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Introduction
Outline

Introduction

Context of today’s talk

preference modelling for MCDA

Central model: additive value functions

x % y ⇔
n∑

i=1

vi(xi) ≥
n∑

i=1

vi(yi)

Remarks

firm theoretical background (Krantz et al., )
many assessment techniques (Keeney & Raiffa, , von Winterfeld &
Edwards, )
underlies many MCDM techniques
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Need for extensions

Practical problems

the output of the model is a preference relation, i.e., a relative evaluation
model
there are many cases in which this is not adequate

admission of students to a programme
x is better then y : relative model
x is “good”: absolute model

Theoretical problem

can additive value functions be obtained on the basis of a different kind of
information?
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Definitions and notation
Intuitive sketch

Axioms
Results

Discussion

Setting
Model

Framework

Classical conjoint measurement setting

N = {1, 2, . . . ,n}: set of attributes
X =

∏n
i=1 Xi with n ≥ 2: set of alternatives

notation: (xi , y−i), (xJ , y−J ) ∈ X

Primitives: threefold ordered partitions 〈A ,F ,U 〉 of X

A : set of objects that are “good”
F : set of object that are “neutral”
U : set of objects that are “bad”

Interpretation

position of objects vis-à-vis a status quo
objects in A (U ) are not equivalent
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Model

Model: additive value functions with threshold

x ∈

 A
F
U

⇔
n∑

i=1

vi(xi)

 >
=
<

 0

Interpretation

vi is real-valued function on Xi∑n
i=1 vi is compared to a threshold

Non-degenerate

〈A ,F ,U 〉 is non-degenerate if A 6= ∅ and U 6= ∅
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Uniqueness and normalization

a set of functions 〈vi〉 representing 〈A ,F ,U 〉 is not unique

origin of measurement: 〈vi + βi〉 give a representation when
∑

i βi = 0
unit of measurement: 〈αvi〉 give a representation when α > 0

Suppose that n = 3 so that X = X1 ×X2 ×X3

take any (x0
1 , x

0
2 , x

0
3 ) ∈ F

normalize so that v1(x0
1 ) = 0, v2(x0

2 ) = 0 and v3(x0
3 ) = 0

take any x−1
1 ∈ X1 such that (x−1

1 , x0
2 , x

0
3 ) ∈ U

normalize so that v1(x−1
1 ) = −1
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Diagonal standard sequences

Assess equally-spaced points

(x0
1 , x

0
2 , x

0
3 ) ∈ F v1(x0

1 ) = v2(x0
2 ) = v3(x0

3 ) = 0

(x−1
1 , x0

2 , x
0
3 ) ∈ U v1(x−1

1 ) = −1

(x−1
1 , x1

2 , x
0
3 ) ∈ F ⇒ v2(x1

2 ) = 1

(x0
1 , x

1
2 , x

−1
3 ) ∈ F ⇒ v3(x−1

3 ) = −1

(x−1
1 , x2

2 , x
−1
3 ) ∈ F ⇒ v2(x2

2 ) = 2

(x0
1 , x

2
2 , x

−2
3 ) ∈ F ⇒ v3(x−2

3 ) = −2

(x−1
1 , x0

2 , x
1
3 ) ∈ F ⇒ v3(x1

3 ) = 1

(x0
1 , x

−1
2 , x1

3 ) ∈ F ⇒ v2(x−1
2 ) = −1

(x−1
1 , x−1

2 , x2
3 ) ∈ F ⇒ v3(x1

3 ) = 2

(x0
1 , x

−2
2 , x2

3 ) ∈ F ⇒ v2(x−1
2 ) = −2
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Definitions and notation
Intuitive sketch

Axioms
Results

Discussion

Uniqueness
Standard sequences
Thomsen and completion

Conditions

Ordering the elements of Xi

the function vi orders the element of Xi

this weak order is compatible with 〈A ,F ,U 〉

Thinness
category F is thin
strict compatibility with 〈A ,F ,U 〉

Archimedean condition
a diagonal standard sequence is able to “reach” all diagonal points

Structural conditions

solvability: we can find (x0
1 , x

0
2 , x

0
3 ) ∈ F

influence of attribute 1: we can find x−1
1 below x0

1
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Uniqueness
Standard sequences
Thomsen and completion

Thomsen condition

Problems
how do we extend the construction to X1?
is the construction sound?

