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I. Introduction and Motivation

The traditional way of modelling the preferences of a Decision-Maker consists in assuming the

existence of a value function u such that an alternative a is at least as good as an alternative b (a fb)

if and only if u(a) ≥ u(b). This leads to a model of preference in which f is complete and transitive.

Using such a preference model it is straightforward to establish a recommendation in a decision-aid

study. The main task of the Analyst is therefore to assess u.

In a multicriteria/multiattribute (we will use these terms interchangeably here) context, the set of

alternatives X is often modelled as some subset of a cartesian product X1xX2x … xXn; each alternative

a is thus seen as a vector (a1, a2, …, an) of evaluations on n attributes. In such a context the

assessment of a value function u is not an easy task. It usually requires the specification of a

particular functional form for u. The additive decomposition of traditional conjoint measurement

models in which:
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(where ui are real-valued functions on the sets Xi and it is understood that a = (a1, a2, …, an) and b =

(b1, b2, …, bn)), is, by far, the most widely used. Modelling preferences using such a model amounts

to assessing the "partial value functions" ui. Many techniques have been proposed to do so (see e.g.

Edwards and Newman (1982), Fishburn (1967), French (1993) or Keeney and Raiffa (1976)). This

dominant model raises several difficulties however.

On a technical level, although many axiom systems have been proposed in order to obtain such a

representation (see Krantz et al. (1971) or Wakker (1989)) their interpretation is not always easy.

When X is finite, it is well-known that the system of axioms necessarily involves a denumerable

number of “cancellation conditions” guaranteeing the existence of solutions to a system of (finitely

many) linear inequalities through the use of various versions of the “theorem of the alternative”.

When X is infinite the picture changes provided that conditions are imposed in order to guarantee

that the structure of X is “close” to the structure of Re and that f behaves consistently in this

continuum; this is traditionally done using either an “archimedean” axiom together with some

solvability assumption or imposing some topological structure on X and a continuity requirement on

f. Under these conditions, it is well-known that model (1) obtains when a finite number of

cancellation conditions are imposed. As opposed to the finite case, these structural assumptions

allow to obtain nice uniqueness results for model (1): the functions ui define interval scales with a

common unit.

In the finite case the axiom system is hardly interpretable and testable. In the infinite case, it is not

always easy to separate the respective roles of the (unnecessary) structural assumptions from the

(necessary) cancellation conditions.

Besides these technical difficulties, traditional models of conjoint measurement might not always be

appropriate for modelling preferences because:

• indifference (seen as the symmetric part of  f) may not be transitive;

• f may not be a complete relation, i.e. some alternatives may be incomparable;

• compensation effects between criteria may be more complex than with an additive model.

Let us finally mention that the framework of model (1) is too narrow to encompass a number of

approaches developed since the early seventies : the so-called outranking methods (see Roy (1968),



Roy and Bertier (1973) and for a recent presentation in English, Roy (1991, 1996), Vincke (1992)).

In these approaches, the overall preference of a over b is usually determined by looking at the

evaluation vectors (a1, a2, …, an) and (b1, b2, …, bn) independently of the other alternatives and

treating the "preference difference" between ai and bi in rather an ordinal way. They do not usually

lead to a global preference relation that is complete or transitive (this being not unrelated to Arrow's

theorem). Such methods therefore imply the application of specific "exploitation techniques" in order

to derive a recommendation (choice of an alternative, ranking of all alternatives). Although these

methods have been less widely used than the ones based on traditional conjoint measurement

models, they are important and original tools for multiple criteria analysis. Our aim is to propose and

to analyse a model that would be sufficiently flexible to encompass in the same framework the

traditional models of conjoint measurement and the outranking methods while avoiding the technical

difficulties encountered with conjoint measurement.

Several extensions of model (1) have been proposed in the literature. The first extension consists in

replacing the additivity requirement by a mere decomposability requirement. Krantz et al. (1971,

chap. 7) introduced the following decomposable model:

a f b ⇔ F(u1(a1), u2(a2), …, un(an))  ≥  F(u1(b1), u2(b2), …, un(bn)) (2)

where F is increasing in all its arguments. Such a model clearly allows interactions between attri-

butes that are more complex than with an additive model. In the denumerable (i.e. finite or countably

infinite) case, necessary and sufficient conditions for (2) consist in a transitivity and completeness

requirement together with a single cancellation condition requiring that the preference between

objects differing on a single attribute is independent from their common level on the remaining n–1

attributes. In the non denumerable case these conditions turn out to have identical implication when

supplemented with the obviously necessary requirement that a numerical representation exists for f.

