An introduction to Nontransitive Decomposable Conjoint Measurement

with application to Noncompensatory Preferences

Denis Bouyssou

Marc Pirlot

CNRS-LAMSADE Faculté Polytechnique de Mons

Université de Caen – mars 2002

Caen - mars 2002 Page 1

Outline

- Introduction and Motivation
- Nontransitive Conjoint Measurement
 - Overview and summary of results
- Noncompensatory Preferences
 - Definitions
 - Related works and motivation
 - A general conjoint measurement model
 - Results
- Discussion
 - Extensions
 - Open problems

Caen — mars 2002

Introduction: Conjoint Measurement

- Set of attributes $N = \{1, 2, \dots, n\}$
- Set of *objects* evaluated on $N: Y \subseteq X_1 \times X_2 \times \cdots \times X_n$
- Binary relation on the set of objects: \gtrsim

Objective: Study/Build/Axiomatise numerical representations of \succsim

Interest of Numerical Representations

- Manipulation of \succsim
- Construction of numerical representations

Interest of Axiomatic Analysis

- Tests of models
- Understanding models

Introduction: Cartesian Product Structures

• MCDM

- x is an "alternative" evaluated on "attributes"

• DM under uncertainty

- x is an "act" evaluated on "states of nature"

• Economics

- x is a "bundle" of "commodities"

• Dynamic DM

- x is an "alternative" evaluated at "several moments in time"

• Social Choice

- x is a "distribution" between several "individuals"

 $x \gtrsim y$ means "x is at least as good as y"

Introduction: Additive Transitive Representation

Basic model: Additive utility

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} u_i(x_i) \ge \sum_{i=1}^{n} u_i(y_i)$$

Examples:

- MCDM: Weighted sum, Additive utility, Goal programming, Compromise Programming
- DM under uncertainty: SEU
- Dynamic DM: Discounting
- Social Choice: Inequality measures à la Atkinson/Sen

Well-developed Theory (Debreu 1960, Luce & Tukey 1964)

Introduction: Problems

• Empirical problems

- Transitivity of \sim (Luce 1956)
- Transitivity of > (May 1954, Tversky 1969)
- Additional conditions: Independence (EU vs. Choquet EU)

• Technical Problems

- Asymmetry: "finite" vs. "Rich" cases
- Asymmetry: n = 2 vs. $n \ge 3$ cases

Study more general models

- X finite (Scott-Suppes 1958, Scott 1964)
 - Necessary and sufficient Conditions
 - Denumerable Set of "Cancellation Conditions"
 - No nice uniqueness results
 - Axioms hardly interpretable and testable
- X has a "rich structure" and \succeq behaves consistently in this "continuum" (Debreu 1960, Luce-Tukey 1964)
 - (Topological assumptions + continuity) or (solvability assumption + Archimedean condition)
 - A finite (and limited) set of "Cancellation Conditions" entails the representation (independence, TC)
 - u_i define "interval scales" with common unit $(v_i = \alpha u_i + \beta_i)$
 - Asymmetry n = 2 vs. $n \ge 3$
 - Respective roles of necessary vs. structural conditions

Introduction: Possible extensions

- Additive utility = $\underbrace{Additive}_{1}$ $\underbrace{Transitive}_{2}$ Conjoint Measurement
- Extensions
 - 1. Drop additivity
 - 2. Drop transitivity and/or completeness
- Other extensions: more complex additive forms (Choquet EU, Gini-like inequality measures)

Caen — mars 2002

Introduction: Extensions

Decomposable Transitive model (Krantz et al (1971))

$$x \gtrsim y \Leftrightarrow F(u_i(x_i)) \geq F(u_i(y_i))$$
 F increasing

Advantages Simple axiomatic analysis, Simple proofs

Drawbacks Transitivity and completeness

Introduction: Extensions

Additive Non Transitive Models

(Bouyssou 1986, Fishburn 1990, 1991, Vind 1991)

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} p_i(x_i, y_i) \ge 0$$
 $p_i(x_i, x_i) = 0$ or p_i skew symmetric

Advantages Flexible towards transitivity and completeness, Classical results are particular cases

Drawbacks Asymmetries, Complex proofs

Particular case: Additive Difference Model (Tversky 1969)

