Additive conjoint measurement with ordered categories

Denis Bouyssou Thierry Marchant

CNRS-LAMSADE Paris, France

Universiteit Gent Ghent, Belgium

ROADEF Nancy February 2009

If you do not know Thierry...

Introduction

Context of today's talk

 \bullet preference modelling for MCDA

Introduction

Context of today's talk

• preference modelling for MCDA

Central model: additive value functions

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

Introduction

Context of today's talk

• preference modelling for MCDA

Central model: additive value functions

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

Remarks

- firm theoretical background (Krantz et al., 1971)
- many assessment techniques (Keeney & Raiffa, 1976, von Winterfeld & Edwards, 1986)
- underlies many MCDM techniques

Need for extensions

Practical problems

- the output of the model is a preference relation, i.e., a relative evaluation model
- there are many cases in which this is not adequate

Need for extensions

Practical problems

- the output of the model is a preference relation, i.e., a relative evaluation model
- there are many cases in which this is not adequate
- admission of students to a programme
 - x is better then y: relative model
 - x is "good": absolute model

Need for extensions

Practical problems

- the output of the model is a preference relation, i.e., a relative evaluation model
- there are many cases in which this is not adequate
- admission of students to a programme
 - x is better then y: relative model
 - x is "good": absolute model

Theoretical problem

• can additive value functions be obtained on the basis of a different kind of information?

Outline

- Definitions and notation
 - Setting
 - Model
- 2 Intuitive sketch
 - Uniqueness
 - Standard sequences
 - Thomsen and completion
 - 3 Axioms
- 4 Results
 - Main Results
 - Extensions
- Discussion
 - Summary
 - Discussion

Outline

- Definitions and notation
 - Setting
 - Model
- 2 Intuitive sketch
 - Uniqueness
 - Standard sequences
 - Thomsen and completion
 - 3 Axioms
- Results
 - Main Results
 - Extensions
- Discussion
 - Summary
 - Discussion

Framework

Classical conjoint measurement setting

- $N = \{1, 2, \dots, n\}$: set of attributes
- $X = \prod_{i=1}^{n} X_i$ with $n \ge 2$: set of alternatives
- notation: $(x_i, y_{-i}), (x_J, y_{-J}) \in X$

Framework

Classical conjoint measurement setting

- $N = \{1, 2, \dots, n\}$: set of attributes
- $X = \prod_{i=1}^n X_i$ with $n \ge 2$: set of alternatives
- notation: $(x_i, y_{-i}), (x_J, y_{-J}) \in X$

Primitives: threefold ordered partitions $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ of X

- \mathscr{A} : set of objects that are "good"
- F: set of object that are "neutral"
- \mathcal{U} : set of objects that are "bad"

Framework

Classical conjoint measurement setting

- $N = \{1, 2, \dots, n\}$: set of attributes
- $X = \prod_{i=1}^n X_i$ with $n \ge 2$: set of alternatives
- notation: $(x_i, y_{-i}), (x_J, y_{-J}) \in X$

Primitives: threefold ordered partitions $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ of X

- \mathscr{A} : set of objects that are "good"
- \mathscr{F} : set of object that are "neutral"
- \mathcal{U} : set of objects that are "bad"

Interpretation

- position of objects vis-à-vis a status quo
- objects in $\mathscr{A}(\mathscr{U})$ are not equivalent

Model

Model: additive value functions with threshold

$$x \in \left\{ \begin{array}{c} \mathscr{A} \\ \mathscr{F} \\ \mathscr{U} \end{array} \right\} \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \left\{ \begin{array}{c} > \\ = \\ < \end{array} \right\} 0$$

Interpretation

- v_i is real-valued function on X_i
- $\sum_{i=1}^{n} v_i$ is compared to a threshold

Model

Model: additive value functions with threshold

$$x \in \left\{ \begin{array}{c} \mathscr{A} \\ \mathscr{F} \\ \mathscr{U} \end{array} \right\} \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \left\{ \begin{array}{c} > \\ = \\ < \end{array} \right\} 0$$

