A brief and incomplete Introduction to Social Choice Theory

Denis Bouyssou
CNRS — LAMSADE
What is Social Choice Theory?

- Aim: study decision problems in which a *group* has to take a decision
- Abstract Theory
 - Nature of the decision
 - Size of the group
 - Nature of the group
- Many (deep) results
 - Economics, Political Science, Applied Mathematics, OR
 - Two Nobel Prizes (K. Arrow, A. Sen)
DA/AI and SCT?

- SCT is a general theory of aggregation
- Possible examples of application in DA/AI
 - Several agents with different priorities
 - Several decision rules indicating different actions
 - Several states of nature with different consequences
 - Several criteria
- DA/AI people may also be Citizens (Elections)
Outline

• Introduction
• Examples
 – What can go wrong?
• Some results
 – What can be expected?
• Extensions
Introduction: Vocabulary

• Group
 – Society

• Members of the Group
 – Voters

• Alternatives
 – Candidates

• Problem
 – Choice of one among several Candidates
Aside: Proportional representation

• We’ll study procedures selecting a single candidate
• Why not be interested in more refined procedures electing more than one candidate (Proportional Representation)?
 – PR does not solve the decision problem in the Parliament!
 – PR raises many difficult problems (What is a just PR? How to achieve it? PR and Power indices)
Introduction

• The choice of the candidate will affect all members of the society

• The choice of the candidate should take into account the opinion of the members of the society

Democracy ⇒ Elections ⇒ Majority
Elections

• “Philosophical problems”
 – General will and elections
 – Minorities vs. Majority

• “Political problems”
 – Direct vs. indirect democracy
 – Role of political parties
 – Who should vote? How often should we vote?
 – Who can be a candidate?
 – What mandate?
Technical problems

• Majority decisions
 – Candidate a should beat candidate b if more voters prefer a to b

• Two candidates \Rightarrow No problem: elect the candidate with more votes!

• How to extend the idea with more than 2 candidates?
 – Many ways to do so!
Types of Elections

• Type of ballot that the voters can cast
 – Indicate the name of a candidate
 – Rank order the set of candidates
 – Other (acceptable or unacceptable candidates, grades, veto, etc.)

• Aggregation method
 – Technique used to tabulate the ballots and to designate the winner
Hypothesis

- Each voter is able to rank order the set of candidates in terms of preference
 \[a P b P [e I d] P c \]
- Voters are sincere
Simple ballots
Plurality voting (UK)

- Ballots with a single name
- One round of voting
- The candidate with most votes is elected

Ties (not likely) are neglected

Give some special tie-breaking power to one of the voter

Give some special special statute to one of the candidate
3 candidates: \{a, b, c\}
21 voters (or 21 000 000 or 42 000 000)

Preferences of the voters
10 : a P b P c
6 : b P c P a
5 : c P b P a

Result
a : 10 b : 6 c : 5
a is elected

BUT…

An *absolute majority* of voters (11/21) prefer *all* other candidates to the candidate elected!
Plurality voting with runoff
(France – Presidential elections)

- Ballots with a single name
- 1st round of voting
 - The candidate with most votes is elected if he receives more than 50% of the votes
 - Otherwise go to a 2nd round of voting with the two candidates having received most votes in the first round
- 2nd round of voting
 - The candidate with most votes is elected
Preferences of the voters

10 : $a P b P \not\in$
6 : $b P \not\in P a$
5 : $\not\in P b P a$

1st round (absolute majority = 11)
$a : 10 \quad b : 6 \quad c : 5$

2nd round
$a : 10 \quad b : 11$

b is elected (11/21)

AND

no candidate is preferred to b by a majority of voters
$(a : 11/21, c : 16/21)$

Apparently much better than the UK system

With little added complexity
4 candidates: \{a, b, c, d\}

21 voters

preferences used in the example are NOT bizarre

1st Round (absolute majority = 11)

a: 5 \quad b: 10 \quad c: 6 \quad d: 0

2nd Round

b: 15 \quad c: 6

Result: b is (very well) elected (15/21)

BUT...

an absolute majority of voters (11/21) prefer candidates a and d to the candidate elected b!
Manipulable methods ⇒ elections might not reveal the true opinion of the voters

Advantage to clever voters (knowing how to manipulate)

4 candidates: \{a, b, c, d\}

21 voters

10: b P a P c P d

6: c P a P d P b

5: a P d P b P c

Result: b is elected

Non sincere voting

The 6 voters with c P a P d P b decide to vote as if their preference was a P c P d P b

(Do not waste your vote!)

