A brief and incomplete Introduction to Social Choice Theory

Denis Bouyssou

CNRS — LAMSADE

What is Social Choice Theory?

- Aim: study decision problems in which a *group* has to take a decision
- Abstract Theory
 - Nature of the decision
 - Size of the group
 - Nature of the group
- Many (deep) results
 - Economics, Political Science, Applied Mathematics,
 OR
 - Two Nobel Prizes (K. Arrow, A. Sen)

DA/AI and SCT?

- SCT is a general theory of aggregation
- Possible examples of application in DA/AI
 - Several agents with different priorities
 - Several decision rules indicating different actions
 - Several states of nature with different consequences
 - Several criteria
- DA/AI people may also be Citizens (Elections)

Outline

- Introduction
- Examples
 - What can go wrong?
- Some results
 - What can be expected?
- Extensions

Introduction: Vocabulary

- Group
 - Society
- Members of the Group
 - Voters
- Alternatives
 - Candidates
- Problem
 - Choice of *one* among several *Candidates*

Aside: Proportional representation

- We'll study procedures selecting a *single* candidate
- Why not be interested in more refined procedures electing more than one candidate (Proportional Representation)?
 - PR does not solve the decision problem in the Parliament!
 - PR raises many difficult problems (What is a just PR?
 How to achieve it? PR and Power indices)

Introduction

- The choice of the candidate will affect all members of the society
- The choice of the candidate should take into account the *opinion* of the members of the society

Democracy ⇒ Elections ⇒ Majority

Elections

- "Philosophical problems"
 - General will and elections
 - Minorities vs. Majority
- "Political problems"
 - Direct vs. indirect democracy
 - Role of political parties
 - Who should vote? How often should we vote?
 - Who can be a candidate?
 - What mandate?

Technical problems

- Majority decisions
 - Candidate a should beat candidate b if more voters prefer a to b
- Two candidates ⇒ No problem: elect the candidate with more votes!
- How to extend the idea with more than 2 candidates?
 - Many ways to do so!

Types of Elections

- Type of ballot that the voters can cast
 - Indicate the name of a candidate
 - Rank order the set of candidates
 - Other (acceptable or unacceptable candidates, grades, veto, etc.)
- Aggregation method
 - Technique used to tabulate the ballots and to designate the winner

Hypothesis

- Each voter is able to rank order the set of candidates in terms of preference a P b P [e I d] P c
- Voters are sincere

Simple ballots

Plurality voting (UK)

- Ballots with a single name
- One round of voting
- The candidate with most votes is elected

ties (not likely) are neglected

Give some special tie-breaking power to one of the voter

Give some special special statute to one of the candidate

a: Tories

3 candidates : $\{a, b, c\}$ h: Labour

21 voters (or 21 000 000 or 42 000 000) c: LibDem

Preferences of the voters

10: a P b P c

6: hPcPa

5: c P b P a

Is the UK system that democratic?

Can we expect the voters to be sincere?

Result

a : 10 *b* : 6 c:5

a is elected

BUT...

Extra-democratic choice of only two candidates

An absolute majority of voters (11/21) prefer all other candidates to the candidate elected!

Plurality voting with runoff (France – Presidential elections)

- Ballots with a single name
- 1st round of voting
 - The candidate with most votes is elected if he receives more than 50% of the votes
 - Otherwise go to a 2nd round of voting with the two candidates having received most votes in the first round
- 2nd round of voting
 - The candidate with most votes is elected

Preferences of the voters

$$10: aPbP \not$$

$$5: \not P b P a$$

Apparently much better than the UK system

With little added complexity

 1^{st} round (absolute majority = 11)

a:10 b:6 c:5

2nd round

a:10 b:11

b is elected (11/21)

AND

no candidate is preferred to b by a majority of voters

(a:11/21, c:16/21)

- 4 candidates: $\{a, b, c, d\}$
- 21 voters
- $10: bP \not aP cP \not a$
 - $6: cP \not dP \not dPb$
 - 5: APAPbPc

- The French system does only a little better than the UK system
- Preferences used in the example are
 - NOT bizarre

- **1st Round** (absolute majority = 11)
- a:5 b:10 c:6 d:0

Sincerity?

2nd Round Wasted votes

b:15 c:6

Result: b is (very well) elected (15/21)

BUT...

an absolute majority of voters (11/21) prefer candidates a and d to the candidate elected b!

21 voters

10: bPaPcPd

6: cPaPdPh

5: aPdPbPc

Result: b is elected

Manipulable methods \Rightarrow elections might not reveal

the true opinion of the voters

Advantage to clever voters

(knowing how to manipulate)

Non sincere voting

The 6 voters with c P a P d P b

decide to vote vote as if their preference was

a P c P d P b

(Do not waste your vote!)