Interpretation

- v_i is real-valued function on X_i
- $\sum_{i=1}^{n} v_i$ is compared to a threshold

Non-degenerate

• $\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$ is non-degenerate if $\mathcal{A} \neq \emptyset$ and $\mathcal{U} \neq \emptyset$

Outline

- Definitions and notation
 - Setting
 - Model
- 2 Intuitive sketch
 - Uniqueness
 - Standard sequences
 - Thomsen and completion
 - Axioms
- Results
 - Main Results
 - Extensions
- 6 Discussion
 - Summary
 - Discussion

• a set of functions $\langle v_i \rangle$ representing $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is not unique

- a set of functions $\langle v_i \rangle$ representing $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is not unique
- origin of measurement: $\langle v_i + \beta_i \rangle$ give a representation when $\sum_i \beta_i = 0$
- unit of measurement: $\langle \alpha v_i \rangle$ give a representation when $\alpha > 0$

- a set of functions $\langle v_i \rangle$ representing $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is not unique
- origin of measurement: $\langle v_i + \beta_i \rangle$ give a representation when $\sum_i \beta_i = 0$
- unit of measurement: $\langle \alpha v_i \rangle$ give a representation when $\alpha > 0$

Suppose that
$$n = 3$$
 so that $X = X_1 \times X_2 \times X_3$

- take any $(x_1^0, x_2^0, x_3^0) \in \mathscr{F}$
- normalize so that $v_1(x_1^0) = 0$, $v_2(x_2^0) = 0$ and $v_3(x_3^0) = 0$

- a set of functions $\langle v_i \rangle$ representing $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is not unique
- origin of measurement: $\langle v_i + \beta_i \rangle$ give a representation when $\sum_i \beta_i = 0$
- unit of measurement: $\langle \alpha v_i \rangle$ give a representation when $\alpha > 0$

Suppose that
$$n = 3$$
 so that $X = X_1 \times X_2 \times X_3$

- take any $(x_1^0, x_2^0, x_3^0) \in \mathscr{F}$
- normalize so that $v_1(x_1^0) = 0$, $v_2(x_2^0) = 0$ and $v_3(x_3^0) = 0$
- take any $x_1^{-1} \in X_1$ such that $(x_1^{-1}, x_2^0, x_3^0) \in \mathcal{U}$
- normalize so that $v_1(x_1^{-1}) = -1$

$$(x_1^0, x_2^0, x_3^0) \in \mathscr{F}$$
 $v_1(x_1^0) = v_2(x_2^0) = v_3(x_3^0) = 0$
 $(x_1^{-1}, x_2^0, x_3^0) \in \mathscr{U}$ $v_1(x_1^{-1}) = -1$

$$(x_1^0, x_2^0, x_3^0) \in \mathscr{F} \qquad v_1(x_1^0) = v_2(x_2^0) = v_3(x_3^0) = 0$$
$$(x_1^{-1}, x_2^0, x_3^0) \in \mathscr{U} \qquad v_1(x_1^{-1}) = -1$$
$$(x_1^{-1}, x_2^1, x_3^0) \in \mathscr{F} \Rightarrow v_2(x_2^1) = 1$$

$$(x_1^0, x_2^0, x_3^0) \in \mathscr{F} \qquad v_1(x_1^0) = v_2(x_2^0) = v_3(x_3^0) = 0$$

$$(x_1^{-1}, x_2^0, x_3^0) \in \mathscr{U} \qquad v_1(x_1^{-1}) = -1$$

$$(x_1^{-1}, x_2^1, x_3^0) \in \mathscr{F} \Rightarrow v_2(x_2^1) = 1$$

$$(x_1^0, x_2^1, x_3^{-1}) \in \mathscr{F} \Rightarrow v_3(x_3^{-1}) = -1$$

$$\begin{split} &(x_1^0,x_2^0,x_3^0)\in \mathscr{F} \quad v_1(x_1^0)=v_2(x_2^0)=v_3(x_3^0)=0\\ &(x_1^{-1},x_2^0,x_3^0)\in \mathscr{U} \quad v_1(x_1^{-1})=-1\\ &(x_1^{-1},x_2^1,x_3^0)\in \mathscr{F} \Rightarrow v_2(x_2^1)=1\\ &(x_1^0,x_2^1,x_3^{-1})\in \mathscr{F} \Rightarrow v_3(x_3^{-1})=-1\\ &(x_1^{-1},x_2^2,x_3^{-1})\in \mathscr{F} \Rightarrow v_2(x_2^2)=2 \end{split}$$