Result: a is elected in the 1st round (11/21)

Voting non sincerely may be profitable

Method susceptible to manipulation
3 candidates: \(\{a, b, c\} \)
17 voters

Opinion poll

6 : \(a P b P c \)
5 : \(c P a P b \)
4 : \(b P c P a \)
2 : \(b P a P c \)

1st Round (absolute majority = 9)

\(a : 6 \quad b : 6 \quad c : 5 \)

2nd Round

\(a : 11 \quad b : 6 \)

Nothing to worry about up to now on this example

\(a \) starts a campaign against \(b \)

It works

2 voters: \(b P a P c \) become \(a P b P c \)

This change is favorable to \(a \) which is the favorite
New preferences (after campaign)

6 : \(a P b P c\)
5 : \(c P a P b\)
4 : \(b P c P a\)
2 : \(a P b P c\)

1st Round (absolute majority = 9)
\[a : 8 \quad b : 4 \quad c : 5\]

2nd Round
\[a : 8 \quad c : 9\]

\(c\) is elected!

The result of his successful campaign is fatal to \(a\)

Non monotonic method
Sincerity of voters?
3 candidates: \{a, b, c\}

11 voters

4 : a P b P c
4 : c P b P a
3 : b P c P a

1st round (absolute majority = 6)

\begin{align*}
a & : 4 \\
b & : 3 \\
c & : 4
\end{align*}

2nd round

\begin{align*}
a & : 4 \\
c & : 7
\end{align*}

Result: \textit{c} elected (7/11)

Abstention should NOT be profitable (otherwise why vote?!)

What if some voters abstain?
3 candidates: \{a, b, c\}
11 − 2 = 9 voters
2 : a P b P c
4 : c P b P a
3 : b P c P a

1st round (majority = 5)
a : 2 b : 3 c : 4

2nd round
b : 5 c : 4

Result: b elected (5/9)

2 voters among the 4 : a P b P c abstain
Abstaining was VERY rational for our two voters (they prefer b to c)
Not participation incentive!
3 candidates: \(\{a, b, c\} \)

26 voters: 13 in district 1, 13 in district 2

District 1

13 voters

\[
\begin{align*}
4 & : a P b P c \\
3 & : b P a P c \\
3 & : c P a P b \\
3 & : c P b P a \\
\end{align*}
\]

1st round (majority = 7)

\[
\begin{align*}
a & : 4 \\
b & : 3 \\
c & : 6 \\
\end{align*}
\]

Result: \(a\) elected (7/13) in district 1

\[
\begin{align*}
a & : 7 \\
c & : 6 \\
\end{align*}
\]

2nd round
District 2
13 voters
4 : a P b P c
3 : c P a P b
3 : b P c P a
3 : b P a P c

1st round (majority = 7)
a : 4 b : 6 c : 3

2nd round
a : 7 b : 6

Result: a elected (7/13) in district 2

a is elected in both district...

AND THUS should be elected
26 voters
4 : a P b P c
3 : b P a P c
3 : c P a P b
3 : c P b P a
4 : a P b P c
3 : c P a P b
3 : b P c P a
3 : b P a P c

1st Round (majority = 14)
a : 8 b : 9 c : 9 a looses in the first round!

2nd Round
b : 17 c : 9

Result: b elected (17/26)

Entire Society

a is elected in both districts but looses when grouped

Non separable method
Decentralized decisions?
Summary

• The French system does only a little better than the UK one on the “democratic side”

• It has many other problems
 – not monotonic
 – no incentive to participate
 – manipulable
 – non separable

• Other (better!) systems?
Amendment procedure

- The majority method works well with two candidates.
- When there are more than two candidates, organize a series of confrontations between two candidates according to an agenda.
- Method used in most parliaments:
 - amendments to a bill
 - bill amended vs. status quo
4 candidates \{a, b, c, d\}

Agenda: a, b, c, d

Exemple: c is a bill, a and b are amendments, d is the status quo
3 candidates: \{a, b, c\}

