement. When % is complete, we always have G.A; %/ D
M.A; %/. When A is finite, it is easy to show that M.A; %/ is nonempty when %
has no circuit in its asymmetric part �. For finite sets, the absence of any circuit in
� is, in fact, a necessary and sufficient condition for M.B; %/ to be nonempty for
all nonempty sets B � A.

4.2.2 Ranking

Let us now envisage the case of a ranking problem statement. The hard work of
building a value function also pays off here since the binary relation % induced on
A by the value function V (or by any increasing transformation of V ) rank orders the
alternatives from the best to the worst, which is precisely what is wanted. Apart from
the necessity of conducting a robustness analysis, no additional work is required (on
the notion of robustness analysis, see Roy, 1998, 2010).

4.2.3 Sorting

In both problem statements involving only a relative evaluation of alternatives,
we have seen that the value function model provided an almost immediate way
of deriving a recommendation. The situation is slightly more complex in a sorting
problem statement, which calls for an absolute evaluation. It is indeed necessary to
define the “norms” that will give sense to such an evaluation.

We will only envisage the case in which the absolute evaluation that is sought
takes the form of a sorting of the alternatives between r ordered categories
C 1; C 2; : : : ; C r , with C 1 containing the least desirable alternatives. The definition
of each category involves the definition of norms. These norms usually take two
distinct forms. They may be modelled as prototypes of alternatives belonging to
a category or as limiting profiles indicating the limit of each category. A “good”
student may be defined using examples of past students in the programme: this
would define the prototypes of the category of “good students”. Alternatively,
we could define, as is done in the French baccalauréat, an average grade above
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which, students are considered to be “good”. This average grade implicitly defines
a limiting profile for the category of “good students”.

4.2.3.1 Limiting Profiles

When each category C k is delimited by a limiting profile �k , an alternative a should
belong at least to the category C k when it is preferred to �k . It then becomes easy
to use a value function to sort the alternatives: alternative a 2 A will belong to
C k if and only if V.�k/ < V.a/ < V.�kC1/, where the unlikely cases of equality
are dealt with conventionally, depending on the definition of the limiting profiles
�k . Note that the definition of a limiting profile implies that there is only one such
profile per category. The main problem here lies in the definition of the limiting
profiles �k . We shall come back to this point in Sect. 4.3.3.

4.2.3.2 Prototypes

The situation is more delicate when categories are defined via prototypes. Suppose
that category C k has been defined by a set P k;1, P k;2, . . . of prototypes. A first step
in the analysis consists in checking whether this information is consistent with the
value function V , i.e., if the prototypes defining a category C k are all preferred to
the prototypes defining the category C ` when k > `.

When this consistency test fails, the analyst may wish to reconsider the definition
of V or of the various prototypes. When the prototypes are consistent, we may easily
associate to each category C k, its lowest prototype Lk and its highest prototype H k

in terms of the value function V . If V.a/ 2 ŒV .Lk/IV.H k/�, alternative a should be
assigned to the category C k. If this simple rule allows to assign each alternative to a
well-defined category, no further analysis is required. When this is not the case, i.e.,
when there are alternatives a 2 A such that V.a/ falls between two intervals, we
may either try to refine the information defining the categories, e.g., try to ask for
new prototypes, or apply a simple rule e.g., replacing the intervals ŒV .Lk/IV.H k/�

by the interval Œ.V .H k�1/CV.Lk//=2I .V .H k/CV.LkC1//=2�. Ideally we would
need a similarity measure between alternatives and prototypes that would allow to
classify a as a member of C k if a is close to one or several of the prototypes defining
C k. The simple rule envisaged above amounts to using V as a very rough similarity
measure since this amounts to saying that a is more similar to b than it is to c if
jV.a/ � V.b/j < jV.a/� V.c/j. It should however be noted that the assessment
procedures of V do not necessarily guarantee that such a measure is appropriate.
In general, this would call for the modelling of “preference differences” between
alternatives, e.g., using a model in which:

a%b, V.a/ � V.b/ and (4.2)

.a; b/%�.c; d /, V.a/ � V.b/ � V.c/ � V.d/; (4.3)
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where %� is a binary relation on A2 such that .a; b/%�.c; d / is interpreted as “the
preference difference between a and b is at least as large as the preference difference
between c and d”. A common mistake here is to use any V satisfying (4.2) as if it
would automatically satisfy (4.3).

4.3 A Set of Value Functions

Motivated by the assessment of an additive value function via Linear Programming,
this section studies techniques to build a recommendation on the basis of several
value functions that cannot be deduced from one another using an increasing
transformation. This is the case with techniques such as UTA (Jacquet-Lagrèze and
Siskos, 1982). This method uses LP techniques to assess an additive value function,
which, in general, leads to several possible value functions.

4.3.1 Choosing with a Set of Additive Value Functions

Suppose for example that, e.g., because we have assessed an additive value function
with UTA, we have an entire set V of value functions compatible with the available
information. Two main ways of exploiting this set V may be envisaged within a
choosing problem statement.

The simplest way of using the set V is to consider that an alternative a 2 A

should be included in the set A0 � A of recommended alternatives as soon as there
is one additive value function in V such that using this function, a is at least as good
as any other alternative in A.