Result: a is elected in the 1st round (11/21)

Voting non sincerely may be profitable

Method susceptible to manipulation

17 voters

Opinion poll

6: a P b P c

5: cPaPb

4:bPcPa

2:bPaPc

1st Round (absolute majority = 9)

 $a:6 \ b:6 \ c:5$

2nd Round

 $a:11 \ b:6$

Nothing to worry about up to now on this example

a starts a campaign against b

It works

2 voters: b P a P c

become

aPbPc

This change is favorable to *a* which is the favorite

New preferences (after campaign)

6: aPbPc

5: cPaPb

4:bPcPa

2: aPbPc

Non monotonic method

Sincerity of voters?

1st Round (absolute majority = 9)

 $a:8 \quad b:4 \quad c:5$

2nd Round

 $a:8 \ c:9$

c is elected!

The result of his successful campaign is fatal to a

11 voters

4:aPbPc

4:cPbPa

3:bPcPa

What if some voters abstain?

Abstention should NOT be profitable

(otherwise why vote?!)

1st round (absolute majority = 6)

a:4 b:3 c:4

2nd round

a:4 c:7

Result: c elected (7/11)

$$11 - 2 = 9$$
 voters

2:aPbPc

4:cPbPa

3:bPcPa

2 voters among the 4: a P b P c abstain

Abstaing was VERY rational for our two voters (they prefer b to c)

Not participation incentive!

1st round (majority = 5)

a:2 b:3 c:4

2nd round

b:5 c:4

Result: b elected (5/9)

26 voters: 13 in district 1, 13 in district 2

District 1

13 voters

Result: a elected (7/13) in district 1

4:aPbPc

3:bPaPc

3:cPaPb

3:cPbPa

1st round (majority = 7)

a:4 b:3 c:6

2nd round

a:7 c:6

District 2

- 13 voters
- 4:aPbPc
- 3: cPaPb
- 3:bPcPa
- 3:bPaPc
- **1st round** (majority = 7)
- a:4 b:6 c:3

2nd round

a:7 b:6

Result: a elected (7/13) in district 2

a is elected in both district...

AND THUS should be elected

26 voters

4:aPbPc

3:bPaPc

3:cPaPb

3:cPbPa

4:aPbPc

3:cPaPb

3:bPcPa

3:bPaPc

1st Round (majority = 14)

a:8 b:9 c:9 a looses in the first round!

2nd Round

b:17 c:9

Result: b elected (17/26)

Entire Society

a is elected in both districts but looses when grouped

Non separable method

Decentralized decisions?

Summary

- The French system does only a little better better than the UK one on the "democratic side"
- It has many other problems
 - not monotonic
 - no incentive to participate
 - manipulable
 - non separable
- Other (better!) systems?

Amendment procedure

- The majority method works well with two candidates
- When there are more than two candidates, organize a series of confrontations between two candidates according to an *agenda*
- Method used in most parliaments
 - amendments to a bill
 - bill amended vs. status quo

Agenda: a, b, c, d

Exemple: c is a bill, a and b are amendments, d is the status quo

3 voters

1 voter: a P b P c

1 voter: *b P c P a*

1 voter: *c P a P b*

Agenda: a, b, c Result: c

Agenda: b, c, a Result: a

Agenda: c, a, b Result: b

Results depending on the arbitrary choice of an agenda (power given to the agenda-setter)

Candidates are not treated equally (the later the better)

3 voters

1 voter: h P a P d P c

1 voter: *c P b P a P d*

1 voter: *a P d P c P b*

Agenda: a, b, c, d

Result: d elected

BUT...

100% of voters prefer a to d!

Non unanimous method

26 candidates: $\{a, b, c, ..., z\}$

100 voters

51 voters: *a P b P c P ... P y P z*

49 voters: *z P b P c P ... P y P a*

With sincere voters and with all majority-based systems with only one name per ballot, a is elected and the "compromise" candidate b is rejected

> Dictature of the majority (recent European history?)

 \Rightarrow look for more refined ballots

Ballots: Ordered lists

Remarks

- Much richer information
 - practice?
- Ballots with one name are a particular case

Condorcet

- Compare all candidates by pair
- Declare that a is "socially preferred" to b if (strictly) more voters prefer a to b (social indifference in case of a tie)
- Condorcet's principle: if one candidate is preferred to all other candidates, it should be elected.
- Condorcet Winner (must be unique)

Remarks

- UK and French systems violate Condorcet's principle
- The UK system may elect a Condorcet looser
- Condorcet's principle does not solve the "dictature of the majority" difficulty
- A Condorcet winner is not necessarily "ranked high" by voters
- An attractive concept however... BUT

21 voters

Preferences of the voters

10: a P b P c

6:bPcPa

5: cPhPa

a is the plurality winner

b is the Condorcet Winner (11/21 over a, 16/21 over c)

a is the Condorcet Looser (10/21 over b, 10/21 over c)