3 voters
1 voter: \(a \ Preference \ b \ Preference \ c\)
1 voter: \(b \ Preference \ c \ Preference \ a\)
1 voter: \(c \ Preference \ a \ Preference \ b\)

Agenda: \(a, b, c\) \hspace{1cm} \textbf{Result}: \(c\)
Agenda: \(b, c, a\) \hspace{1cm} \textbf{Result}: \(a\)
Agenda: \(c, a, b\) \hspace{1cm} \textbf{Result}: \(b\)

Results depending on the arbitrary choice of an agenda (power given to the agenda-setter)
Candidates are not treated equally (the later the better)
4 candidates: \(\{a, b, c, d\} \)

3 voters

1 voter: \(b \ P a \ P d \ P c \)
1 voter: \(c \ P b \ P a \ P d \)
1 voter: \(a \ P d \ P c \ P b \)

Agenda: \(a, b, c, d \)

Result: \(d \) elected

BUT...

100% of voters prefer \(a \) to \(d \)!

Non unanimous method
26 candidates: \{a, b, c, ..., z\}

100 voters

51 voters: \(a \ P b \ P c \ P \ ... \ P y \ P z \)

49 voters: \(z \ P b \ P c \ P \ ... \ P y \ P a \)

With sincere voters and with all majority-based systems with only one name per ballot, \(a \) is elected and the “compromise” candidate \(b \) is rejected

Dictature of the majority

(recent European history?)

\(\Rightarrow \) look for more refined ballots
Ballots: Ordered lists
Remarks

• Much richer information
 – practice?
• Ballots with one name are a particular case
Condorcet

- Compare all candidates by pair
- Declare that \(a \) is “socially preferred” to \(b \) if (strictly) more voters prefer \(a \) to \(b \) (social indifference in case of a tie)
- **Condorcet’s principle**: if one candidate is preferred to *all other* candidates, it should be elected.
- **Condorcet Winner** (must be unique)
Remarks

- UK and French systems violate Condorcet’s principle
- The UK system may elect a Condorcet looser
- Condorcet’s principle does not solve the “dictature of the majority” difficulty
- A Condorcet winner is not necessarily “ranked high” by voters
- An attractive concept however... BUT
3 candidates: \{a, b, c\}
21 voters

Preferences of the voters
10 : a \ P \ b \ P \ c
6 : b \ P \ c \ P \ a
5 : c \ P \ b \ P \ a

a is the plurality winner
b is the Condorcet Winner (11/21 over a, 16/21 over c)
a is the Condorcet Looser (10/21 over b, 10/21 over c)
4 candidates: \(\{a, b, c, d\} \)
21 voters
10 : \(b \ P \ a \ P \ c \ P \ d \)
6 : \(c \ P \ a \ P \ d \ P \ b \)
5 : \(a \ P \ d \ P \ b \ P \ c \)

\(b \) is the plurality with runoff winner
\(a \) is the Condorcet Winner
(11/21 over \(b \), 15/21 over \(c \), 21/21 over \(d \))
5 candidates: \{a, b, c, d, e\}
5 voters

1 voter: \(a P b P c P d P e\)
1 voter: \(b P c P e P d P a\)
1 voter: \(e P a P b P c P d\)
1 voter: \(a P b P d P e P c\)
1 voter: \(b P d P c P a P e\)

<table>
<thead>
<tr>
<th>Ranks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(a\) is the Condorcet winner
(3:2 win on all other candidates)
3 candidates: \{a, b, c\}

3 voters

1 : a \succ b \succ c

1 : b \succ c \succ a

1 : c \succ a \succ b

\[a \text{ is socially preferred to } b \]

\[b \text{ is socially preferred to } c \]

\[c \text{ is socially preferred to } a \]

As the social preference relation may have cycles, a Condorcet winner does not always exist (probability 40% with 7 candidates and a large number of voters)

McGarvey’s Theorem
Condorcet

• Weaken the principle so as to elect candidates that are not strictly beaten (Weak CW)
 – they may not exist
 – there may be more than one

• Find what to do when there is no (weak) Condorcet winner
Schwartz

• The strict social preference may not be transitive
 – Take its transitive closure
 – Take the maximal elements of the resulting weak order
4 candidates: \{a, b, c, d\}, 3 voters
1 : a P b P c P d
1 : d P a P b P c
1 : c P d P a P b