When the set V comes from Linear Programming-based assessment techniques,
such a test is easily performed using LP, since the elements in V correspond to
the solution of a set of linear constraints. In fact, we only have to test whether the
system of inequalities V.a/ � V.b/, for all b 2 A, is consistent for some V 2 V .
This requires solving a linear programme for each alternative a 2 A. This idea has
been systematized in Greco et al. (2008, 2009).

The above technique is very cautious and is likely to lead to quite large choice
sets. A more refined analysis is based on the “proportion” of value functions V 2 V
for which an alternative is optimal. The “more functions” V in V give a as the
optimal solution, the more confident we are in the fact that a can be recommended.
In general, such an analysis unfortunately requires solving difficult computational
problem (see Bana e Costa, 1986, 1988), even when V is defined by the solutions
of a set of linear constraints. A possible solution would be to sample a few value
functions within V . Indeed, when V is defined by linear constraints, Jacquet-
Lagrèze and Siskos (1982) suggested a simple way to build a finite subset V 0 of
V that is “representative” of the whole set V . An alternative approach is to use
Monte-Carlo simulation (Charnetski and Soland, 1978; Lahdelma et al., 1998)
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4.3.2 Ranking with a Set of Additive Value Functions

The crudest way of using the information contained in V is to build a partial
preorder (i.e., a reflexive and transitive relation) T such that:

aT b, V.a/ � V.b/ for all V 2 V ; (4.4)

i.e., letting a be ranked before b if it is so for every admissible function V in V .
Testing if aT b can easily be done using LP when V is defined via linear

constraints (this idea has been systematized in Greco et al. (2008) and Greco
et al. (2009)). The use of such a technique is however limited since it implies
solving n.n � 1/ linear programmes when jAj D n. Furthermore, such a unanimity
argument is likely to lead to a very poor recommendation: many alternatives will be
incomparable when V is large.

When jAj is too large to allow the use of the technique described above or
when a richer result is sought, one may either try to restrict the domain V through
emphasizing interaction with the decision maker during the assessment phase, or
work with a representative set of value functions V 0, as mentioned above. Quite
interesting examples of such techniques can be found in Siskos (1982).

4.3.3 Sorting with a Set of Additive Value Functions

In the techniques envisaged so far we did not consider the definition of the
“norms” that are necessary to sort alternatives. A useful technique, in the spirit
of UTA, consists in assessing the additive value function using examples of
alternatives belonging to each of the ordered categories, that we called prototypes
in Sect. 4.2.3.2. Such examples may come from past decisions or may be obtained
from the decision maker as prototypical examples of each category. We may then
try to infer limiting profiles and an additive value function on the basis of such
information.

This amounts to assessing an additive value function V and thresholds sk such
that, for all prototypes P k;j of category C k we have V.P k;j / 2 Œsk; skC1Œ. This
is the basis of the UTADIS technique (see Jacquet-Lagrèze, 1995; Zopounidis and
Doumpos, 2000b, 2001, 2002) and its variants (Zopounidis and Doumpos, 2000a).

Basically UTADIS uses a number of prototype alternatives for each ordered
category whereas UTA uses a weak order on a subset of reference alternatives.
Such a technique extends the traditional methods of discrimination used in Statistics
considering the possibility of nonlinear value functions. As in Statistics, the
assessment may use “cost of misclassification” which simply amounts to weighting
the deviation variables in the LP used to assess the value function V appropriately.
As in UTA, this leads to a whole set of possible additive value functions with
associated limiting thresholds.
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The way to make use of such information to build a recommendation has not been
thoroughly studied in the literature. When the set V is defined via linear constraints,
it is easy to use LP to compute for each alternative the subset of categories to which
they may belong. This is computationally intensive. Another way to proceed is to
consider a subset V 0 of representative additive value functions. For each alternative
a 2 A, it is easy to compute a set of possible assignments using V 0. One may
then, for example, use the frequency with which each alternative is assigned to a
category to devise a recommendation. For developments along this line, see Greco
et al. (2010).

4.4 Other Preference Models

As argued in Chap. 3, the assessment of a value function is a demanding task. The
analyst may then wish to use aggregation technique that have a more “ordinal”
character. The price to pay for using such models is that the preference models
to which they lead may be intransitive and/or incomplete. Using them to derive a
recommendation is a difficult task. For space reasons, we restrict our attention to the
case of crisp binary relations (the case of valued relations is dealt with in Bouyssou
et al., 2006, , Chap. 7).

Suppose that you have built a preference relation on a set of alternatives using
one of the techniques presented in Chap. 3 that does not guarantee the transitivity or
the completeness of the result. This does not necessarily mean that any preference
structure can be obtained with such a method. Let us first show, that for a number of
well known techniques, this is unfortunately true.

Consider simple majority, i.e., the simplest “ordinal” technique for comparing
alternatives. On each criterion, we suppose that alternatives can be compared using
a weak order. Simple majority amounts to declaring that:

x%y , jP.x; y/j � jP.y; x/j

where P.x; y/ denotes the set of criteria on which x is preferred to y. Clearly, a
relation % obtained in such a way is always complete. Let T be any complete binary
relation on a finite set of alternatives A. Besides completeness, no hypothesis is
made on T ; it may be the most intransitive relation you can think of, with circuits
of any length in its asymmetric part. The surprising and disturbing fact, proved by
McGarvey (1953), is that it is always possible to see T as the result of a simple
majority aggregation. Extending this result, Bouyssou (1996) has shown that any
reflexive relation on a finite set of alternatives may be obtained with ELECTRE I
(Roy, 1968). Therefore, we have to tackle here quite a large class of preference
models.
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4.4.1 Motivating Examples

Many techniques for building recommendations on the basis of a non-necessarily
transitive or complete binary relation have been proposed in the literature on
Multiple Criteria Decision Making (MCDM). Most of them were justified on an
ad hoc basis. But the intuition supporting these techniques might not work well in
all cases. Let us illustrate this point with two examples.

