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Introduction: Conjoint Measurement

e Set of attributes N = {1,2,...,n}
e Set of objects evaluated on N: Y C X7 X Xo x - X X,

e Binary relation on the set of objects: =~

Y

Objective: Study/Build/Axiomatise numerical representations of =~

Interest of Numerical Representations
e Manipulation of

e Construction of numerical representations

Interest of Axiomatic Analysis
e Tests of models

e Understanding models
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Introduction: Cartesian Product Structures

e MCDM

— x 1s an “alternative” evaluated on “attributes”

e DM under uncertainty

— x i1s an “act” evaluated on “states of nature”

e KEconomics

— x 1s a “bundle” of “commodities”

¢ Dynamic DM

— x 1s an “alternative” evaluated at “several moments in time”

e Social Choice

— x 1s a “distribution” between several “individuals”

x 7~y means “x is at least as good as y”
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Introduction: Additive Transitive Representation

Basic model: Additive utility
rZy ey uile) > uiy)
i=1 i=1

Examples:

e MCDM: Weighted sum, Additive utility, Goal programming, Compromise

Programming
e DM under uncertainty: SEU
e Dynamic DM: Discounting

e Social Choice: Inequality measures a la Atkinson/Sen

Well-developed Theory (Debreu 1960, Luce & Tukey 1964)

Caen — mars 2002 Page 5



Introduction: Problems

e Empirical problems
— Transitivity of ~ (Luce 1956)
— Transitivity of > (May 1954, Tversky 1969)
— Additional conditions: Independence (EU vs. Choquet EU)

e Technical Problems
— Asymmetry: “finite” vs. “Rich” cases

— Asymmetry: n = 2 vs. n > 3 cases

Study more general models
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e X finite (Scott-Suppes 1958, Scott 1964)
— Necessary and sufficient Conditions
— Denumerable Set of “Cancellation Conditions”
— No nice uniqueness results
— Axioms hardly interpretable and testable
e X has a “rich structure” and =~ behaves consistently in this “continuum”
(Debreu 1960, Luce-Tukey 1964)

— (Topological assumptions + continuity) or (solvability assumption +

Archimedean condition)

— A finite (and limited) set of “Cancellation Conditions” entails the

representation (independence, T'C')
— wu; define “interval scales” with common unit (v; = au; + 5;)
— Asymmetry n =2 vs. n > 3

— Respective roles of necessary vs. structural conditions
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Introduction: Possible extensions

o Additive utility = Additive Transitive Conjoint Measurement

N~ "~

1 2

e Lixtensions
1. Drop additivity

2. Drop transitivity and/or completeness

e Other extensions: more complex additive forms (Choquet EU, Gini-like

inequality measures)
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Introduction: Extensions

Decomposable Transitive model (Krantz et al (1971))

x oy < Flu(x;)) > F(u;(y:)) F increasing

Advantages Simple axiomatic analysis, Simple proofs

Drawbacks Transitivity and completeness

Caen — mars 2002 Page 9



Introduction: Extensions

Additive Non Transitive Models
(Bouyssou 1986, Fishburn 1990, 1991, Vind 1991)

mn
vy e > pi(wiy) >0 pi(wi,ai) =0 or p; skew symmetric
=1

Advantages Flexible towards transitivity and completeness, Classical results are

particular cases

Drawbacks Asymmetries, Complex proofs

Particular case: Additive Difference Model (Tversky 1969)

Ty &S Z D, (ui(x;) —ui(y;)) >0 ®; increasing and odd
i=1
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Introduction: Models

Additive Transitive

!

Additive Nontransitive

Nontransitive decomposable models (Bouyssou and Pirlot)

2y F(pi(xi,yi)i=1,2,...n) >0

with additional properties:

e F' increasing/nondecreasing and/or odd, p; skew symmetric

o pi(wi,yi) = @iui(x:), wi(y:)) (with o;(,",\)))

«—— Transitive Decomposable

—

!

?
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Introduction: Analysis

Non Transitive Decomposable models:

imply substantive requirements on =~

may be axiomatized in a simple way avoiding the use of a denumerable
number of conditions in the finite case and of unnecessary structural

assumptions in the infinite case

allow to study the “pure consequences” of cancellation conditions in the

absence of transitivity, completeness and structural requirements on X

are sufficiently general to include as particular cases most aggregation rules
that have been proposed in the literature

provide insights on the links and differences between methods
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Noncompensatory preferences

Idea: show the usefulness of the general framework of Nontransitive

decomposable Conjoint measurement to study a particular problem

Noncompensatory preferences: Preferences governed by an importance

relation on the set of subsets of attributes.