Though (2) may appear as exceedingly general when compared to (1), it allows to deal with the finite

and the infinite case in a unified way using a simple axiom system while imposing nontrivial

restrictions on f.

Both (1) and (2) imply that f is complete and transitive. Among many others May (1954) and

Tversky (1969) have argued that the transitivity hypothesis is most unlikely to hold when subjects are

asked to compare objects evaluated on several attributes. Hence the need for measurement models



accommodating intransitivities. Tversky (1969) was one of the first to propose such a model

generalising (1), known as the “additive difference model” in which:
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where Φi are increasing and odd functions. It is clear that (3) allows for intransitive f but implies its

completeness. When attention is restricted to the comparison of objects that only differ on one

attribute, (3) as well as (2) and (1) imply that the preference relation between these objects is

independent from their common level on the remaining n–1 attributes. As noted by Bouyssou (1986),

an unpleasant feature of (3), for a model aiming at accommodating intransitivities, is that it implies

that these “partial preference relations” are complete and transitive, therefore excluding the

possibility of any “perception threshold” on each attribute.

As suggested by Bouyssou (1986), Fishburn (1990, 1991a) and Vind (1991), the subtractivity

requirement in (3) can be relaxed. This leads to non transitive additive conjoint measurement models

in which:

a f b ⇔ p i ( a i , b i ) ≥ 0 
i = 1 
n ∑ (4)

where the pi are real-valued functions on 
2
iX  and may have several additional properties (e.g. skew-

symmetry).

This model is an obvious generalisation of the additive difference model. It allows for intransitive

and incomplete preference relations f as well as for intransitive and incomplete partial preferences.

Fishburn (1991b) gives an excellent overview of these non transitive models and recalls the several

axiom systems that have been proposed to characterise them.

It should be noticed that even the “weakest” model presented so far, i.e. (4), involves an addition

operation. Therefore it is unsurprising that the difficulties that we mentioned concerning the

axiomatic analysis of traditional models are still present here. Except in the special case in which n =

2, this case relating more to ordinal than to conjoint measurement, the various axiom systems that

have been proposed involve:



• a denumerable number of cancellation conditions in the finite case or

• a finite number of cancellation conditions together with unnecessary structural assumptions in the

infinite case (these structural assumptions generally allow to obtain nice uniqueness results for (4):

the functions pi are unique up to a positive linear transformation).

The models that we study in this paper may be seen both as a generalisation of (2) dropping

transitivity and completeness and as a generalisation of (4) dropping additivity. In their most general

form they are of the type (see also Goldstein (1991)):

a f b ⇔ F(p1(a1, b1), p2(a2, b2), …, pn(an, bn))  ≥ 0   (5)

where F is non decreasing in all its arguments. This type of non transitive decomposable conjoint

models may seem exceedingly general. However we shall see that this model and its specialisations:

• imply substantive requirements on f,

• may be axiomatised in a simple way avoiding the use of a denumerable number of conditions in

the finite case and of unnecessary structural assumptions in the infinite case,

• allow to study the “pure consequences” of cancellation conditions in the absence of transitivity,

completeness and structural requirements on X,

• are sufficiently general to include as particular cases many aggregation rules that have been

proposed in the literature.

II. Outline of Results

In this section we give, without proof, a number of sample results concerning model (5) and show

how they can be used.  Let f be a binary relation on a set X = X i i = 1 
n ∏ . This relation is said to

satisfy:
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for all xi, yi, zi, wi ∈   Xi and all a–i, b–i, c–i, d–i  ∈   X–i , with X–i = X j j ≠ i ∏ . We say that f satisfies

RC if it satisfies RCi for i = 1, 2,…, n.