Taking the transitive closure, all alternatives are indifferent

BUT....
100% of the voters prefer a to b
Copeland

- Count the number of candidates that are beaten by one candidate minus the number of candidates that beat him (Copeland score)
- Elect the candidate with the highest score
- Sports league
 - +2 for a victory, +1 for a tie
 - equivalent to Copeland’s rule (round robin tournaments)
x is the only unbeaten candidate but is not elected
Borda

- Each ballot is an ordered list of candidates (exclude ties for simplicity)
- On each ballot compute the rank of the candidates in the list
- Rank order the candidates according to the decreasing sum of their ranks
4 candidates: \{a, b, c, d\}

3 voters

2 : b \ P \ a \ P \ c \ P \ d
1 : a \ P \ c \ P \ d \ P \ b

Borda Scores

\[
\begin{align*}
a : 2 \times 2 + 1 \times 1 &= 5 \\
b : 6 \\
c : 8 \\
d : 11
\end{align*}
\]

Result: \(a \) elected

Remark: \(b \) is the (obvious) Condorcet winner
Borda

- Simple
- Efficient: always lead to a result
- Separable, monotonic, participation incentive

BUT...
- Violates Condorcet’s Principle
- Has other problems
 - consistency of choice in case of withdrawals
4 candidates: \{a, b, c, d\}
3 voters
2 : b P a P c P d
1 : a P c P d P b

Borda Scores
\[
\begin{align*}
a : 2 \times 2 + 1 \times 1 &= 5 \\
b : 6 \\
c : 8 \\
d : 11
\end{align*}
\]
Result: \(a\) elected

Suppose that \(c\) and \(d\) withdraw from the competition

Borda Scores
\[
\begin{align*}
a : 2 \times 2 + 1 \times 1 &= 5 \\
b : 4
\end{align*}
\]
Result: \(b\) elected
Is the choice of a method important?

4 candidates: \{a, b, c, d\}, 27 voters

5 : a P b P c P d
4 : a P c P b P d
2 : d P b P a P c
5 : d P b P c P a
8 : c P b P a P d
2 : d P c P b P a

\(d\) is the plurality winner

\(a\) is the plurality with runoff winner

\(b\) is the Borda winner

\(c\) is the Condorcet winner
What are we looking for?

- “Democratic method”
 - always giving a result like Borda
 - always electing the Condorcet winner
 - consistent wrt withdrawals
 - monotonic, separable, incentive to participate, not manipulable, etc.
Arrow

• $n \geq 3$ candidates (otherwise use plurality)
• m voters ($m \geq 2$ and finite)
• ballots = ordered list of candidates

• Problem: find all “methods” respecting a small number of “desirable” principles
• **Universality**: the method should be able to deal with any configuration of ordered lists

• **Transitivity**: the result of the method should be an ordered list of candidates

• **Unanimity**: the method should respect a unanimous preference of the voters

• **Absence of dictator**: the method should not allow for dictators

• **Independence**: the comparison of two candidates should be based only on their respective standings in the ordered lists of the voters
Arrow’s Theorem (1951)

• Theorem: There is no method respecting the five principles
 – Borda is
 • universal, transitive, unanimous with no dictator
 ⇒ it cannot be independent
 – Condorcet is
 • universal, unanimous, independent with no dictator
 ⇒ it cannot be transitive
Sketch of the proof

- $V \subseteq N$ is **decisive** for (a,b) if whenever $a P_i b$ for all $i \in V$ then $a P b$
- $V \subseteq N$ is **almost decisive** for (a,b) if whenever $a P_i b$ for all $i \in V$ and $b P_j a$ for all $j \notin V$ then $a P b$
Lemma 1

• If V is almost decisive over some ordered pair (a,b), it is decisive over all ordered pairs.