Motivation
o (Weighted) majorities
e MCDM: “outranking relations”

e Experimental Psychology
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Strict Noncompensatory Preferences

Context: Conjoint measurement (MCDM)

Ingredients

e an asymmetric binary relation on each attribute : € N: P,
— P(z,y) ={i € N : z;Py; }
- P(y,z) ={i € N : y;Pix;}
— Asymmetry of P; implies P(x,y) N P(y,x) = ()

e an asymmetric importance relation > between disjoint subsets of attributes

monotonic (wrt inclusion):

[A>B,C2>A,BD>D,CND=0]=[Cr D]
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Strict Noncompensatory Preferences

Definition. A binary relation P on a set Y C X; x X5 x --- x X, of alternatives
is said to be a strict noncompensatory preference if there are:

e an asymmetric binary relation > between disjoint subsets of N that is
monotonic and

e an asymmetric binary relation P; on each X; (1 =1,2,...,n)
such that, for all xz,y € Y:
Py < P(x,y) > Py, x)
where P(z,y) ={t € N : z;Py;}
e P is asymmetric
e P may not be transitive
e P may have circuits

Counterexample: (nontrivial) additive utility model
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Questions

Suppose that you observe a binary relation > on a set X = X7 x Xo x --- x X,

e What distinguishes > if it is noncompensatory?
— Characterization of strict noncompensatory relations

e In what sense a strict noncompensatory relation is different from a relation
obtained using other aggregation approaches?

— Characterization of strict noncompensatory relations using conditions that
are not entirely specific to these relations
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Notation

e N={1,2,...,n}: set of attributes
e X =][,_, X; with n > 2: countable set of alternatives

e Abusing notations: (xy,y_s) and (z;,y_;) € X, X_j = HZ‘QJ X,
X ;= Hj;éz’ Xj

Y

e > asymmetric binary relation on X interpreted as “strict preference’

e for all J C N, define amarginal preference relation:

xy-gygift (xy,2_5) = (ys,2-7), forall z_; € X_j
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e attribute ¢ € NN is essential if for some z;,y; € X, and some z_; € X_;
(xia Z—’i) ~ (y’m Z—i)

e attribute ¢ € N is influent if for some z;,y;, z;, w; € X; and some

T,y € Xy

)
(i, 2—5) = (Vs> Y—i)

{ and
NOt[(Zi,x—i) ~ (why—’b)]

\

e essential = influent; influent # essential
e influence is innocuous, essentiality is not

e all attributes will be supposed influent (w(much)log)
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Fishburn’s Noncompensation (1976)

e Notation: > (z,y) = {i:x; >=; y; }
x; =i Yi iff (xi,2-4) > (y;,2_4), forall z_; € X_;

e Asymmetry of = = asymmetry of =; = > (z,y) N = (y,x) = ()

Definition: > is Fishburn noncompensatory if

~@y) = -(zw) =z =y 2= w
~(y,z) = = (w,z)

Remark: Neutrality-like condition
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Properties of Fishburn noncompensatory preferences

Proposition. If > is Fishburn noncompensatory then

1. > is independent:
(xg,2_5) = (yj,z_;y) forsome z_; € X_ ;=25 >5y;

2. x;~;y; forallire N = x~y
3. x; =y, for some j € N and x; ~; y; foralli e N\ {j} = x>y

4. all influent attributes are essential

Important remark

A strict noncompensatory relation may well violate all these conditions except

independence
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Example: semi-ordered weighted majorities

TPy < Z w; > Z w; +¢€

i€ P(x,y) jEP(y,x)

where € > 0 and w; > 0 for all . € N
If w; < e attribute j is NOT essential (but may well be influent)

Is Fishburn’s original idea useful?
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Fishburn Monotonic Noncompensation

Definition: > in Fishburn monotonically noncompensatory it

Y
&
s
N
.
W
g

=z >=y=z>w

Y
2
oy
U
.

S

&

Theorem (adapted from Fishburn 1976). The following are equivalent:
1. > is a strict noncompensatory relation in which all attributes are essential

2. > is an asymmetric relation being Fishburn monotonically noncompensatory
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Problems

Basing the analysis of noncompensation on Fishburn’s definition:

e leads to a narrow view of noncompensation excluding all relations in which

attributes may be influent without being essential

e does NOT allow to point out the specific features of strict noncompensatory

relations within a general framework of conjoint measurement

e amounts to using very strong conditions
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An alternative approach

Nontransitive Decomposable Conjoint Measurement

Model (M)
=y F(pi(r1,91),p2(72,92);s - - s Pu(Tns Yn)) > 0
with:

o p; skew symmetric: p;(x;,y;) = —pi(yi, Ti)

o Fodd: F(x)=—F(—x)

e " nondecreasing in all its arguments

Interpretation: p;(x;,y;) are “preference differences” adequately combined by F
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Axioms

ARC1; if

(xi,a—;i) > (¥i, b—)
and

(Z,L', C_,L') — (’(Uz', d_z)

/

= S

2

(Tisc—i) = (yi, d—;)

or

\ (Ziaa—i) ~ (wi7b—i)7

o ARC1; (Asymmetric inteR-attribute Cancellation) suggests that > induces

on X? a relation that compares “preference differences” in a well-behaved way

o ARC1 if ARC1; for alli € N
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Axioms

ARC?2; if
) (

(i, a—i) > (yi,b—;) (25, a—i) > (w;, b_;)
and , = { or

(Y, c—i) = (zi,d—;) ) \ (Wi, c—i) > (z5,d—;),

o ARC?2; suggests that the preference difference (x;,y;) is linked to the
“opposite” preference difference (y;, x;)

o ARC?2 if ARC?2; for all 1 €¢ N

Caen — mars 2002 Page 26



Induced Comparison of Preference Differences

Two quaternary relations
(@i, yi) Z7 (20, w5) <

for all a—;,b—; € X_;, (2i,a—;) > (w4, b—s) = (Ti,a—3) > (Yi, b—;)]