Condition RCi (inteR-attribute Cancellation) suggests that  f induces on Xi a relation that compares

“preference differences”  in a well-behaved way: if (xi, yi) is a “larger preference difference” than

(zi, wi) then if (zi, c–i) f (wi, d–i) we should also have (xi, c–i) f (yi, d–i) and vice versa. The idea that

comparison of “preference differences” is central to the analysis of conjoint measurement models

was already powerfully stressed by Wakker (1989). The obvious extension of condition RCi to

subsets of attributes is central to the analysis of a special case of (4) by Vind (1991) where this

condition is called “independence”. It is called “weak cancellation” in Bouyssou (1986). Technically

RCi amounts to defining a biorder in the sense of Doignon et al. (1984) between the sets Xi and X–i.

It is not difficult to see that model (5) implies RC. The converse is also true when X is finite or

countably infinite and we have:

Proposition 1. Let f be a binary relation on a finite or countably infinite set X = X i i = 1 
n ∏ . Then f

satisfies model (5) iff RC holds.

We show in Bouyssou and Pirlot (1998) how this result can be generalised to the non denumerable

case and extended in various directions. In particular, it is possible to characterise by axioms similar

to RCi the situation where the preference difference (xi, yi) is "the opposite" of the preference

difference (yi, xi); in such a case F will be an odd function and the pi’s will be skew-symmetric, i. e.

and
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Further detail about this type of models may be found in Bouyssou and Pirlot (1998).

Among the other possible extensions, an interesting one consists in specifying a functional form for

the functions pi(xi,yi). We envisage here the simplest one in which all functions pi(xi, yi) in (5) are

such that:

pi(xi, yi) = ϕi(ui(xi), ui(yi)), (6)

where ui is a real-valued function on Xi and ϕi is a real-valued function on ui(Xi)2 being non de-

creasing in its first argument and non increasing in its second argument. The intuition behind model

(5) and (6) is that the “weight” of the “difference” between elements of Xi may be understood via a

linear arrangement on these elements. We say that  f satisfies:
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for all xi, yi, zi, wi ∈  Xi and all a–i, b–i, c–i, d–i ∈   X–i.



Condition AC1i suggests that the elements of Xi can be linearly ordered considering “upward

dominance”: if xi “upward dominates” zi then (zi, c–i) f w entails (xi, c–i) f w and vice versa.

Condition AC2i has a similar interpretation considering now “downward dominance”. Condition

AC3i ensures that the linear arrangements of the elements of Xi obtained considering upward and

downward dominance are not incompatible.  It is not difficult to see that AC1 (i.e. AC1i holding for i

= 1, 2,  … , n)  AC2 and AC3 are necessary conditions for model (5)-(6). When coupled with RC

they turn out to be also sufficient when X is finite or countably infinite and we have:

Proposition 2. Let f be a binary relation on a finite or countably infinite set X = X i i = 1 
n ∏ . Then f

satisfies model (5) and (6) iff RC, AC1, AC2 and AC3 hold.

Several extensions of this result, including the case of a non denumerable set X, are discussed in

Bouyssou and Pirlot (1998).

III. Examples and discussion

In this section we give some examples of aggregation rules used in well-known methods  fitting in

our framework and  discuss the interest of our results.

a) Examples

Example 1. Model (1) is the simplest case. The preference difference (ai, bi) is represented through

an algebraic difference  pi(ai, bi) = ϕi(ui(ai), ui(bi)) = Φi (ui(ai) - ui(bi)) = ui(ai) - ui(bi) and F is a

sum. (See also on Figure 1).

ui(ai) - ui(bi)

))()(( iiiii buau −Φ

Fig. 1



Example 2  Another family of models could be termed Difference Threshold models. The range of

ui(ai) - ui(bi) is partitioned by means of a number of points qij, j=1,...Ni of the real line and Φi is

constant on each interval [qij , qi(j+1)[; more precisely (see Figure 2):

ϕi(ui(ai), ui(bi))= Φi (ui(ai) - ui(bi)) = Φij      if   qij ≤ ui(ai) - ui(bi) ≤  qi(j+1) ,

with  Φij < Φi(j+1)   and  qij < qi(j+1) ,  for all  j=1,...Ni ; F is any function of n variables,  non

decreasing in each argument. It is not difficult to see that, on a finite set, model (1) can always be

represented as a “difference threshold model”.