Example 4.1 (Choice Procedures and Dominated Alternatives) Consider a set of
alternatives A D fa; b; c; d g evaluated on three criteria. Suppose that, on each
criterion, alternatives are weakly ordered by a binary relation Si . Suppose that
the preference on each criterion are such that, using an obvious notation for weak
orders:

aP 1bP 1cP 1d;

cP 2dP 2aP 2b;

dP 3aP 3bP 3c;

where P i denotes the asymmetric part of Si .
Alternative b is strongly dominated by alternative a (a is strictly preferred to b

on all criteria). Intuitively, this gives a decisive argument not to include b in the set
of recommended alternatives.

Suppose then that the above information is aggregated into a binary rela-
tion S using simple majority. It is not difficult to see that S is such that:
aP b; aP c; bP c; cP d; dP a; dP b, where P denotes the asymmetric part of S . It
is obvious that S is not well suited to select a subset of alternatives since its asym-
metric part P contains a circuit involving all alternatives (aP b; bP c; cP d; dP a).
The simplest way to get rid of such a circuit is to consider that all alternatives
included in a circuit should be considered “equivalent”. This can be done by
considering the transitive closure of the relation, i.e., the smallest transitive relation
containing it. But using the transitive closure of S would then lead to consider that
all alternatives are equivalent and, hence, to propose the whole set A as the set of
recommended alternatives. This is not sound since we have shown that b should not
be recommended.

Example 4.2 (Ranking Procedures and Monotonicity) Let A D fa; b; c; d; e; f; gg.
Using the result of Bouyssou (1996), we know that if we use simple
majority or ELECTRE I, we might end up with a complete binary rela-
tion S such that: aP b; aP f; bP c; bP d; bP e; bP f; cP a; cP e; cP f; cP g,
dP a; dP c; dP e; dP f; dP g; eP a; eP f; eP g; f P g; gP a; gP b, where P

denotes the asymmetric part of S .
In order to obtain a ranking on the basis of such information, one may use

a measure of the “desirability” of each alternative. A simple measure of the
desirability of an alternative x consists in counting the number of alternatives y
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such that xSy minus the number of alternatives z such that zSx. This measure is
called the Copeland score of an alternative (Laslier, 1997).

A simple way of building a ranking on A goes as follows. Define the first
equivalence class of the ranking as the alternatives that have obtained a maximal
Copeland score. Remove these alternatives from the set of alternatives. Define the
second equivalence class of the ranking as the alternatives with maximal Copeland
scores in the reduced set. Repeat this procedure as long as there are unranked
alternatives. Such a ranking procedure is intuitively appealing and leads to the
following ranking, using obvious notations:

d � c � e � Œa; g� � b � f;

which does not seem unreasonable.
Consider now a relation identical to the one above except that we now have

aP d instead of dP a. Intuition suggests that the position of a has improved and
we reasonably expect that this is reflected in the new ranking. But applying the
same ranking method as before now leads to:

Œb; c; d � � e � Œa; f; g�:

Such a result is quite disappointing since, before a was improved, a was ranked
before b while, after the improvement of a, b is ranked before a.

These two examples show that the definition of sound procedures for deriving
a recommendation on the basis of a non-necessarily transitive or complete binary
relation is a difficult task. Intuitively appealing procedures sometimes produce
disappointing results.

4.4.2 Choice Procedures

Let A be a set of alternatives. Suppose that you have built a preference relation S on
A using an aggregation technique. Let us call S the set of all conceivable preference
relations that can be obtained using such a technique. As shown above, S consists
of all reflexive binary relations with ELECTRE I and all complete binary relations
with simple majority. A choice procedure C is a function associating a nonempty
subset C.S/ of A with each element S of S . The choice procedure C should:

• be such that C.S/ is as small as possible given the available information,
• be such that there are clear arguments to justify the elimination of the alternatives

in A n C.S/, i.e., the alternatives that are not selected,
• be such that there is no built-in bias in favour of some alternatives, i.e., that the

only arguments that can be taken into account in the determination of C.S/ are
how these alternatives are related in terms of the relation S . Technically, this
leads to requiring that C is neutral, i.e., that C.S/ D 	ŒC.S	 /�, where 	 is any
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one-to-one function on A and S	 is the binary relation in S such that, for all
a; b 2 A, S.a; b/ D S	 .	.a/; 	.b//.

• react to the improvement of an alternative in the expected direction. Technically,
the procedure should be monotonic, i.e., if a 2 C.S/ and S 0 is identical to S

except that ŒaS 0b and NotŒ aSb � � or Œ NotŒ bS 0a � and bSa�, for some b 2 A,
then we should have a 2 C.S 0/.

Let S 2 S . We shall always denote by P (resp. I ) the asymmetric (resp.
symmetric) part of S and J the associated incomparability relation, i.e., for all
a; b 2 A, aJ b iff Œ NotŒ aSb � and NotŒ bSa � �.

