On some ordinal models for decision making under uncertainty

Denis Bouyssou Marc Pirlot

CNRS FPMs

Paris, France Mons, Belgium

DIMACS/LAMSADE Workshop

Paris – October 2004

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
 - V. Putting the framework to work
- VI. Discussion

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
 - V. Putting the framework to work
- VI. Discussion

Introduction and motivation

Context: Decision making under uncertainty

- Mainstream Decision Theory (Economics, Psychology)
 - Subjective Expected Utility (SEU)
 - Variants: Choquet Expected utility (CEU)

These models require a detailed analysis of preferences for acts in order to derive appropriate numerical representations of preference for outcomes (utility u) and likelihood of events (probability θ , capacity v)

• Artificial Intelligence

Artificial agents, Real agents distributed on a network. A detailed analysis of preferences for acts is often impossible

- Less refined models

Models used in AI

Qualitative Decision Theory

- Classical models for decision making under "complete ignorance" (Max Min, Min Max Regret): Brafman & Tennenholtz (2000)
- Possiblistic refinements of these criteria (Pessimistic Expected Utility): Dubois et al. (2001)
- Most plausible state: Boutiller (1994), Tan & Pearl (1994)
- \rightarrow Ordinal approaches

Likely Dominance: model LD

Dubois, Fargier & Prade (1997)

• Act a is preferred to act b as soon as the subset of states for which a gives a better outcome than b is "more likely" than the subset of states for which b gives a better outcome than a

This model:

- can be applied as soon as there is a preference relation on the set of consequences and a relation comparing the likelihood of events
- is apparently quite distinct from model SEU
- has a definite "ordinal" flavor (voting analogy)
- does not lead to complete and/or transitive preference relations on the set of acts

Aims

Propose a framework for decision under uncertainty that

- is simple and intuitive
- is nontrivial
- has a numerical representation
- tolerates incomplete and/or intransitive preferences

Within this framework:

- characterize model SEU
- characterize model LD

Better understanding of the similarities and differences of these two approaches

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
 - V. Putting the framework to work
- VI. Discussion

Setting

Savagean framework with a finite number of states: acts as functions from states to outcomes

- $\Gamma = \{\alpha, \beta, \ldots\}$: set of outcomes
- $N = \{1, 2, ..., n\}$: set of states (one and only one will turn out to be true)
- $\mathcal{A} = \Gamma^N = \{a, b, \ldots\}$: set of acts
- \succeq : a binary relation on \mathcal{A} "at least as good as"
- $a \in \mathcal{A}$ associates with each state $i \in N$ an outcome $a(i) \in \Gamma$ a(i) is often denoted a_i

Notation

- $\overline{\alpha}$: constant act giving outcome $\alpha \in \Gamma$ in all states
- preference relation on outcomes defined via constant acts: $\alpha \succsim_{\Gamma} \beta \Leftrightarrow \overline{\alpha} \succsim_{\overline{\beta}}$
- $i \in N$, $a, b \in \mathcal{A}$, $\alpha \in \Gamma$: $a_i b$ and $\alpha_i b$ are acts $a_i b = (b_1 b_2 \dots a_i \dots b_n), \, \alpha_i b = (b_1 b_2 \dots \alpha_i \dots b_n)$
- \succeq is independent if $a_i c \succeq a_i d$, for some $a \in \mathcal{A} \Rightarrow b_i c \succeq b_i d$, for all $b \in \mathcal{A}$
- state $i \in N$ is influent if $\alpha_i a \succsim \beta_i b$ and $Not[\gamma_i a \succsim \delta_i b]$ We suppose (wmlog) that all states are influent (does not forbids null states)

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
 - V. Putting the framework to work
- VI. Discussion

Model SEU

Savage (1954), Wakker (1989)

$$a \gtrsim b \Leftrightarrow \sum_{i=1}^{n} \theta_i u(a_i) \ge \sum_{i=1}^{n} \theta_i u(b_i)$$
 (SEU)

- θ_i are nonnegative real numbers that add up to one
- u is a real-valued function on Γ

Likely Dominance: model LD

Dubois, Fargier & Prade, (1997)

A reflexive binary relation \geq has a representation in model LD if there are:

- a complete binary relation S on Γ
- a binary relation \geq between subsets of N having N for union that is monotonic w.r.t. inclusion

$$[A \trianglerighteq B, C \supseteq A, B \supseteq D, C \cup D = N] \Rightarrow C \trianglerighteq D$$

such that, for all $a, b \in \mathcal{A}$,

$$a \succeq b \Leftrightarrow S(a,b) \geq S(b,a)$$
 (LD)

where $S(a, b) = \{i \in N : a_i S b_i\}$

 $\langle \succeq, \mathcal{S} \rangle$ is a representation of \succeq in model LD