4 candidates: $\{a, b, c, d\}$

21 voters

10: bPaPcPd

6: cPaPdPb

5: aPdPbPc

b is the plurality with runoff winner a is the Condorcet Winner (11/21 over b, 15/21 over c, 21/21 over d)

5 candidates: $\{a, b, c, d, e\}$

5 voters

1 voter: *a P b P c P d P e*

1 voter: b P c P e P d P a

1 voter: *e P a P b P c P d*

1 voter: a P b P d P e P c

1 voter: *b P d P c P a P e*

Ranks	1	2	3	4	5
a	2	1	0	1	1
b	2	2	1	0	0

a is the Condorcet winner (3:2 win on all other candidates) 3 candidates: $\{a, b, c\}$

3 voters

1: a P b P c

1:bPcPa

1: cPaPb

Condorcet's Paradox

a is socially preferred to b
b is socially preferred to c
c is socially preferred to a

As the social preference relation may have cycles, a Condorcet winner does not always exist (probability 40% with 7 candidates and a large number of voters)

McGarvey's Theorem

Condorcet

- Weaken the principle so as to elect candidates that are not strictly beaten (Weak CW)
 - they may not exist
 - there may be more than one
- Find what to do when there is no (weak) Condorcet winner

Schwartz

- The strict social preference may not be transitive
 - Take its transitive closure
 - Take the maximal elements of the resulting weak order

4 candidates: $\{a, b, c, d\}$, 3 voters

1: a P b P c P d

1:dPaPbPc

1: cPdPaPb

Taking the transitive closure, all alternatives are indiffrent

BUT....

100% of the voters prefer a to b

Copeland

- Count the number of candidates that are beaten by one candidate minus the number of candidates that beat him (Copeland score)
- Elect the candidate with the highest score
- Sports league
 - +2 for a victory, +1 for a tie
 - equivalent to Copeland's rule (round robin tournaments)

x	1
a	2
b	-2
c	-1
d	0

x is the only unbeaten candidate but is not elected

Borda

- Each ballot is an ordered list of candidates (exclude ties for simplicity)
- On each ballot compute the rank of the candidates in the list
- Rank order the candidates according to the decreasing sum of their ranks

4 candidates: $\{a, b, c, d\}$

3 voters

2:bPaPcPd

1: a P c P d P b

	1st	2nd	3rd	4th
a	1	2	0	0
b	2	0	0	1
c	0	1	2	0
d	0	0	1	2

Borda Scores

 $a: 2\times 2 + 1\times 1 = 5$ b: 6 c: 8 d: 11

Result: a elected

Remark: b is the (obvious) Condorcet winner

Borda

- Simple
- Efficient: always lead to a result
- Separable, monotonic, participation incentive BUT...
- Violates Condorcet's Principle
- Has other problems
 - consistency of choice in case of withdrawals

4 candidates: $\{a, b, c, d\}$

3 voters

2: bPaPcPd

1: a P c P d P b

Borda Scores

$$a: 2\times 2 + 1\times 1 = 5$$
 $b: 6$ $c: 8$ $d: 11$

Result: *a* elected

Suppose that *c* and *d* withdraw from the competition

Borda Scores

$$a: 2 \times 2 + 1 \times 1 = 5$$
 $b: 4$

Result: *b* elected

Is the choice of a method important?

```
4 candidates: \{a, b, c, d\}, 27 voters
```

5: a P b P c P d

4:aPcPbPd

2:dPbPaPc

6: dPbPcPa

8: cPbPaPd

2:dPcPbPa

d is the plurality winner

a is the plurality with runoff winner

b is the Borda winner

c is the Condorcet winner

What are we looking for?

- "Democratic method"
 - always giving a result like Borda
 - always electing the Condorcet winner
 - consistent wrt withdrawals
 - monotonic, separable, incentive to participate, not manipulable, etc.

Arrow

- $n \ge 3$ candidates (otherwise use plurality)
- m voters (m \geq 2 and finite)
- ballots = ordered list of candidates

• Problem: find all "methods" respecting a small number of "desirable" principles

- Universality: the method should be able to deal with any configuration of ordered lists
- Transitivity: the result of the method should be an ordered list of candidates
- Unanimity: the method should respect a unanimous preference of the voters
- **Absence of dictator**: the method should not allow for dictators
- Independence: the comparison of two candidates should be based only on their respective standings in the ordered lists of the voters

Arrow's Theorem (1951)

- Theorem: There is no method respecting the five principles
 - Borda is
 - universal, transitive, unanimous with no dictator
 - ⇒ it cannot be independent
 - Condorcet is
 - universal, unanimous, independent with no dictator
 - \Rightarrow it cannot be transitive

Sketch of the proof

- $V \subseteq N$ is decisive for (a,b) if whenever $a P_i b$ for all $i \in V$ then a P b
- $V \subseteq N$ is almost decisive for (a,b) if whenever
 - $a P_i b$ for all $i \in V$ and $b P_i a$ for all $j \notin V$ then a Ph

Lemma 1

• If V is almost decisive over some ordered pair (a,b), it is decisive over all ordered pairs.