4.4.2.1 Procedures Based on Covering Relations

Suppose that there exists a 2 A such that aP b, for all b 2 A n fag. Such an
alternative is usually called a Condorcet winner. In this case, letting C.S/ D fag
seems to be the only reasonable choice. In fact, by construction:

• when there is a Condorcet winner, it is necessarily unique,
• there is direct evidence that a is better than all other alternatives.

Unfortunately, the existence of a Condorcet winner is an unlikely situation and we
must agree on what to do in the absence of a Condorcet winner.

A simple extension of the notion of a Condorcet winner is that of greatest
alternatives already introduced. Remember that an alternative a 2 A belongs to
the set G.A; S/ of greatest alternatives in A given S if aSb, for all b 2 A. If a

belongs to G.A; S/, we have direct evidence that a is at least as good as any other
alternative in A. Contrary to the case of Condorcet winners, there may be more
than one greatest alternative. When the set of greatest alternatives is nonempty, it is
tempting to put all alternatives on G.A; S/ in C.S/.

This seems a natural choice. Indeed, all greatest alternatives are indifferent, so
there is no direct evidence that would allow to further refine the choice set C.S/.
Contrary to the case in which S is a weak order, it should however be noted that there
might be indirect evidence that allows to distinguish between greatest alternatives.
As shown in the following example, indirect evidence may be usefully employed to
narrow down the set of selected alternatives.

Example 4.3 Suppose that A D fa; b; cg and S be such that aIb, bIc and aP c.
Although both a and b belong to G.A; S/, we can use the way a and b compare to
a third alternative, c, to distinguish between them. Here, since aP c while bIc, it is
very tempting to use this indirect evidence to narrow C.S/ down to fag.

Unfortunately, there is no clear-cut way of defining what should count as an
indirect evidence that an alternative is better than another and to balance it with the
direct evidence.

Suppose first that aP b so there is direct evidence that a is superior to b. If, for
all c 2 A, we have cP a ) cP b, cI a ) cSb, bP c ) aP c and bIc ) aSc,
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there is no indirect evidence that b could be superior to a. In such a case, we
say that a strongly covers b (aSCb) and it seems that the selection of b would
be quite unwarranted. A cautious selection would then seem to be to select all
alternatives that are not strongly covered by any other, i.e., the set M.A; SC/ of
maximal alternatives in A for SC. When A is finite, M.A; SC/ is always nonempty
since the strong covering relation is asymmetric and transitive and, thus, has no
circuit. Therefore letting C.S/ D M.A; SC/ defines a selection procedure. Note
that the use of this selection procedure would allow to avoid selecting a strongly
dominated alternative as was the case with the procedure envisaged in Example 4.1
since, in this example, a strongly covers b. With such a procedure, the rejection of
the elements in A n C.S/ would seem fully justified since for each b 2 A n C.S/,
there would be an a 2 C.S/ such that aP b. We leave to the reader the, easy, task
of showing that this selection procedure is neutral and monotonic.

The relation SC is likely to be rather poor, so that the above procedure may result
in large choice sets. In order to reject an alternative, it is necessary to have direct
evidence against it and no indirect evidence in its favour. In Example 4.3, it would
not allow to distinguish between the two greatest alternatives a and b since there is
no direct evidence for a against b.

A less stringent procedure would consist in saying that the selection of b is
unwarranted as soon as there is an alternative a such that there is direct evidence
that a is at least as good as b while there is no indirect evidence that b is better than
a. This would lead to the definition of a covering relation in which a weakly covers
b (aWCb) as soon as aSb and for all c 2 A, we have cP a ) cP b, cIa ) cSb,
bP c ) aP c and bIc ) aSc. Therefore, the weak covering relation WC is
identical to the strict covering relation SC except that aIb is compatible with aWCb.
Contrary to SC, the relation WC is not asymmetric. It is reflexive and transitive so
its asymmetric part has no circuit. When A is finite, letting C.S/ D M.A; WC/

therefore defines a selection procedure. For each non selected alternative b, there
is a selected alternative a such that either aP b or aIb, while there is no indirect
evidence that b might be superior to a. The theoretical properties of this choice
procedure are quite distinct from the one relying on the strong covering relation
(Dutta and Laslier, 1999; Peris and Subiza, 1999), while remaining neutral and
monotonic.

A weakness of the procedure given above is that when a and b are incomparable,
it is impossible to distinguish between them even when there is strong indirect
evidence that one is better to the other. It is possible to modify the definition of
the weak covering relation requiring only that there is no direct evidence against
a, i.e., that aSb or aJ b, while still requiring that there is no indirect evidence that
b is superior to a. This very weak covering relation is still reflexive and transitive.
Taking the maximal alternatives in A for the very weak covering relation therefore
defines a selection procedure. It refines the above selection procedure based on the
weak covering relation. This is however a price to pay. Using such a choice set
does not prevent the existence of a non selected alternative b such that there is no
alternative in the choice set for which there is direct evidence that it is at least as
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good as b. Therefore, the narrowing of the choice set, considering the very weak
covering relation, may be judged unsatisfactory.

We refer to Dutta and Laslier (1999), Laslier (1997) and Peris and Subiza (1999)
for a thorough study of the properties of choice sets that are based on some idea of
“covering” i.e., mixing direct and indirect evidence to justify the selection of C.S/.