$$\begin{split} &(x_1^0,x_2^0,x_3^0)\in \mathscr{F} \qquad v_1(x_1^0)=v_2(x_2^0)=v_3(x_3^0)=0\\ &(x_1^{-1},x_2^0,x_3^0)\in \mathscr{U} \qquad v_1(x_1^{-1})=-1\\ &(x_1^{-1},x_2^1,x_3^0)\in \mathscr{F} \Rightarrow v_2(x_2^1)=1\\ &(x_1^0,x_2^1,x_3^{-1})\in \mathscr{F} \Rightarrow v_3(x_3^{-1})=-1\\ &(x_1^{-1},x_2^2,x_3^{-1})\in \mathscr{F} \Rightarrow v_2(x_2^2)=2\\ &(x_1^0,x_2^2,x_3^{-2})\in \mathscr{F} \Rightarrow v_3(x_3^{-2})=-2 \end{split}$$

$$\begin{split} &(x_1^0,x_2^0,x_3^0)\in\mathscr{F} \qquad v_1(x_1^0)=v_2(x_2^0)=v_3(x_3^0)=0\\ &(x_1^{-1},x_2^0,x_3^0)\in\mathscr{U} \qquad v_1(x_1^{-1})=-1\\ &(x_1^{-1},x_2^1,x_3^0)\in\mathscr{F}\Rightarrow v_2(x_2^1)=1\\ &(x_1^0,x_2^1,x_3^{-1})\in\mathscr{F}\Rightarrow v_3(x_3^{-1})=-1\\ &(x_1^{-1},x_2^2,x_3^{-1})\in\mathscr{F}\Rightarrow v_2(x_2^2)=2\\ &(x_1^0,x_2^2,x_3^{-2})\in\mathscr{F}\Rightarrow v_3(x_3^{-2})=-2\\ &(x_1^{-1},x_2^0,x_3^1)\in\mathscr{F}\Rightarrow v_3(x_3^1)=1 \end{split}$$

$$\begin{split} &(x_1^0,x_2^0,x_3^0)\in \mathscr{F} \qquad v_1(x_1^0)=v_2(x_2^0)=v_3(x_3^0)=0\\ &(x_1^{-1},x_2^0,x_3^0)\in \mathscr{U} \qquad v_1(x_1^{-1})=-1\\ &(x_1^{-1},x_2^1,x_3^0)\in \mathscr{F} \Rightarrow v_2(x_2^1)=1\\ &(x_1^0,x_2^1,x_3^{-1})\in \mathscr{F} \Rightarrow v_3(x_3^{-1})=-1\\ &(x_1^{-1},x_2^2,x_3^{-1})\in \mathscr{F} \Rightarrow v_2(x_2^2)=2\\ &(x_1^0,x_2^2,x_3^{-2})\in \mathscr{F} \Rightarrow v_3(x_3^{-2})=-2\\ &(x_1^{-1},x_2^0,x_3^1)\in \mathscr{F} \Rightarrow v_3(x_3^1)=1\\ &(x_1^0,x_2^{-1},x_3^1)\in \mathscr{F} \Rightarrow v_2(x_2^{-1})=-1 \end{split}$$