Thomsen condition

(a1, x2, x3) ∈ F and (x2, x3) ∼23 (y2, y3)
(b1, y2, z3) ∈ F and (y2, z3) ∼23 (z2, x3)

}
⇒ (x2, z3) ∼23 (z2, y3)

Interpretation

(x2, x3) ∼23 (y2, y3)⇔

 (a1, x2, x3) ∈ A ⇔ (a1, y2, y3) ∈ A
(a1, x2, x3) ∈ F ⇔ (a1, y2, y3) ∈ F
(a1, x2, x3) ∈ U ⇔ (a1, y2, y3) ∈ U
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Axioms
Results

Discussion

A -linear

〈A ,F ,U 〉 is A -linear on I ⊂ N if

(xI , a−I ) ∈ A
and

(yI , b−I ) ∈ A

⇒
 (yI , a−I ) ∈ A

or
(xI , b−I ) ∈ A

Strong linearity

A -linear, F -linear and AF -linear, for all I ⊂ N

xI %I yI ⇔ for all a−I ∈ X−I ,

{
(yI , a−I ) ∈ A ⇒ (xI , a−I ) ∈ A

(yI , a−I ) ∈ F ⇒ (xI , a−I ) ∈ AF

%I is complete ⇔ A -linear,F -linear,AF -linear on I ⊂ N
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AF -linear

〈A ,F ,U 〉 is AF -linear on I ⊂ N if
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Thinness

〈A ,F ,U 〉 is thinI if

(xI , a−I ) ∈ F
and

(yI , a−I ) ∈ F

⇒
{

(xI , b−I ) ∈ A ⇔ (yI , b−I ) ∈ A

(xI , b−I ) ∈ U ⇔ (yI , b−I ) ∈ U

Strong thinness

thinI , for all I ⊂ N
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Thomsen

〈A ,F ,U 〉 on X satisfies the Thomsen condition if

(xi , xj , a−ij ) ∈ F & (xi , xj ) ∼ij (yi , yj )
(yi , zj , b−ij ) ∈ F & (yi , zj ) ∼ij (zi , xj )

}
⇒ (xi , zj ) ∼ij (zi , yj )
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Archimedean and Unrestricted solvability

Archimedean condition

〈A ,F ,U 〉 satisfies the Archimedean condition if a diagonal standard sequence
that is strictly bounded must be finite

Unrestricted solvability

〈A ,F ,U 〉 satisfies unrestricted solvability if, for all i ∈ N and all x−i ∈ X−i ,
(xi , x−i) ∈ F , for some xi ∈ Xi

unrestricted solvability is a strong condition
can be weakened to restricted solvability with some connectedness spice
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Main Results
Extensions

Main result

Theorem, B & Marchant ()

〈A ,F ,U 〉 is an ordered partition on X = X1 ×X2 × · · · ×Xn , n ≥ 3.
Suppose that 〈A ,F ,U 〉 is

non-degenerate
satisfies unrestricted solvability
satisfies strong linearity
satisfies strong thinness
satisfies Archimedean condition

(if n = 3) satisfies Thomsen
Then there is an additive representation 〈vi〉i∈N of 〈A ,F ,U 〉

The functions 〈vi〉i∈N are unique up to the choice of origins and unit
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Main Results
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Extensions

Questions

do you have something to say for the case of two attributes?

yes: but uses very different techniques (ordinal vs conjoint measurement)

do you have to suppose strong linearity and strong thinness
no: working on singletons and pairs suffices

do you have to suppose unrestricted solvability (which forces vi to be
unbounded)

yes and no: yes in an algebraic setting, no with connectedness spice

do you have to use conditions on the frontier F?
yes and no: yes in an algebraic setting, no with connectedness spice

do you have something to say when there are more than two categories
with a frontier?

yes: our main results generalize without major problem
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Additive conjoint measurement

additive value functions with tight uniqueness properties an be obtained
on the basis of rather poor information: 〈A ,F ,U 〉
reasonably simple conditions that can be tested in experiments
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