4.4.2.2 Procedures Based on Kernels

Quite a different path was taken by Roy (1968) and Roy and Skalka (1984) in the
ELECTRE I and ELECTRE IS methods (a similar idea is already detailed in von
Neumann and Morgenstern, 1947, , in the context of Game Theory). Note that the
selection procedure is clear as soon as S is transitive. In fact, in such a case, the set
of maximal elements in A, i.e., M.A; S/ D fa 2 A W NotŒ bP a � for all b 2 Ag
is always nonempty and such that, for all b … M.A; S/, there is an alternative
a 2M.A; S/ such that aSb. In fact, when S is transitive, the set M.A; S/ coincides
with the set of maximal alternatives for the weak covering relation since, in this case,
S D WC.

For B � A, we say that B is dominating if for all c … B there is an alternative b 2
B such that bSc. Therefore the selection of the alternatives in a dominating subset
always justifies the non selection of the other alternatives. By construction, the set
A itself is dominating. When A is finite, there are therefore dominating subsets
of minimal cardinality. If there is only one such dominating subset, it is a good
candidate for the choice set C.S/. When S has circuits, there may be more than one
dominating subset of minimal cardinality. Taking their union will generally result in
quite an undiscriminating procedure. This is illustrated in the following example.

Example 4.4 Let A D fa; b; c; d; eg. Suppose that S is such that aP b, bP c,
cP d , dP e and eP a. This relation has 5 dominating subsets of minimal cardinality,
i.e., fa; c; eg, fa; b; d g, fa; c; d g, fb; c; eg and fb; d; eg. The union of the minimal
dominating subsets is A.

B. Roy therefore suggested to consider the relation S 0 obtained by reducing the
circuits in S , i.e., to consider all alternatives that are involved in a circuit as a single
alternative. Working with S 0 instead of S amounts to considering that all alternatives
involved in a circuit compare similarly with alternatives outside the circuit. This
is frequently a strong hypothesis implying the loss of a lot of information (this
would be the case in Example 4.4). The following example illustrates the process of
reducing the circuits of S .

Example 4.5 Let A D fa; b; c; d; e; f g and consider the binary relation S such
that: aSb; aSc; aSd; aSe; aSf; bSc; bSf; cSa; cSe; dSe; eSf . In order to build
the relation S 0 obtained by reducing the circuits in S we need to find the maximal
circuits in S (i.e., circuits that are not included in other circuits). There is only one
circuit in S : aSb, bSc and cSa. Therefore the three alternatives a; b and c are
replaced by a single one, say x, and there is an arc from x to another alternative
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if there is an arc in S going from either a; b or c to this alternative. Similarly
there is an arc going from an alternative to x if there was an arc going from this
alternative to either a; b or c in S . Therefore the binary relation S 0 is such that:
xS 0d; xS 0e; xS 0f; dS 0e; eS 0f .

A famous result of Graph Theory (Berge, 1970; Roy, 1969–70) says that when
a graph has no circuit, it has a unique kernel, defined as a dominating subset that
is internally stable, i.e., such that there is no arc between any of its elements (this
implies that the kernel is a minimal dominating subset). Reducing the circuits and
taking the kernel of the relation is the selection procedure proposed in ELECTRE I.
It is easy to verify that it is neutral and monotonic.

The procedure in ELECTRE IS (see Roy and Bouyssou, 1993; Roy and Skalka,
1984) amounts to a more sophisticated reduction of the circuits that takes the way
the relation S has been defined into account. For recent developments along this
line, including the extension of the notion of kernel to valued binary relation, see
Bisdorff et al. (2008) (see also Chap. 5).

4.4.2.3 Other Procedures

The use of covering relations and of the notion of kernel are far from being the
only possible choices to devise a selection procedure (Laslier, 1997; Peris and
Subiza, 1999; Schwartz, 1986). Some of the possibilities that we do not investigate
here are:

• selection procedures based on the consideration of relations close to S for which
the choice is simple, e.g, orders or weak orders (see Barthélémy et al., 1989;
Laslier, 1997; Charon and Hudry, 2007),

• selection procedures based on scores, e.g., Copeland scores (see van den Brink
and Gilles, 2003; Henriet, 1985; Rubinstein, 1980),

• selection procedures that directly operate on the evaluations of the alternatives
without building a relation S as an intermediate step (see Fishburn, 1977).

4.4.3 Ranking Procedures

Let A be a set of alternatives. Suppose that you have built a crisp relation S on
A using some kind of aggregation technique. Let S be the set of all conceivable
preference relations that can be obtained using such a technique. A ranking
procedure % is a function associating a reflexive and transitive binary relation %.S/

on A with each element S of S . The task of building a transitive result on the basis
of a binary relation, that might not be transitive or complete is not easy: we are in
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fact looking for a much richer result than that obtained using choice procedures. We
expect such a ranking procedure to be:

• neutral, i.e., insensitive to the labelling of the alternatives,
• faithful, i.e., if S is a reflexive and transitive relation, we should have %.S/ D S ,
• monotonic, i.e., the position of a in the ranking %.S/ should not decrease if

S is substituted by a relation S 0 in which the position of a has improved (see
Example 4.2).

Clearly, this list is only partial, e.g., we would also expect the ranking %.S/ to be
linked to the covering relations defined above (see Vincke, 1992).