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) \ge 0$$
 Φ_i increasing and odd

Introduction: Models

Nontransitive decomposable models (Bouyssou and Pirlot)

$$x \gtrsim y \Leftrightarrow F(p_i(x_i, y_i)_{i=1,2,...,n}) \ge 0$$

with additional properties:

- F increasing/nondecreasing and/or odd, p_i skew symmetric
- $p_i(x_i, y_i) = \varphi_i(u_i(x_i), u_i(y_i))$ (with $\varphi_i(\nearrow, \searrow)$)

Introduction: Analysis

Non Transitive Decomposable models:

- imply substantive requirements on \gtrsim
- may be axiomatized in a simple way avoiding the use of a denumerable number of conditions in the finite case and of unnecessary structural assumptions in the infinite case
- ullet allow to study the "pure consequences" of cancellation conditions in the absence of transitivity, completeness and structural requirements on X
- are sufficiently general to include as particular cases most aggregation rules that have been proposed in the literature
- provide insights on the links and differences between methods

Caen - mars 2002 Page 12

Noncompensatory preferences

Idea: show the usefulness of the general framework of Nontransitive decomposable Conjoint measurement to study a particular problem

Noncompensatory preferences: Preferences governed by an importance relation on the set of subsets of attributes.

Motivation

- (Weighted) majorities
- MCDM: "outranking relations"
- Experimental Psychology

Caen — mars 2002 Page 13

Strict Noncompensatory Preferences

Context: Conjoint measurement (MCDM)

Ingredients

• an asymmetric binary relation on each attribute $i \in N$: P_i

$$-P(x,y) = \{i \in N : x_i P_i y_i\}$$

$$-P(y,x) = \{i \in N : y_i P_i x_i\}$$

- Asymmetry of P_i implies $P(x,y) \cap P(y,x) = \emptyset$
- an asymmetric importance relation \triangleright between disjoint subsets of attributes monotonic (wrt inclusion):

$$[A \triangleright B, C \supseteq A, B \supseteq D, C \cap D = \emptyset] \Rightarrow [C \triangleright D]$$

Strict Noncompensatory Preferences

Definition. A binary relation \mathcal{P} on a set $Y \subseteq X_1 \times X_2 \times \cdots \times X_n$ of alternatives is said to be a *strict noncompensatory preference* if there are:

- an asymmetric binary relation \triangleright between disjoint subsets of N that is monotonic and
- an asymmetric binary relation P_i on each X_i (i = 1, 2, ..., n) such that, for all $x, y \in Y$:

$$x\mathcal{P}y \Leftrightarrow P(x,y) \rhd P(y,x)$$

where $P(x,y) = \{i \in N : x_i P_i y_i\}$

- \mathcal{P} is asymmetric
- \bullet \mathcal{P} may not be transitive
- \mathcal{P} may have circuits

Counterexample: (nontrivial) additive utility model

Questions

Suppose that you observe a binary relation \succ on a set $X = X_1 \times X_2 \times \cdots \times X_n$

- What distinguishes \succ if it is noncompensatory?
 - Characterization of strict noncompensatory relations
- In what sense a strict noncompensatory relation is different from a relation obtained using other aggregation approaches?
 - Characterization of strict noncompensatory relations using conditions that are not entirely specific to these relations

Caen — mars 2002 Page 16

Notation

- $N = \{1, 2, \dots, n\}$: set of attributes
- $X = \prod_{i=1}^n X_i$ with $n \ge 2$: countable set of alternatives
- Abusing notations: (x_J, y_{-J}) and $(x_i, y_{-i}) \in X$, $X_{-J} = \prod_{i \notin J} X_i$, $X_{-i} = \prod_{j \neq i} X_j$
- \bullet > asymmetric binary relation on X interpreted as "strict preference"
- for all $J \subseteq N$, define a marginal preference relation:

$$x_{J} \succ_{J} y_{J} \text{ iff } (x_{J}, z_{-J}) \succ (y_{J}, z_{-J}), \text{ for all } z_{-J} \in X_{-J}$$