 $\{a, b, x, y\}$ and use *universality* to obtain:

V: x P a P b P y

 $N \mid V : x \mid P \mid a$, $b \mid P \mid y$, $b \mid P \mid a$ (position of x and y unspecified)

 $Unanimity \Rightarrow x P a \text{ and } b P y$

V is almost decisive for $(a,b) \Rightarrow a P b$

 $\Rightarrow x P y (transitivity)$

Independence \Rightarrow the ordering of a and b is irrelevant

Lemma 2

• If V is decisive and card(V) > 1, then some proper subset of V is decisive

```
\{x, y, z\} use universality to obtain:
```

V1: x P y P z

V2: y P z P x

 $N \mid V : z P x P y$

V decisive $\Rightarrow y P z$

If x P z then VI is almost decisive for (x, z) and thus decisive (lemma 1)

If z R x then y P x (transitivity) and V2 is almost decisive for (y, x) and thus decisive (lemma 1)

Proof

- $Unanimity \Rightarrow N$ is decisive
- Since *N* is finite the iterated use of lemma 2 leads to the existence of a dictator

Principles

- *Unanimity*: no apparent problem
- Absence of dictator: minimal requirement of democracy!
- *Universality*: a group adopting functioning rules that would not function in "difficult situations" could be in big trouble!

Independence

- no intensity of preference considerations
 - I "intensely" or "barely" prefer a to b
 - practice, manipulation, interpersonal comparisons?
- no consideration of a third alternative to rank order a and b

Borda and Independence

4 candidates: $\{a, b, c, d\}$, 3 voters

2 voters: *c P a P b P d*

1 voter: *a P b P c P d*

Borda: *a P c P b P d* (scores : 5, 6, 7 and 11)

2 voters: *c P a P b P d*

1 voter: *a P c P b P d*

Borda: *c P a P b P d* (scores : 4, 5, 9 and 12)

The ranking of a and c is reversed

BUT... the respective positions of a and c is unchanged in the individual lists

Transitivity

- maybe too demanding if the only problem is to elect a candidate
- BUT... guarantees consistency

In $\{a, b, c\}$, a is elected

In $\{a, c\}$, both a and c are elected

Relaxing transitivity

- Semi-orders and interval order
 - no change (if more than 4 candidates)
- Transitivity of strict preference
 - oligarchy: group O of voters st $a P_i b \forall i \in O \Rightarrow a P b$ $i \in O$ and $a P_i b \Rightarrow \text{Not}[b P a]$
- Absence of cycles
 - some voter has a veto power $a P_i b \Rightarrow \text{Not}[b P a]$

Message?

- Despair
 - no "ideal" method (this would be dull!)

BUT...

- A group is more complex than an individual
- Analyze the pros and cons of each method
- Beware of "method-sellers"

Extensions

- Impossibility results
 - Arrow
 - Gibbard-Sattherthwaite
 - All "reasonable methods" may be manipulated (more or less easily or frequently)
 - Moulin
 - No separable method can be Condorcet
 - No Condorcet method can give an incentive to participate
 - Sen
 - tensions between unanimity and individual freedom

Paretian Liberal Paradox

- There are obvious tensions between the majority principle and the respect of individual rights
- Paradox: there are tensions between the respect of individual rights and the unanimity principle
- Theorem: Unanimity+universality+respect of individual rights \Rightarrow Problems

Example

- 2 individuals (males) on a desert island
 - Mr. x the Puritan and Mr. y the Liberal
- A pornographic brochure
 - 3 social states
 - *a* : *x* reads
 - *b* : *y* reads
 - *c* : nobody reads
 - Preferences
 - x : c P a P b
 - y: a P b P c

Extensions

- Characterization results
 - find a list of properties that a method is the only one to satisfy simultaneously
 - Borda
 - Copeland
 - Plurality
 - Neutral, anonymous and separable method are of Borda-type (Young 1975)
- Analysis results
 - find a list of desirable properties
 - fill up the methods×properties table

Conclusion

- Little hope to find THE method
- Immense literature: DO NOT re-invent the wheel
 - these problems and results generalize easily to other settings
 - fuzzy preference
 - states of nature
 - etc.

Other aspects

- Institutional setting
- Welfare judgments
- Direct vs. indirect democracy
 - Ostrogorski paradox
 - Referendum paradox
- Electoral platforms
- Paradox of voting (why vote?)