$$\begin{split} &(x_1^0,x_2^0,x_3^0)\in \mathscr{F} \quad v_1(x_1^0)=v_2(x_2^0)=v_3(x_3^0)=0\\ &(x_1^{-1},x_2^0,x_3^0)\in \mathscr{U} \quad v_1(x_1^{-1})=-1\\ &(x_1^{-1},x_2^1,x_3^0)\in \mathscr{F} \Rightarrow v_2(x_2^1)=1\\ &(x_1^0,x_2^1,x_3^{-1})\in \mathscr{F} \Rightarrow v_3(x_3^{-1})=-1\\ &(x_1^{-1},x_2^2,x_3^{-1})\in \mathscr{F} \Rightarrow v_2(x_2^2)=2\\ &(x_1^0,x_2^2,x_3^{-2})\in \mathscr{F} \Rightarrow v_3(x_3^{-2})=-2\\ &(x_1^{-1},x_2^0,x_3^1)\in \mathscr{F} \Rightarrow v_3(x_3^1)=1\\ &(x_1^0,x_2^{-1},x_3^1)\in \mathscr{F} \Rightarrow v_2(x_2^{-1})=-1\\ &(x_1^0,x_2^{-1},x_3^1)\in \mathscr{F} \Rightarrow v_3(x_3^1)=2 \end{split}$$

$$\begin{split} &(x_1^0,x_2^0,x_3^0)\in \mathscr{F} \qquad v_1(x_1^0)=v_2(x_2^0)=v_3(x_3^0)=0\\ &(x_1^{-1},x_2^0,x_3^0)\in \mathscr{U} \qquad v_1(x_1^{-1})=-1\\ &(x_1^{-1},x_2^1,x_3^0)\in \mathscr{F} \Rightarrow v_2(x_2^1)=1\\ &(x_1^0,x_2^1,x_3^{-1})\in \mathscr{F} \Rightarrow v_3(x_3^{-1})=-1\\ &(x_1^{-1},x_2^2,x_3^{-1})\in \mathscr{F} \Rightarrow v_2(x_2^2)=2\\ &(x_1^0,x_2^2,x_3^{-2})\in \mathscr{F} \Rightarrow v_3(x_3^{-2})=-2\\ &(x_1^{-1},x_2^0,x_3^1)\in \mathscr{F} \Rightarrow v_3(x_3^1)=1\\ &(x_1^0,x_2^{-1},x_3^1)\in \mathscr{F} \Rightarrow v_2(x_2^{-1})=-1\\ &(x_1^{-1},x_2^{-1},x_3^1)\in \mathscr{F} \Rightarrow v_3(x_3^1)=2\\ &(x_1^0,x_2^{-2},x_3^2)\in \mathscr{F} \Rightarrow v_2(x_2^{-1})=-2\\ \end{split}$$

Ordering the elements of X_i

- the function v_i orders the element of X_i
- \bullet this weak order is compatible with $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Ordering the elements of X_i

- the function v_i orders the element of X_i
- this weak order is compatible with $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Thinness

- ullet category ${\mathscr F}$ is thin
- strict compatibility with $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Ordering the elements of X_i

- the function v_i orders the element of X_i
- \bullet this weak order is compatible with $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Thinness

- category \mathcal{F} is thin
- strict compatibility with $\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$

Archimedean condition

• a diagonal standard sequence is able to "reach" all diagonal points

Ordering the elements of X_i

- the function v_i orders the element of X_i
- this weak order is compatible with $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Thinness

- category \mathscr{F} is thin
- strict compatibility with $\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$

Archimedean condition

• a diagonal standard sequence is able to "reach" all diagonal points

Structural conditions

- solvability: we can find $(x_1^0, x_2^0, x_3^0) \in \mathscr{F}$
- influence of attribute 1: we can find x_1^{-1} below x_1^0

Thomsen condition

Problems

- how do we extend the construction to X_1 ?
- is the construction sound?

Thomsen condition

Problems

- how do we extend the construction to X_1 ?
- is the construction sound?

Thomsen condition

$$\begin{array}{l}
(a_1, x_2, x_3) \in \mathscr{F} \text{ and } (x_2, x_3) \sim_{23} (y_2, y_3) \\
(b_1, y_2, z_3) \in \mathscr{F} \text{ and } (y_2, z_3) \sim_{23} (z_2, x_3)
\end{array} \Rightarrow (x_2, z_3) \sim_{23} (z_2, y_3)$$

Thomsen condition

Problems

- how do we extend the construction to X_1 ?
- is the construction sound?