Caen — mars 2002

• attribute $i \in N$ is essential if for some $x_i, y_i \in X_i$ and some $z_{-i} \in X_{-i}$

$$(x_i, z_{-i}) \succ (y_i, z_{-i})$$

• attribute $i \in N$ is influent if for some $x_i, y_i, z_i, w_i \in X_i$ and some $x_{-i}, y_{-i} \in X_{-i}$

$$\begin{cases} (x_i, x_{-i}) \succ (y_i, y_{-i}) \\ \text{and} \\ Not[(z_i, x_{-i}) \succ (w_i, y_{-i})] \end{cases}$$

- essential \Rightarrow influent; influent \Rightarrow essential
- influence is innocuous, essentiality is *not*
- all attributes will be supposed influent (w(much)log)

Fishburn's Noncompensation (1976)

- Notation: $\succ (x, y) = \{i : x_i \succ_i y_i\}$ $x_i \succ_i y_i \text{ iff } (x_i, z_{-i}) \succ (y_i, z_{-i}), \text{ for all } z_{-i} \in X_{-i}$
- Asymmetry of $\succ \Rightarrow$ asymmetry of $\succ_i \Rightarrow \succ(x,y) \cap \succ(y,x) = \emptyset$

Definition: \succ is Fishburn noncompensatory if

$$\left. \begin{array}{lll} \succ (x,y) & = & \succ (z,w) \\ \succ (y,x) & = & \succ (w,z) \end{array} \right\} \Rightarrow \left[x \succ y \Leftrightarrow z \succ w \right]$$

Remark: Neutrality-like condition

Properties of Fishburn noncompensatory preferences

Proposition. If \succ is Fishburn noncompensatory then

1. \succ is independent:

$$(x_J, z_{-J}) \succ (y_J, z_{-J})$$
 for some $z_{-J} \in X_{-J} \Rightarrow x_J \succ_J y_J$

- 2. $x_i \sim_i y_i$ for all $i \in N \Rightarrow x \sim y$
- 3. $x_j \succ_j y_j$ for some $j \in N$ and $x_i \sim_i y_i$ for all $i \in N \setminus \{j\} \Rightarrow x \succ y$
- 4. all influent attributes are essential

Important remark

A strict noncompensatory relation may well violate *all* these conditions except independence

Caen — mars 2002

Example: semi-ordered weighted majorities

$$x\mathcal{P}y \Leftrightarrow \sum_{i \in P(x,y)} w_i > \sum_{j \in P(y,x)} w_j + \varepsilon$$

where $\varepsilon > 0$ and $w_i \geq 0$ for all $i \in N$

If $w_j < \varepsilon$ attribute j is NOT essential (but may well be influent)

Is Fishburn's original idea useful?

Fishburn Monotonic Noncompensation

Definition: \succ in Fishburn monotonically noncompensatory if

$$\begin{array}{ccc}
\succ (x,y) & \subseteq & \succ (z,w) \\
\succ (y,x) & \supseteq & \succ (w,z)
\end{array}\right\} \Rightarrow [x \succ y \Rightarrow z \succ w]$$

Theorem (adapted from Fishburn 1976). The following are equivalent:

- 1. \succ is a strict noncompensatory relation in which all attributes are essential
- 2. \succ is an asymmetric relation being Fishburn monotonically noncompensatory

Caen — mars 2002

Problems

Basing the analysis of noncompensation on Fishburn's definition:

- leads to a *narrow view* of noncompensation excluding all relations in which attributes may be influent without being essential
- does not allow to point out the *specific features* of strict noncompensatory relations within a general framework of conjoint measurement
- amounts to using *very strong* conditions

Caen - mars 2002 Page 23

An alternative approach

Nontransitive Decomposable Conjoint Measurement

 $\mathbf{Model}\ (M)$

$$x \succ y \Leftrightarrow F(p_1(x_1, y_1), p_2(x_2, y_2), \dots, p_n(x_n, y_n)) > 0$$

with:

- p_i skew symmetric: $p_i(x_i, y_i) = -p_i(y_i, x_i)$
- $F \ odd$: $F(\mathbf{x}) = -F(-\mathbf{x})$
- F nondecreasing in all its arguments

Interpretation: $p_i(x_i, y_i)$ are "preference differences" adequately combined by F