The model just described encompasses aggregation rules used in outranking methods of the

ELECTRE type (see Roy (1991) or Vincke (1992)). In this approach it is assumed that differences of

preference are imprecisely known; in the most elementary methods, ELECTRE I and II, the

Decision- Maker is supposed to be able to categorize them in a small number of classes; those

classes are “significant” at the level of the overall preference since going from a class to another on

an attribute  may have an incidence on the overall preference. The aggregation function is then

 qi(j+1)  qij

))()(( iiiii buau −Φ
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essentially a rule (or a set of rules) telling when a profile of differences of preferences between two

alternatives a and b is in favour of  a.

The aggregation procedure of ELECTRE I fits into this framework. The idea behind it can be

summarised as follows: if there is no criterion on which the difference of preference is so much  in

favour of b that it would prevent declaring a better than b (“veto of  b against a”), then the overal

preference of  a over b is declared when the coalition of criteria on which ai is better than bi is strong

enough (i.e. the sum of their weights passes a threshold s). Formally, we can take for instance :
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with 021 ≤≤ ii qq  (q i1   is a veto threshold; qi2  is an indifference threshold); s is the so-called

concordance threshold, M is a “large” positive number (large enough for preventing F from being

positive as soon as Ii is not empty) and wi , the (normalised) weight of criterion i . Using formula (5)

and (6), we get the definition of the overal preference in ELECTRE I :

TACTIC (Vansnick 1986) is another approach which can be described by model (5)-(6) (see

Bouyssou et al (1997) for more detail). In ELECTRE II, there is a further distinction between two

levels of overall preference (weak and strong outranking); those levels are characterised by specific

values of the thresholds q i1  and s but both the weak and the strong outranking relations fit into the

model. An interesting feature here is that F is no longer a sum but the minimum of two functions of

the differences of preferences.

sI  ba ≥= ∑
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The strong outranking relation of ELECTRE II distinguishes eventually four classes of differences of

preference:

with 2321 0 iiii qqqq −=≤≤≤ . The first two classes are the same as in ELECTRE I, while the third

class of ELECTRE I is further partitioned in two subclasses. We have

a f b    iff    f(a, b) ≥ 0

where f(a, b) = min{  f1 (a, b), f2 (a, b)} ; f1 (a, b) is identical to f(a, b) in (7)
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The above description is also valid for the weak outranking relation in ELECTRE II; weak and
strong outranking relations only differ in the values given to the thresholds q i1 , 2iq  and s.

b) Discussion

Compensation versus non-compensation. ELECTRE I is characterised by a very rough distinction

between differences of preference since no more than three classes may be distinguished (only two in

case no veto threshold is specified). The “richness” (number of classes) of the relation comparing

differences of preference on each attribute is intimately related to the more or less compensatory

character of the aggregation procedure. Intuitively, in a compensatory method, any difference of

preference in favour of b against a on a criterion can be compensated by a sufficiently large

difference of  preference in favour of a on another criterion. The model in example 1 is fully

compensatory. Defining non-compensation is more delicate; according to Fishburn (1976), in a non-

compensatory method, the overal preference of a over b is determined by the list of criteria on which

a is better than b and no consideration at all is paid to the “amplitude” of the difference between

evaluations of the alternatives on each criterion. The ELECTRE I aggregation rule without veto

threshold is a non-compensatory method in Fishburn’s sense but obviously, strictly non-
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compensatory methods have very poor practical value since they enable to distinguish only between

preference or no-preference on each criterion. The framework has been extended in order to

encompass methods with vetoes (three classes of differences of preference) by Bouyssou and

Vansnick (1986).

There is a need for a gradual definition of non-compensation that would allow to characterise the

methods as more or less compensatory. In our model, if the overal preference satisfies RC, the

comparison of difference of preferences is transitive and complete; this implies in particular that

differences of preference can be grouped in classes that are totally ordered; differences of preference

that belong to the same class are equivalent from a global preference point of view. As suggested in

Bouyssou et al (1997), this allows to situate the methods in a sort of continuum which ranges from

purely compensatory to purely non-compensatory: purely non-compensatory methods distinguish

only two classes on each criterion; the more numerous the classes, the more compensatory the

method.