Several types of ranking procedures have been suggested in the literature:

1. Ranking procedures based on the transitive closure of S ,
2. Ranking procedures based on scores, e.g., the Copeland score,
3. Ranking procedures based on the repeated use of a choice mechanism (as in

Example 4.2),

We briefly illustrate each type of procedure below.

4.4.3.1 Procedures Based on the Transitive Closure

Let S be a reflexive binary relation on A. A simple way to obtain a reflexive and
transitive relation %.S/ on the basis of S is to take its transitive closure OS , i.e.,
the smallest transitive relation containing S . This defines a ranking procedure; it is
easy to see that it is neutral, faithful and monotonic. In view of our discussion of
choice procedures, the main defect of this ranking procedure should be apparent.
All alternatives that are involved in a circuit of S will be equally ranked if we let
%.S/ D OS . This often results in a huge loss of information.

A closely related ranking procedure is the one used in ELECTRE II (Roy and
Bertier, 1973). It was originally designed to produce a reflexive and transitive
relation on the basis of two nested reflexive relations. We present it below in the
special case in which there is only one relation (the role of the second one being
only to possibly refine the equivalence classes that are obtained).

Consider any reflexive relation S on A. The ranking procedure of ELECTRE II
first consists, as with ELECTRE I, in reducing the circuits that may exist in S ,
replacing all alternatives involved in a circuit by a single vertex in the associated
graph. Once this is done, we obtain, by construction, a relation with no circuit. We
use this relation to build two weak orders. In the first one, T1, the first equivalence
class consists of the maximal elements (there is no element that is strictly preferred
to them) of the relation with no circuit. These elements are then removed from
the set of alternatives. The second equivalence class of T1 consists of the maximal
elements of the relation among those remaining and so forth.

The second weak order T2 is obtained in a dual way, building the last equivalence
class consisting of the minimal elements first (they are preferred to no other element)
in the relation with no circuit, removing these elements from the set of alternatives
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and building the penultimate equivalence class of T2 as the minimal elements among
those remaining and so forth. In general, T1 and T2 are not identical. The reflexive
and transitive relation %.S/ is then taken to be the intersection of these two weak
orders. Let us illustrate this process using a simple example.

Example 4.6 Let A D fa1; a2; : : : ; a9g and let S be such that: a1Sa2; a1Sa4; a1Sa5,
a2Sa3, a3Sa1; a4Sa6, a6Sa7; a7Sa9; a8Sa9. The relation S has a circuit: a1Sa2,
a2Sa3, a3Sa1. We therefore replace S on A with the relation S 0 on A0 defined
by: bS 0a4; bS 0a5; a4S 0a6; a6S 0a7; a7S

0a9; a8S 0a9, where a1; a2 and a3 have been
replaced by b. The relation S 0 has no circuit. Its set of maximal elements consists
of fb; a8g. Once these elements have been removed, the set of maximal elements
is fa4; a5g. At the next iteration, we obtain fa6g, then fa7g and fa9g. Therefore the
weak order T1 is, using obvious notation:

Œa1; a2; a3; a8�T1Œa4; a5�T1a6T1a7T1a9:

In a dual way, we obtain the weak order T2:

Œa1; a2; a3�T2a4T2a6T2Œa7; a8�T2Œa5; a9�:

The relations T1 and T2 are not identical. Taking their intersection leads to,
abusing notation:

Œa1; a2; a3� � a4 � a6 � a7 � a9;

Œa1; a2; a3� � a8;

a4 � a5;

a8 � a7; a8 � a5;

a5 � a9:

What can be said of this result? First observe that the rationale for building two weak
orders and for defining %.S/ as their intersection is to introduce incomparability
between alternatives that are difficult to compare using S . This is, for instance, the
case between a5 and all alternatives except a1 or between a8 and all alternatives
except a9. In this respect the success of the procedure is only limited since we finally
conclude that Œa1; a2; a3��.S/a8, a8�.S/a7, a4�.S/a5 and a5�.S/a9.

Let us also note that we would have obtained a similar result starting with the
transitive closure OS of S instead of S . Observe that, simply taking %.S/ D OS ,
would have probably been a better choice in this example.

The final result of the ranking procedure is obtained by taking the intersection
of two weak orders. Since it is well-known that there are reflexive and transitive
relations that cannot be obtained in such a way (Dushnik and Miller, 1941), this
procedure is not faithful. We leave the proof that this procedure is indeed neutral
and monotonic to the reader (this is detailed in Vincke, 1992).
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4.4.3.2 Copeland Scores

We have seen that the procedure suggested in ELECTRE II does not satisfy all the
requirements we intuitively would like to see satisfied. A simpler ranking procedure
consists in rank ordering the elements in A according to their Copeland scores, i.e.,
the number of alternatives that they beat minus the number of alternatives that beat
them. With Example 4.6, this would, abusing notation, give the weak order:

a1 � a8 � Œa2; a3; a4; a6; a7� � a5 � a9:

We cannot expect faithfulness with such a procedure, since the result of the
procedure is obviously complete (note that the procedure treats indifference and
incomparability similarly). On the other hand, such a procedure is neutral and
monotonic.

The ranking procedure based on Copeland scores was characterized by Rubin-
stein (1980) (for the case of tournaments, i.e., complete and antisymmetric relations)
and Henriet (1985) (for the case of complete relations). It is not difficult to extend
Henriet’s result to cover the case of an arbitrary reflexive relation (see Bouyssou,
1992). The main distinctive characteristic of this ranking procedure is that it is
insensitive to the presence of circuits in S since the contribution of any circuit to
the Copeland scores of the alternatives in the circuit is always zero.