Axioms

 $ARC1_i$ if

$$(x_{i}, a_{-i}) \succ (y_{i}, b_{-i})$$
and
$$(z_{i}, c_{-i}) \succ (w_{i}, d_{-i})$$

$$\Rightarrow \begin{cases} (x_{i}, c_{-i}) \succ (y_{i}, d_{-i}) \\ \text{or} \\ (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}), \end{cases}$$

- $ARC1_i$ (Asymmetric inteR-attribute Cancellation) suggests that \succ induces on X_i^2 a relation that compares "preference differences" in a well-behaved way
- ARC1 if $ARC1_i$ for all $i \in N$

Axioms

 $ARC2_i$ if

$$(x_{i}, a_{-i}) \succ (y_{i}, b_{-i})$$
and
$$(y_{i}, c_{-i}) \succ (x_{i}, d_{-i})$$

$$\Rightarrow \begin{cases} (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}) \\ \text{or} \\ (w_{i}, c_{-i}) \succ (z_{i}, d_{-i}), \end{cases}$$

- $ARC2_i$ suggests that the preference difference (x_i, y_i) is linked to the "opposite" preference difference (y_i, x_i)
- ARC2 if $ARC2_i$ for all $i \in N$

Induced Comparison of Preference Differences

Two quaternary relations

$$(x_{i}, y_{i}) \succsim_{i}^{*} (z_{i}, w_{i}) \Leftrightarrow$$

$$[\text{for all } a_{-i}, b_{-i} \in X_{-i}, (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}) \Rightarrow (x_{i}, a_{-i}) \succ (y_{i}, b_{-i})]$$

$$(x_{i}, y_{i}) \succsim_{i}^{**} (z_{i}, w_{i}) \Leftrightarrow$$

$$[(x_{i}, y_{i}) \succsim_{i}^{*} (z_{i}, w_{i}) \text{ and } (w_{i}, z_{i}) \succsim_{i}^{*} (y_{i}, x_{i})]$$

- \succsim_i^* and \succsim_i^{**} are transitive by construction
- \succsim_i^* and \succsim_i^{**} may not be complete
- \succsim_i^{**} is reversible $(x_i, y_i) \succsim_i^{**} (z_i, w_i) \Leftrightarrow (w_i, z_i) \succsim_i^{**} (y_i, x_i)$

Results

Theorem. Let \succ be a binary relation on a finite or countably infinite set $X = \prod_{i=1}^{n} X_i$. Then \succ satisfies model (M) iff it is asymmetric and satisfies ARC1 and ARC2.

(can be extended to the general case using NS conditions)

Remark. Model (M) contains as particular cases:

- 1. Additive utilities: $x \succ y \Leftrightarrow \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i)$
- 2. Additive differences: $x \gtrsim y \Leftrightarrow \sum_{i=1}^n \Phi_i(u_i(x_i) u_i(y_i)) > 0$
- 3. Additive Nontransitive preferences: $x \succ y \Leftrightarrow \sum_{i=1}^{n} p_i(x_i, y_i) > 0$

Characterization of strict noncompensatory relations

Theorem. The following are equivalent

- 1. \succ is a strict noncompensatory relation
- 2. \succ has a representation in model (M) with all relations \succsim_i^{**} having three distinct equivalence classes
- 3. \succ is asymmetric, satisfies ARC1 and ARC2 and all relations \succsim_i^{**} have three distinct equivalence classes

Caen - mars 2002 Page 29

Remarks

- the condition that all \succsim_i^{**} have three distinct equivalence classes can be expressed in terms of \succ (technical, not very informative)
- full characterization of strict noncompensatory relations
- conditions ARC1 and ARC2 are NOT specific to strict noncompensatory relations
- \bullet asymmetry, ARC1 and ARC2 are independent conditions
- specific feature of strict noncompensatory relations: very rough differentiation of preference differences on each attribute (3 classes: positive, neutral, negative differences)

Caen - mars 2002 Page 30

Question:

Why not suppose in the definition of strict noncompensatory relations that P_i have nice properties (weak orders, strict semi-orders)?

Answer:

We could have done so. However this would not have allowed to improve the characterization.