Valued preference relations.  In a number of methods, the aggregation phase ends up with a valued

relation on X, i.e. a function X²→ E ; in most cases E is a subset of Re , e.g. E = [0,1]. This is the

situation with valued versions of ELECTRE (ELECTRE III or IV) as well as with PROMETHEE

(see Brans et al (1984), Brans and Vincke (1985) or Vincke (1992)). A striking fact is that our model

(5)-(6) is essentially a valued preference model since f(a, b) = F(ϕi(ui(ai), ui(bi)), i=1, ... , n)  is a

valued relation. Up to this point, we have considered that the whole overal preference information is

contained in a crisp binary relation which can be obtained, in our model, by encoding whether a

function F passes 0 or not. We could of course obtain much richer information, namely a chain of

relations {(f α)}, by cutting  f (or F ) at all possible levels α∈ Re, i.e.

a fα b    iff    f(a, b) ≥ α

So, as a natural extension of the framework studied in this paper, overal preference structures

consisting of chains of relations can be considered; imposing conditions RC, AC1, AC2 and AC3 to

each relation of the chain yields preference relations f α that satisfy model (5)-(6) for all α; of course

the functional representation will in general depend on the index α.  A case of particular interest (that

will be studied in a subsequent paper) is when all relations f α can be obtained, as follows, on the

basis of a common representation of preference differences:

a fα b   iff   Fα(ϕi(ui(ai), ui(bi)), i=1, ... n) = F(ϕi(ui(ai), ui(bi)), i=1, ... n) - α  ≥  0

i.e.

a fα b   iff    f(a,b) - α ≥ 0 ;



in other words, each relation  f α results from cutting a function F of the differences of preference at

some level α. Note that any increasing function of f would determine the same chain of relations (if

the value of the index associated to each cut is not considered as part of the definition of the chain);

more explicitly, if σ: Re→Re is increasing, we have

a fα b    iff    f(a, b) ≥ α   iff    σ (f(a, b)) ≥ σ(α)

Let us call ordinal valued preference relation a valued relation f determined up to a (strictly)

increasing transformation or equivalently the chain of relations (f α) obtained by cutting  f at all

possible levels. A stronger structure of preference is called cardinally valued if the numerical value

of  f(a,b) does matter; in such a case, the structure is not completely known when the chain of cuts is

given, the value of the index associated with each cut is relevant too; arithmetic operations on the

values f(a,b) can then be meaningfully performed.

In view of this, the valued outranking relation of PROMETHEE is a function f(a, b) as in model (5)-

(6) since

where wi is a normalised weight associated with criterion i and Φi recodes the differences of

preference on criterion i according to one of six pre-defined coding functions (see e.g. Vincke

(1992), p. 74 ). All pre-defined Φi functions take 0 value when ui(ai)-ui(bi)≤ 0 and are otherwise

non-negative and non-decreasing.

In the subsequent exploitation phase, PROMETHEE fully makes usage of the cardinal properties of

f(a,b);  for instance, sums and differences of such numbers are considered (for computing  the so-

called leaving and entering flows or the net flow). Hence, in this model, additional assumptions are

made, explicitly or implicitly, guaranteeing that f is determined up to a positive affine transformation,

which of course is more demanding than a f being determined up to a strictly increasing

transformation; in other words, not only the chain of relations (f α) is important but  the labelling α
also matters.

In contrast, the ELECTRE methods (especially ELECTRE I and II) appear as mostly ordinal, in the

sense that the valued preference (outranking) relations can be considered as determined up to an

increasing transformation and the results of the subsequent exploitation phase are invariant when

such a transformation is applied to the valued relation; in other words, those results only depend on

the chain of relations {f α}, not on their labelling.
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IV.  Conclusion

Models (5) and (5)-(6) are of interest in several respects:

• they offer a general framework of conjoint measurement that does not require the preference

relation f to be complete or transitive,

• they can be simply analysed on a axiomatic level,

• they are sufficiently general to contain as particular cases many different aggregation rules (as

shown in Bouyssou et al (1997) and Bouyssou and Pirlot (1998)) while capturing what seems to us

at the heart of any multiattribute aggregation: a modelling of “preference differences” on each at-

tribute with reference to an underlying linear arrangement of the various levels of the attribute.

In view of this, our two sets of conditions (RC and AC1-2-3) could thus be considered as providing a

common and simple foundation of most multiattribute aggregation procedures.
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