Ranking procedures based on scores are quite common as soon as one deals with
valued binary relations (a topic that is outside the scope of the present text). Let us
simply mention here that the “net flow” score used in the PROMETHEE method
(Brans and Vincke, 1985) can be seen as an extension of the Copeland score to the
valued case (Bouyssou, 1992) (see Chap. 19). Other scores, e.g., scores that do not
make use of the cardinal properties of the valuations can be envisaged (Bouyssou
and Pirlot, 1997). Other ways of using scores are considered in Dias and Lamboray
(2010).

4.4.3.3 Ranking by Repeated Choice

A possible way of combining the simplicity of such a ranking procedure with a
move towards faithfulness consists in using the Copeland scores iteratively to build
two weak orders T1 and T2. This would consist here in building the first equivalence
class of a weak order T1 with the alternatives having the highest Copeland scores,
and iterating the procedures after having removed the already-ranked alternatives.
For the relation in Example 4.6, we would obtain:

a1T1Œa2; a4; a8�T1a6T1a7T1Œa3; a5; a9�:
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Using a dual principle, we could also build a weak order T2 the last equivalence class
of which consists of alternatives having minimal Copeland scores and reiterate the
process on the set of unranked alternatives. This would yield:

Œa1; a2; a3; a8�T2a4T2a6T2Œa5; a7�T2a9:

Taking the intersection of these two weak orders is a much simplified version of the
ranking procedure implemented in ELECTRE III (Roy, 1978). This leads to:

a1 � Œa2; a8� � a4 � a6 � a7 � a5 � a9;

Œa2; a8� � a3 � a5:

Such a result does not seem to lead us closer to an adequate restitution of the uncer-
tain positions of a8 and a5 within S . Furthermore, as observed in Example 4.2, such
a ranking procedure is not monotonic, which seems to be a serious shortcoming.

4.4.4 Sorting Procedures

We have seen that the lack of transitivity and/or completeness raised serious
difficulties when it comes to devising choosing and ranking procedures. These
difficulties are somewhat less serious here. This is because, with sorting procedures,
the assignment of an alternative only depends on its comparison to carefully selected
reference actions defining the categories. The use of such reference points implies
that, contrary to the case of choice and ranking procedures, the distinction between
the phase of building a relation S and then using this relation in order to reach
conclusions is blurred with the sorting problem statement. Reference points are used
from the beginning and the relation S is mainly used to compare the alternatives in
A to these reference points.

Early attempts to propose sorting procedures are Massaglia and Ostanello (1991),
Moscarola and Roy (1977) and Roy (1981). A more general approach to the problem
was suggested in Roy and Bouyssou (1993) and Yu (1992) with the so-called
ELECTRE TRI approach that we present below.

4.4.4.1 An Overview of ELECTRE TRI

We consider the case of r ordered categories C 1; C 2; : : : ; C r , with C r containing
the most desirable alternatives. We suppose, for the moment, that each category C k

is delimited by a limiting profile �k . It is not restrictive to suppose that �kC1 strictly
dominates2 �k , for all k. Furthermore, we can always find an alternative �rC1 that

2That is, �kC1 is at least as good as �k on all criteria and strictly better on some criterion.
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strongly dominates3 all other alternatives in A and, conversely, an alternative �1 that
is strongly dominated by all other alternatives.

How can we use a preference relation between the alternatives in A and the set
of limiting profiles to define a sorting procedure? Intuitively, since �k is the lower
limit of category C k, we can apply the following two rules:

• if an alternative a is preferred to �k , it should at least belong to category C k ,
• if �k is preferred to a, a should at most belong to category C k�1,

the case in which a is indifferent to �k is dealt with conventionally depending on
the definition of the limiting profiles �k .

When the relation S is complete and transitive, these two rules lead to unambigu-
ously assign each alternative to a single category.

The situation is somewhat more complex when S is intransitive or incomplete.
When S is compatible with the dominance relation (which is not a very restrictive
hypothesis), as we have supposed that �k strictly dominates �k�1, it is possible
to show (see Roy and Bouyssou, 1993, , Chap. 5) that when an alternative a is
compared to the set of limiting profiles �1; �2 : : : ; �rC1, three distinct situations
can arise:

1. �rC1P a; �r P a; : : : ; �kC1P a; aP �k; aP �k�1; : : : ; aP �1. In such a case, there
is little doubt on how to assign a to one of C 1; C 2; : : : ; C r . Since aP �k , a should
be assigned at least to category C k. But since �kC1P a, a should be assigned at
most to C k . Hence, a should belong to C k .

2. �r C 1P a; �r C 2P a; : : : ; �` C 1P a; aI�`; aI �` � 1; : : : ; aI�k C 1; aP �k; : : : ;

aP �1. The situation is here more complex. Since �`C1P a, alternative a must
be assigned at most to category C `. Similarly since aP �k , a must be assigned
at least to category C k.

The fact that a is indifferent to several consecutive limiting profiles is probably
a sign that the definition of the categories is too precise with respect to the binary
relation that is used by the sorting procedure: the profiles are too close to one
another. This would probably call for a redefinition of the categories and/or for
a different choice for S . In such a situation, an optimistic attitude consists in
assigning a to the highest possible category, i.e., C `. A pessimistic attitude would
assign a to C k .