New conditions: AAC1, AAC2 and AAC3 (traces of \succ_i^{**})

Caen — mars 2002

Question:

It is easy to generalize Arrow-like theorems to the case of MCDM using Fishburn's noncompensation or monotonic noncompensation.

Is it so with strict noncompensatory relations?

Answer:

YES because in a strict noncompensatory relation it is always true that

$$\left. \begin{array}{ccc} P(x,y) & \subseteq & P(z,w) \\ P(y,x) & \supseteq & P(w,z) \end{array} \right\} \Rightarrow \left[x \succ y \Rightarrow z \succ w \right]$$

Sample result

Theorem. Let \succ be a *nonempty* strict noncompensatory relation on a finite set $X = \prod_{i=1}^{n} X_i$. Suppose that \succ has been obtained using, on each $i \in N$, a relation P_i for which there are $a_i, b_i, c_i \in X_i$ such that $a_i P_i b_i, b_i P_i c_i$ and $a_i P_i c_i$.

Then, if \succ is *transitive*, it has an *oligarchy*, i.e. there is a unique nonempty $O \subseteq N$ such that, for all $x, y \in X$:

- $x_i P_i y_i$ for all $i \in O \Rightarrow x \succ y$,
- $x_i P_i y_i$ for some $i \in O \Rightarrow Not[y \succ x]$.

Question:

Does the analysis generalize to "large" preference relations?

Answer:

YES with an alternative general model:

$$x \gtrsim y \Leftrightarrow F(p_1(x_1, y_1), p_2(x_2, y_2), \dots, p_n(x_n, y_n)) \ge 0$$

- p_i skew symmetric: $p_i(x_i, y_i) = -p_i(y_i, x_i)$
- $F(0) \ge 0$
- F nondecreasing in all its arguments

More difficult however because ≿ may not be complete

Question:

How to define "degrees" of noncompensation?

Answer: the analysis provides a mean to define the "degree of compensatoriness" of a binary relation using the number c_i^{**} of equivalence classes of \succsim_i^{**}

Degree of compensatoriness of \succ

$$c^{**} = \max_{i=1,2,\dots,n} c_i^{**}$$

 $c^{**} = 3$ iff \succ is a strict noncompensatory relation

Question:

What about Decision under Uncertainty?

Finite number of states \Rightarrow Homogeneous Cartesian product: $X = \mathbb{C}^n$

Counterpart of strict noncompensatory relations = Strict Lifting Rules (Dubois et al. 1997)

$$x\mathcal{P}y \Leftrightarrow P(x,y) \triangleright P(y,x)$$
 with $P(x,y) = \{i \in N : x_i P y_i\}$

 $(\triangleright \text{ model likelihood})$

Examples: Probabilistic lifting, Possibilist Lifting

A full characterization of strict lifting rules is at hand using a variant of model (M) taking into account the homogeneity of the Cartesian product

Caen — mars 2002 Page 36

Open Problems

- There are "intuitively" noncompensatory preference relations that do not enter our framework
 - Min, Max (particular cases of Choquet or Sugeno), Conjunctive,
 Disjunctive
- All these relations violate independence (and even weak independence).
- The present framework should be enlarged in order to encompass non-independent relations

Caen — mars 2002

Conjunctive rule

$$X_i = A_i \cup U_i \text{ with } A_i \cap U_i = \emptyset$$

$$x \in A \Leftrightarrow x_i \in A_i \text{ for all } i \in N$$

$$x \succ y \Leftrightarrow x \in A \text{ and } y \in U$$

Example

$$x_i \in A_i, y_i \in U_i, a_{-i} \in A_{-i}, b_{-i} \in U_{-i}$$

$$(x_i, a_{-i}) \in A, (y_i, a_{-i}) \in U \Rightarrow (x_i, a_{-i}) \succ (y_i, a_{-i})$$

$$(x_i, b_{-i}) \in U, (y_i, b_{-i}) \in U \Rightarrow (x_i, b_{-i}) \sim (y_i, a_{-i})$$

Weak separability

$$(x_i, a_{-i}) \succ (y_i, a_{-i})$$
 and $(y_i, b_{-i}) \succ (y_i, b_{-i})$ is impossible