(i, 95) 27" (2, w;) &

*

(i, 9:) Zi (25, w;) and (wy, z3) 27 (Yi, T4)]

e ~ and 7" are transitive by construction

e " and Z7* may not be complete

*k

o ' is reversible (z;,y;) 25 (zi,w;) < (Wi, 2i) 25 (yi, x4)

~J f'\./'l/
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Results

Theorem. Let > be a binary relation on a finite or countably infinite set
X =TI;_, Xi. Then > satisfies model (M) iff it is asymmetric and satisfies
ARC1 and ARC?2.

(can be extended to the general case using NS conditions)

Remark. Model (M) contains as particular cases:
1. Additive utilities: = >y < > 0" wi(z;) > >0 ui(y;)
2. Additive differences: = 2y < >0 Di(ui(x;) — ui(y;)) >0

3. Additive Nontransitive preferences: = >y < > " pi(2;,y:;) > 0
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Characterization of strict noncompensatory relations

Theorem. The following are equivalent
1. > is a strict noncompensatory relation

2. > has a representation in model (M) with all relations ~** having three

distinct equivalence classes

3. > is asymmetric, satisfies ARC'1 and ARC?2 and all relations 777" have three

distinct equivalence classes
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Remarks

e the condition that all ;Z* have three distinct equivalence classes can be

expressed in terms of > (technical, not very informative)
e full characterization of strict noncompensatory relations

e conditions ARC1 and ARC?2 are NOT specific to strict noncompensatory

relations
e asymmetry, ARC'1 and ARC?2 are independent conditions

e specific feature of strict noncompensatory relations: very rough differentiation
of preference differences on each attribute (3 classes: positive, neutral,
negative differences)
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Discussion

Question:

Why not suppose in the definition of strict noncompensatory relations
that P, have nice properties (weak orders, strict semi-orders)?

Answer:

We could have done so. However this would not have allowed to improve the

characterization.

New conditions: AAC1, AAC2 and AAC3 (traces of >=7*)
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Discussion

Question:

It is easy to generalize Arrow-like theorems to the case of MCDM

using Fishburn’s noncompensation or monotonic noncompensation.

Is it so with strict noncompensatory relations?

Answer:

YES because in a strict noncompensatory relation it is always true that

=z =y =2z> w
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Sample result

Theorem. Let > be a nonempty strict noncompensatory relation on a finite set
X =TI;_, Xi. Suppose that > has been obtained using, on each i € N, a relation
Pz' for which there are a;, bz', C; € Xz such that CL@'PZ'bZ', bszLCZ and CLZ'PZ'CZ'.

Then, if > is transitive, it has an oligarchy, i.e. there is a unique nonempty O C N
such that, for all z,y € X:

o 1, FPy; for all 2 € O = T~ v,

o 1;Py; for some i € O = Notly > z].
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Discussion

Question:

Does the analysis generalize to “large” preference relations?

Answer:

YES with an alternative general model:

L i Yy = F(pl(fClayl),m(szayz), . 7pn<xn7yn)> >0

o p; skew symmetric: p;(zi,y;) = —pi(Vi, i)
e F(0)>0

e [’ nondecreasing in all its arguments

More difficult however because -~ may not be complete
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Discussion

Question:
How to define “degrees” of noncompensation?

Answer: the analysis provides a mean to define the “degree of compensatoriness”

of a binary relation using the number ¢* of equivalence classes of 7~**

Degree of compensatoriness of >

c™* = 3 iff > is a strict noncompensatory relation
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Discussion

Question:
What about Decision under Uncertainty?
Finite number of states = Homogeneous Cartesian product: X = C"

Counterpart of strict noncompensatory relations = Strict Lifting Rules (Dubois et
al. 1997)

Py < P(x,y) > Py, ) with P(x,y) ={i € N : x; Py;}

(> model likelihood)
Examples: Probabilistic lifting, Possibilist Lifting

A full characterization of strict lifting rules is at hand using a variant of model

(M) taking into account the homogeneity of the Cartesian product
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Open Problems

e There are “intuitively” noncompensatory preference relations that do not

enter our framework

— Min, Maz (particular cases of Choquet or Sugeno), Conjunctive,

Disjunctive
e All these relations violate independence (and even weak independence).

e The present framework should be enlarged in order to encompass

non-independent relations
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Conjunctive rule

X, =A;,JUt with A,NU; =0
reAs g, € A forallie N

r-ysreAandyelU

Example

r; € Ajyyi €Uy a; € Ay, b € U

(xu ) S A (yza ) clU = (337/7 ) ~ (yiaa—
(i, 0-i) €U, (yi,0-i) €U = (x4,b—;) ~ (yi,a

Weak separability

i)
i)

(xi,a_;) = (yi,a—;) and (y;,b_;) = (yi,b_;) is impossible
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