$\{a, b, x, y\}$ and use universality to obtain:

$V : x P a \land b P y$

$N\backslash V : x P a, b P y, b P a$ (position of x and y unspecified)

Unanimity $\Rightarrow x P a$ and $b P y$

V is almost decisive for $(a,b) \Rightarrow a P b$

$\Rightarrow x P y$ (transitivity)

Independence \Rightarrow the ordering of a and b is irrelevant
Lemma 2

- If V is decisive and $\text{card}(V) > 1$, then some proper subset of V is decisive

$\{x, y, z\}$ use *universality* to obtain:

$V1 : x P y P z$

$V2 : y P z P x$

$N\backslash V : z P x P y$

V decisive $\Rightarrow y P z$

If $x P z$ then $V1$ is almost decisive for (x, z) and thus decisive (lemma 1)

If $z R x$ then $y P x$ (*transitivity*) and $V2$ is almost decisive for (y, x) and thus decisive (lemma 1)
Proof

- *Unanimity* \Rightarrow N is decisive
- Since N is finite the iterated use of lemma 2 leads to the existence of a dictator
Principles

- *Unanimity*: no apparent problem
- *Absence of dictator*: minimal requirement of democracy!
- *Universality*: a group adopting functioning rules that would not function in “difficult situations” could be in big trouble!
Independence

- no intensity of preference considerations
 - I “intensely” or “barely” prefer a to b
 - practice, manipulation, interpersonal comparisons?

- no consideration of a third alternative to rank order a and b
Borda and Independence

4 candidates: \{a, b, c, d\}, 3 voters

2 voters: \(c \ P \ a \ P \ b \ P \ d\)
1 voter: \(a \ P \ b \ P \ c \ P \ d\)
Borda: \(a \ P \ c \ P \ b \ P \ d\) (scores: 5, 6, 7 and 11)

2 voters: \(c \ P \ a \ P \ b \ P \ d\)
1 voter: \(a \ P \ c \ P \ b \ P \ d\)
Borda: \(c \ P \ a \ P \ b \ P \ d\) (scores: 4, 5, 9 and 12)

The ranking of \(a\) and \(c\) is reversed
BUT... the respective positions of \(a\) and \(c\) is unchanged in the individual lists
Transitivity

- maybe too demanding if the only problem is to elect a candidate
- BUT... guarantees consistency

In \{a, b, c\}, a is elected

In \{a, c\}, both a and c are elected
Relaxing transitivity

- Semi-orders and interval order
 - no change (if more than 4 candidates)

- Transitivity of strict preference
 - oligarchy: group O of voters st
 \[a \, P_i \, b \quad \forall \, i \in O \implies a \, P \, b \]
 \[i \in O \text{ and } a \, P_i \, b \implies \neg[b \, P \, a] \]

- Absence of cycles
 - some voter has a veto power
 \[a \, P_i \, b \implies \neg[b \, P \, a] \]
Message?

• Despair
 – no “ideal” method (this would be dull!)

BUT...

• A group is more complex than an individual
• Analyze the pros and cons of each method
• Beware of “method-sellers”
Extensions

• **Impossibility results**

 – *Arrow*

 – *Gibbard-Satterthwaite*

 • All “reasonable methods” may be manipulated
 (more or less easily or frequently)

 – *Moulin*

 • No separable method can be Condorcet

 • No Condorcet method can give an incentive to participate

 – *Sen*

 • tensions between unanimity and individual freedom
Paretian Liberal Paradox

- There are obvious tensions between the majority principle and the respect of individual rights
- Paradox: there are tensions between the respect of individual rights and the unanimity principle
- Theorem: Unanimity + universality + respect of individual rights \implies Problems
Example

- 2 individuals (males) on a desert island
 - Mr. \(x\) the Puritan and Mr. \(y\) the Liberal
- A pornographic brochure
 - 3 social states
 - \(a\) : \(x\) reads
 - \(b\) : \(y\) reads
 - \(c\) : nobody reads
 - Preferences
 - \(x \in c \overset{P}{\rightarrow} a \overset{P}{\rightarrow} b\)
 - \(y \in a \overset{P}{\rightarrow} b \overset{P}{\rightarrow} c\)
Extensions

• Characterization results
 – find a list of properties that a method is the only one to satisfy simultaneously
 • Borda
 • Copeland
 • Plurality
 – Neutral, anonymous and separable method are of Borda-type (Young 1975)

• Analysis results
 – find a list of desirable properties
 – fill up the methods×properties table
Conclusion

• Little hope to find THE method
• Immense literature: DO NOT re-invent the wheel
 – these problems and results generalize easily to other settings
 • fuzzy preference
 • states of nature
 • etc.
Other aspects

- Institutional setting
- Welfare judgments
- Direct vs. indirect democracy
 - Ostrogorski paradox
 - Referendum paradox
- Electoral platforms
- Paradox of voting (why vote?)