Thomsen condition

$$\begin{array}{l}
(a_1, x_2, x_3) \in \mathscr{F} \text{ and } (x_2, x_3) \sim_{23} (y_2, y_3) \\
(b_1, y_2, z_3) \in \mathscr{F} \text{ and } (y_2, z_3) \sim_{23} (z_2, x_3)
\end{array} \Rightarrow (x_2, z_3) \sim_{23} (z_2, y_3)$$

Interpretation

$$(x_2, x_3) \sim_{23} (y_2, y_3) \Leftrightarrow \begin{cases} (a_1, x_2, x_3) \in \mathscr{A} \Leftrightarrow (a_1, y_2, y_3) \in \mathscr{A} \\ (a_1, x_2, x_3) \in \mathscr{F} \Leftrightarrow (a_1, y_2, y_3) \in \mathscr{F} \\ (a_1, x_2, x_3) \in \mathscr{U} \Leftrightarrow (a_1, y_2, y_3) \in \mathscr{U} \end{cases}$$

Outline

- Definitions and notation
 - Setting
 - Model
- 2 Intuitive sketch
 - Uniqueness
 - Standard sequences
 - Thomsen and completion
- 3 Axioms
 - Results
 - Main Results
 - Extensions
- Discussion
 - Summary
 - Discussion

\mathscr{A} -linear

$$\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$$
 is \mathcal{A} -linear on $I \subset N$ if

\mathcal{F} -linear

$$\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$$
 is \mathscr{F} -linear on $I \subset N$ if

$$\begin{array}{c} (x_I, a_{-I}) \in \mathscr{F} \\ \text{and} \\ (y_I, b_{-I}) \in \mathscr{F} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_I, a_{-I}) \in \mathscr{AF} \\ \text{or} \\ (x_I, b_{-I}) \in \mathscr{AF} \end{array} \right.$$

AF-linear

$$\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$$
 is $\mathcal{A}\mathcal{F}$ -linear on $I \subset N$ if

$$\left(\begin{array}{c} (x_I, a_{-I}) \in \mathscr{A} \\ \text{and} \\ (y_I, b_{-I}) \in \mathscr{F} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_I, a_{-I}) \in \mathscr{A} \\ \text{or} \\ (x_I, b_{-I}) \in \mathscr{AF} \end{array} \right.$$

Linearity

$$\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$$
 is $\mathscr{A}\!\mathscr{F}\text{-linear}$ on $I \subset N$ if

$$\left(\begin{array}{c} (x_I, a_{-I}) \in \mathscr{A} \\ \text{and} \\ (y_I, b_{-I}) \in \mathscr{F} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_I, a_{-I}) \in \mathscr{A} \\ \text{or} \\ (x_I, b_{-I}) \in \mathscr{AF} \end{array} \right.$$

Strong linearity

• \mathscr{A} -linear, \mathscr{F} -linear and \mathscr{AF} -linear, for all $I \subset N$

Linearity

 $\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$ is $\mathcal{A}\mathcal{F}$ -linear on $I \subset N$ if

$$\begin{array}{c} (x_I, a_{-I}) \in \mathcal{A} \\ \text{and} \\ (y_I, b_{-I}) \in \mathcal{F} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_I, a_{-I}) \in \mathcal{A} \\ \text{or} \\ (x_I, b_{-I}) \in \mathcal{AF} \end{array} \right.$$

Strong linearity

• \mathscr{A} -linear, \mathscr{F} -linear and \mathscr{AF} -linear, for all $I \subset N$

$$x_{I} \succsim_{I} y_{I} \Leftrightarrow \text{for all } a_{-I} \in X_{-I}, \begin{cases} (y_{I}, a_{-I}) \in \mathscr{A} \Rightarrow (x_{I}, a_{-I}) \in \mathscr{A} \\ (y_{I}, a_{-I}) \in \mathscr{F} \Rightarrow (x_{I}, a_{-I}) \in \mathscr{AF} \end{cases}$$