Properties of model LD

If \succeq has a representation in model LD then

- \gtrsim is independent
- $S = \succeq_{\Gamma}$
- exactly one of $A \triangleright B$, $B \triangleright A$, $A \triangleq B$ and $A \bowtie B$ holds
- $N \triangleq N, N \rhd \emptyset \text{ and } N \trianglerighteq A$
- \succeq has a unique representation $\langle \succeq, \mathcal{S} \rangle$

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
 - V. Putting the framework to work
- VI. Discussion

A general framework for decision making under uncertainty tolerating intransitivity

$$a \succeq b \Leftrightarrow F(p(a_1, b_1), p(a_2, b_2), \dots, p(a_n, b_n)) \ge 0$$
 (M)

with

- p skew symmetric (p(x,y) = -p(y,x))
- F nondecreasing in all its arguments and such that $F(\mathbf{0}) \geq 0$

Interpretation

- p measures preference differences between outcomes
- F synthesizes the preference differences measured in each state

Variants of model (M)

$$a \succeq b \Leftrightarrow F(p(a_1, b_1), p(a_2, b_2), \dots, p(a_n, b_n)) \ge 0$$
 (M)

with F nondecreasing and p skew symmetric

Strengthening model (M)

- (M) with F is odd $(F(\mathbf{x}) = -F(-\mathbf{x}))$
- \bullet (M) with F is odd and increasing in all its arguments

Weakening model (M)

• Not studied here

Properties of model (M)

If \succeq has a representation in model (M) then:

- \succeq is reflexive, independent and marginally complete (two acts that only differ in one state are always comparable)
- $a_i \succ_{\Gamma} b_i$, for all $i \in N \Rightarrow a \succ b$
- \succsim_{Γ} is complete

Relations comparing preference differences between outcomes

$$(\alpha, \beta) \succsim^* (\gamma, \delta) \Leftrightarrow [\text{for all } a, b \in \mathcal{A} \text{ and all } i \in N, \gamma_i a \succsim \delta_i b \Rightarrow \alpha_i a \succsim \beta_i b]$$

$$(\alpha, \beta) \succsim^{**} (\gamma, \delta) \Leftrightarrow [(\alpha, \beta) \succsim^* (\gamma, \delta) \text{ and } (\delta, \gamma) \succsim^* (\beta, \alpha)]$$

- \succsim^* and \succsim^{**} are reflexive and transitive (traces on preference differences)
- \succsim^{**} is reversible
- $a \succeq b$ and $(c_i, d_i) \succeq^* (a_i, b_i) \Rightarrow c_i a \succeq d_i b$
- $a \succ b$ and $(c_i, d_i) \succsim^{**} (a_i, b_i) \Rightarrow c_i a \succ d_i b$

Axioms

$$\begin{array}{c}
\alpha_i a \succsim \beta_i b \\
\text{and} \\
\gamma_j c \succsim \delta_j d
\end{array} \Rightarrow \begin{cases}
\gamma_i a \succsim \delta_i b \\
\text{or} \\
\alpha_j c \succsim \beta_j d
\end{cases} \text{URC1}$$

Independently of the state, either (α, β) is larger than (γ, δ) or vice versa

$$\begin{array}{c}
\alpha_i a \gtrsim \beta_i b \\
\text{and} \\
\beta_j c \gtrsim \alpha_j d
\end{array} \Rightarrow \begin{cases}
\gamma_i a \gtrsim \delta_i b \\
\text{or} \\
\delta_j c \gtrsim \gamma_j d
\end{cases}$$
URC2

Independently of the state, either

 (α, β) is larger than (γ, δ) or

 (δ, γ) is larger than (β, α)

Interpretation

- URC1 $\Leftrightarrow \succeq^*$ is complete
- URC1 and URC2 $\Leftrightarrow \succeq^{**}$ is complete
- URC1 and URC2 are independent conditions
- URC2 implies independence

Remarks

- Preference difference comparisons between outcomes are consistent across states
- Independence holds

Cardinal Coordinate Independence

Wakker (1984, 1989)

$$\begin{array}{c}
\alpha_{i}a \succsim \beta_{i}b \\
\text{and} \\
\gamma_{i}b \succsim \delta_{i}a \\
\text{and} \\
\delta_{j}c \succsim \gamma_{j}d
\end{array} \Rightarrow \alpha_{j}c \succsim \beta_{j}d$$
CCI

When \succeq is *complete*:

- CCI implies both URC1 and URC2
- CCI holds iff \succsim^{**} is complete and \succsim is strictly responsive to \succsim^{**}

Results

Theorem. If Γ is finite or countably infinite, model (M) holds $iff \succeq$ is reflexive and satisfies URC1 and URC2

- Can be generalized to sets of arbitrary cardinality (order denseness condition to be added)
- Model (M) with F odd iff \succeq is complete and satisfies URC1 and URC2
- Model (M) with F odd and increasing iff \succeq is complete and satisfies CCI

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
- V. Putting the framework to work
- VI. Discussion

Model SEU

Theorem. (Bouyssou & Pirlot 2004, MSS) Model (M) with F odd and increasing holds iff \succeq is complete and satisfies CCI plus an order denseness condition

Theorem. (Wakker, 1989) Suppose that $n \geq 2$, that Γ is a connected topological space and endow \mathcal{A} with the product topology. Then model SEU holds (with u continuous) iff

- \gtrsim is complete
- \(\simega \) satisfies CCI
- \succsim is transitive
- \succeq is continuous (the sets $\{a \in \mathcal{A} : a \succ b\}$ and $\{a \in \mathcal{A} : b \succ a\}$ are open)

The function u is an interval scale and the probabilities θ_i are unique.