3. �rC1P a; �r P a; : : : ; �`C1P a; aJ �`; aJ �`�1; : : : ; aJ �kC1; aP �k; : : : ; aP �1.
In this situation, a is incomparable to several consecutive profiles. This is a sign
that, although we are sure that a must be assigned at most to category C ` and
at least to category C k, the relation S does not provide enough information to
opt for a category within this interval. Again, an optimistic attitude in such a
situation consists in assigning a to the highest possible category, i.e., C `. A
pessimistic attitude would be to assign a to C k.

3That is, it is strictly better on all criteria.
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The assignment procedure described above is the one introduced in ELECTRE
TRI (Roy and Bouyssou, 1993; Yu, 1992) in which a is assigned to one of
C 1; C 2; : : : ; C r using an optimistic procedure and a pessimistic procedure. Alterna-
tive a is always assigned to a higher category when using the optimistic procedure
than when using the pessimistic procedure.

When S is identical to a dominance relation, the optimistic procedure suggested
above coincides with a disjunctive sorting procedure. In fact a will be assigned to
C ` as soon as �`C1P a and NotŒ �`P a � , which means that ` is the highest category
such that, on some criterion i 2 N , a is better than �`. Conversely, the pessimistic
procedure coincides with a conjunctive assignment strategy: a will be assigned to
C k as soon as NotŒ aP �kC1 � and aP �k , which amounts to saying that k is the
lowest category such that a dominates �k .

It is worth noting that although the authors of this method have coupled this
procedure with a particular definition of S (a crisp relation based on a concordance
discordance principle), it can be applied to any relation that is compatible with a
dominance relation.

An axiomatic analysis of ELECTRE TRI was recently proposed in Bouyssou and
Marchant (2007a,b). For applications of ELECTRE TRI, see for instance Chaps. 9
and 7

4.4.4.2 Implementation of ELECTRE TRI

The ELECTRE TRI procedure described above supposes that the analyst has
defined:

• the limiting profile �k for each category C k ,
• the parameters involved in the definition of S : weights, indifference and prefer-

ence thresholds, veto thresholds.

This is overly demanding in most applications involving the use of a sorting
procedure. In many cases however, it is possible to obtain examples of alternatives
that should be assigned to a given category. Like in the UTADIS method described
earlier (see Sect. 4.3.3), one may use a “learning by examples” strategy to assign
a value to these parameters. Several strategies for doing this were investigated in
Dias and Mousseau (2006), Dias et al. (2002), Mousseau et al. (2001), Mousseau
and Słowiński (1998), and Ngo The and Mousseau (2002). In Dias et al. (2002)
and Dias and Mousseau (2003) a way to derive robust conclusions with ELECTRE
TRI on the basis of several relations S is suggested. This shows that the analysis in
Sect. 4.3 can be applied to preference models that are not based on a value function.
An approach to the derivation of robust conclusions with ELECTRE TRI based on
Monte-Carlo simulation is presented in Tervonen et al. (2009).
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4.5 Conclusion

The difficulties presented in Sect. 4.4 raise the question of how to analyse and
compare procedures designed to build recommendations. We would like to conclude
with some thoughts on this point. Two main routes can be followed. The first one
(see, e.g., Bouyssou and Vincke, 1997; Vincke, 1992) consists in defining a list of
properties that seem “desirable” for such a technique (for example, never select
a dominated alternative or respond to the improvement of an alternative in the
expected way). Given such a list of properties one may then try:

• to analyse whether or not they are satisfied by a number of techniques,
• to establish “impossibility theorems”, i.e., subsets of properties that cannot be

simultaneously fulfilled,
• to determine, given the above-mentioned impossibility theorems, the techniques

that satisfy most properties.

The second one (see, e.g., Bouyssou, 1992; Bouyssou and Perny, 1992; Bouyssou
and Pirlot, 1997; Pirlot, 1995) consists in trying to find a list of properties that
would “characterize” a given technique, i.e., a list of properties that this technique
would be the only one to satisfy. This allows to emphasize the specific features of
an exploitation technique and, thus, to compare it more easily with others.

These two types of analysis are not unrelated: ideally they should merge at the
end, the characterizing properties exhibited by the second type of analysis being
parts of the list of “desirable” properties used in the first type of analysis. Both
types of analysis have their own problems. In the first, the main problem consists
in defining the list of “desirable” properties. These properties should indeed cover
every aspect of what seems to be constitutive of an “appropriate” technique. In the
second, the characterizing properties will only be useful if they have a clear and
simple interpretation, which may not always be the case when analysing a complex
technique. We do hope that such analyses will continue to develop.

Let us finally mention that we have restricted our attention to procedures that
only operate on the basis of the relation S . In particular, this excludes the use of
some “reference points”, i.e., of alternatives playing a particular role, as advocated
by Dubois et al. (2003). When such reference points are taken into account, the
separation between the phases of building a relation S and exploiting it in order
to build a choice set is blurred. Indeed, it is then tempting to compare alternatives
only to the reference points and not amongst themselves. Such approaches may
offer an interesting alternative to the procedures presented above. They have not
been worked out in much detail to date. In particular, the selection in practice of
appropriate reference points does not seem to be an obvious task.
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