 \succeq_I is complete $\Leftrightarrow \mathscr{A}$ -linear, \mathscr{F} -linear on $I \subset N$

Thinness

$$\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$$
 is thin *I* if

$$\left(\begin{array}{c} (x_I, a_{-I}) \in \mathscr{F} \\ \text{and} \\ (y_I, a_{-I}) \in \mathscr{F} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (x_I, b_{-I}) \in \mathscr{A} \Leftrightarrow (y_I, b_{-I}) \in \mathscr{A} \\ (x_I, b_{-I}) \in \mathscr{U} \Leftrightarrow (y_I, b_{-I}) \in \mathscr{U} \end{array} \right.$$

Thinness

$$\langle \mathcal{A}, \mathcal{F}, \mathcal{U} \rangle$$
 is thin
_{I} if

$$\left(\begin{array}{c} (x_I, a_{-I}) \in \mathscr{F} \\ \text{and} \\ (y_I, a_{-I}) \in \mathscr{F} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (x_I, b_{-I}) \in \mathscr{A} \Leftrightarrow (y_I, b_{-I}) \in \mathscr{A} \\ (x_I, b_{-I}) \in \mathscr{U} \Leftrightarrow (y_I, b_{-I}) \in \mathscr{U} \end{array} \right.$$

Strong thinness

• thin_I, for all $I \subset N$

Thomsen

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ on X satisfies the Thomsen condition if

$$\begin{array}{l} (x_i, x_j, a_{-ij}) \in \mathscr{F} \& (x_i, x_j) \sim_{ij} (y_i, y_j) \\ (y_i, z_j, b_{-ij}) \in \mathscr{F} \& (y_i, z_j) \sim_{ij} (z_i, x_j) \end{array} \right\} \Rightarrow (x_i, z_j) \sim_{ij} (z_i, y_j)$$

Archimedean and Unrestricted solvability

Archimedean condition

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ satisfies the Archimedean condition if a diagonal standard sequence that is strictly bounded must be finite

Archimedean and Unrestricted solvability

Archimedean condition

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ satisfies the Archimedean condition if a diagonal standard sequence that is strictly bounded must be finite

Unrestricted solvability

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ satisfies unrestricted solvability if, for all $i \in N$ and all $x_{-i} \in X_{-i}$, $(x_i, x_{-i}) \in \mathscr{F}$, for some $x_i \in X_i$

Archimedean and Unrestricted solvability

Archimedean condition

 $\langle \mathcal{A}, \mathcal{F}, \mathcal{W} \rangle$ satisfies the Archimedean condition if a diagonal standard sequence that is strictly bounded must be finite

Unrestricted solvability

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ satisfies unrestricted solvability if, for all $i \in N$ and all $x_{-i} \in X_{-i}$, $(x_i, x_{-i}) \in \mathscr{F}$, for some $x_i \in X_i$

- unrestricted solvability is a strong condition
- can be weakened to restricted solvability with some connectedness spice

Outline

- Definitions and notation
 - Setting
 - Model
- 2 Intuitive sketch
 - Uniqueness
 - Standard sequences
 - Thomsen and completion
 - Axioms
- Results
 - Main Results
 - Extensions
- Discussion
 - Summary
 - Discussion

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n=3) satisfies Thomsen

Then there is an additive representation $\langle v_i \rangle_{i \in N}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n=3) satisfies Thomsen

Then there is an additive representation $\langle v_i \rangle_{i \in \mathbb{N}}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n=3) satisfies Thomsen
- Then there is an additive representation $\langle v_i \rangle_{i \in \mathbb{N}}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n=3) satisfies Thomsen

Then there is an additive representation $\langle v_i \rangle_{i \in \mathbb{N}}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n=3) satisfies Thomsen

Then there is an additive representation $\langle v_i \rangle_{i \in \mathbb{N}}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n = 3) satisfies Thomsen

Then there is an additive representation $\langle v_i \rangle_{i \in \mathbb{N}}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Theorem, B & Marchant (2009)

 $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is an ordered partition on $X = X_1 \times X_2 \times \cdots \times X_n, \ n \geq 3$. Suppose that $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$ is

- non-degenerate
- satisfies unrestricted solvability
- satisfies strong linearity
- satisfies strong thinness
- satisfies Archimedean condition
- (if n=3) satisfies Thomsen

Then there is an additive representation $\langle v_i \rangle_{i \in \mathbb{N}}$ of $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$

Questions

• do you have something to say for the case of two attributes?