Model LD

Observations

- if \succeq has a representation in model LD, it satisfies URC1 and URC2
- if \succeq has a representation in model (M) in which function p takes at most three distinct values (-k, 0, +k), it has a representation in model LD

Consequences

- model (M) provide an adequate framework for characterizing model LD
- common grounds for quite different models

Axioms

$$\alpha_{i}a \succsim \beta_{i}b \\
\text{and} \\
\gamma_{j}c \succsim \delta_{j}d$$

$$\Rightarrow \begin{cases}
\beta_{i}a \succsim \alpha_{i}b \text{ or} \\
\delta_{i}a \succsim \gamma_{i}b \text{ or} \\
\alpha_{j}c \succsim \beta_{j}d
\end{cases}$$
UM1
$$\alpha_{i}a \succsim \beta_{i}b \\
\text{and} \\
\beta_{j}c \succsim \alpha_{j}d$$

$$\Rightarrow \begin{cases}
\beta_{i}a \succsim \alpha_{i}b \text{ or} \\
\gamma_{i}a \succsim \delta_{i}b \text{ or} \\
\gamma_{j}c \succsim \delta_{j}d
\end{cases}$$
UM2

Interpretation

- URC2 and UM1 \Rightarrow $[Not[(\beta, \alpha) \succsim^* (\alpha, \beta)] \Rightarrow (\alpha, \beta) \succsim^* (\gamma, \delta)]$ If a preference difference is not larger than it opposite, its opposite is the largest possible difference
- URC1 and UM2 \Rightarrow $[Not[(\beta, \alpha) \succsim^* (\alpha, \beta)] \Rightarrow (\gamma, \delta) \succsim^* (\beta, \alpha)]$ If a preference difference is not larger than it opposite, it is the smallest possible difference
- URC1, URC2, UM2 and UM2 are independent conditions

Result

Theorem. Model LD holds iff

- \succeq is reflexive
- \succeq satisfies URC1 and URC2
- \succeq satisfies UM1 and UM2

- I. Introduction and Motivation
- II. Notation
- III. Definitions
- IV. A general framework for decision making under uncertainty
 - V. Putting the framework to work
- VI. Discussion

Summary

Model (M) provides a framework that:

- is quite flexible while being nontrivial and having a simple interpretation in terms of preference differences
- can be characterized using simple conditions
- provides an adequate basis to characterize models SEU and LD (the same can be done with Fishburn's model SSA)
- \rightarrow The extension of the analysis in Bouyssou & Pirlot (2002, JMP) to the case of decision under uncertainty seems to work well

The message remains the same: follow the traces!

Comparison with Fargier & Perny (1999)

Fargier & Perny (1999) and Dubois et al. (2003) proposed an alternative characterization of model LD

Monotonic Qualitative Independence

$$\begin{cases}
R(a,b) \supseteq R(c,d) \\
\text{and} \\
R(b,a) \subseteq R(d,c)
\end{cases} \Rightarrow [c \succsim d \Rightarrow a \succsim b] \qquad \text{MQI}$$

where $R(a,b) = \{i \in N : a_i \succsim_{\Gamma} b_i\}$

Theorem. (Fargier & Perny 1999) Model LD holds iff

- \(\sigma \) is reflexive
- \succsim_{Γ} is complete
- \(\statisfies MQI \)

Comparison of the two approaches

MQI is a simple condition inspired from "neutrality" conditions in Social Choice Theory. May appear simpler than URC1, URC2, UM1 and UM2 but...

- This simplicity is only apparent. MQI is not directly phrased in terms of \succeq
- MQI is quite strong and nearly characterizes on its own model LD
- Using MQI does not allow to characterize model LD within a broader framework

MQI exploits a "voting analogy". Dubois et al. (2003) have shown that Arrow-like theorems hold in this context:

If \succeq has nice transitivity properties and has a representation in model LD then the repartition of likelihood between states is quite uneven

Discussion

What about LD relations in which S has nice transitivity properties?

Answer

- Add appropriate axioms
- These new axioms are independent from the previous ones
- Saari (1992): "ordinal aggregation" does not take into account the transitivity properties of what is aggregated
- Translation: in order to characterize model LD, supposing that S has nice transitivity properties is neither necessary nor helpful

Underlying model

$$a \succeq b \Leftrightarrow F(\varphi(u(a_1), u(b_1)), \dots, \varphi(u(a_n), u(b_n))) > 0$$
 (M*)

with F as in model (M) and φ skew symmetric and nondecreasing in its first argument