Questions

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)

Questions

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness

Questions

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices
- do you have to suppose unrestricted solvability (which forces v_i to be unbounded)

- do you have something to say for the case of two attributes?
- yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices
- do you have to suppose unrestricted solvability (which forces v_i to be unbounded)
 - yes and no: yes in an algebraic setting, no with connectedness spice

- do you have something to say for the case of two attributes?
- yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices
- do you have to suppose unrestricted solvability (which forces v_i to be unbounded)
 - yes and no: yes in an algebraic setting, no with connectedness spice
- do you have to use conditions on the frontier \(\mathcal{F} ? \)

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices
- do you have to suppose unrestricted solvability (which forces v_i to be unbounded)
 - yes and no: yes in an algebraic setting, no with connectedness spice
- do you have to use conditions on the frontier \(\mathcal{F} ? \)
 - yes and no: yes in an algebraic setting, no with connectedness spice

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices
- do you have to suppose unrestricted solvability (which forces v_i to be unbounded)
 - yes and no: yes in an algebraic setting, no with connectedness spice
- do you have to use conditions on the frontier \(\mathcal{F} ? \)
 - yes and no: yes in an algebraic setting, no with connectedness spice
- do you have something to say when there are more than two categories with a frontier?

- do you have something to say for the case of two attributes?
 - yes: but uses very different techniques (ordinal vs conjoint measurement)
- do you have to suppose strong linearity and strong thinness
 - no: working on singletons and pairs suffices
- do you have to suppose unrestricted solvability (which forces v_i to be unbounded)
 - yes and no: yes in an algebraic setting, no with connectedness spice
- do you have to use conditions on the frontier \(\mathcal{F} ? \)
 - yes and no: yes in an algebraic setting, no with connectedness spice
- do you have something to say when there are more than two categories with a frontier?
 - yes: our main results generalize without major problem

Outline

- 1 Definitions and notation
 - Setting
 - Model
- 2 Intuitive sketch
 - Uniqueness
 - Standard sequences
 - Thomsen and completion
 - 3 Axioms
- 4 Results
 - Main Results
 - Extensions
- 6 Discussion
 - Summary
 - Discussion

Summary

Additive conjoint measurement

- additive value functions with tight uniqueness properties an be obtained on the basis of rather poor information: $\langle \mathscr{A}, \mathscr{F}, \mathscr{U} \rangle$
- reasonably simple conditions that can be tested in experiments

Usefulness to MCDM

All this is theory...but

- axioms lead to an assessment technique
- axiomatic analysis as a tool to compare models
- axiomatic analysis as a tool to create new techniques

Usefulness to MCDM

All this is theory...but

- axioms lead to an assessment technique
- axiomatic analysis as a tool to compare models
- axiomatic analysis as a tool to create new techniques

Growing literature on the foundations of sorting methods

- decomposable models and decision rules, GMS (2002)
- ELECTRE TRI
 - surprising relation to a Sugeno integral, B & Marchant (2007a, 2007b)

References

Ordered categories and additive conjoint measurement on connected sets $Journal\ of\ Mathematical\ Psychology,$ forthcoming.

Bouyssou, D., Marchant, Th. (2009b) Additive conjoint measurement with ordered categories Working paper, submitted.

Bouyssou, D., Marchant, Th. (2009c) Biorders and bi-semiorders with frontiers Working paper, submitted.

Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A. (1971) Foundations of measurement, vol. 1: Additive and polynomial representations

Academic Press, New York.

Vind, K. (1991) Independent preferences Journal of Mathematical Economics, 20, 119–135.

