An axiomatic approach to outranking relations

Denis Bouyssou1 Marc Pirlot2

1CNRS
Paris, France

2FPMs
Mons, Belgium

Luxembourg — EWG MCDA — March
Introduction

Context
- preference modelling for MCDA

Two main traditions
- Axiomatic: conjoint measurement and additive value functions
 - firm theoretical background (Krantz et al., 1971)
 - implementation often delicate: requires a detailed analysis of preferences
- Pragmatic: dominance relation and refinements
 - outranking relations based on a concordance-discordance principle
 - intuitive... but often criticized for their lack of axiomatic foundations
introduction

context

- preference modelling for MCDA

two main traditions

- axiomatic: conjoint measurement and additive value functions
 - firm theoretical background (Krantz et al., 1971)
 - implementation often delicate: requires a detailed analysis of preferences

- pragmatic: dominance relation and refinements
 - outranking relations based on a concordance-discordance principle
 - intuitive... but often criticized for their lack of axiomatic foundations
Roy (1968), ELECTRE I

- Alternative \(x \) is "at least as good as" alternative \(y \) if
 - Concordance condition: the set of attributes for which \(x \) is at least as good as \(y \) is "sufficiently important"
 - Non-discordance condition: there is no attribute on which \(y \) is "far better" than \(x \)

This type of comparison:

- is, apparently, quite different from the one used in the additive value function model
- has a definite "ordinal" flavor
- may lead to intransitive/incomplete preference relations

\(\Rightarrow \) usual conjoint measurement tools are not adequate
Outranking relations

Roy (1968), ELECTRE I

- alternative x is "at least as good as" alternative y if
 - **Concordance condition** the set of attributes for which x is at least as good as y is "sufficiently important"
 - **Non-discordance condition** there is no attribute on which y is "far better" than x

This type of comparison:

- is, apparently, quite different from the one used in the additive value function model
- has a definite "ordinal" flavor
- may lead to intransitive/incomplete preference relations

\Rightarrow usual conjoint measurement tools are not adequate
Propose a general framework for conjoint measurement

- simple and intuitive
- nontrivial
- having a numerical representation
- tolerating incompleteness and intransitivity

Put this framework to work

- to characterize concordance relations (Brest talk)
- to characterize outranking relations (Today’s talk)
Objectives

Propose a general framework for conjoint measurement
- simple and intuitive
- nontrivial
- having a numerical representation
- tolerating incompleteness and intransitivity

Put this framework to work
- to characterize concordance relations (Brest talk)
- to characterize outranking relations (Today’s talk)
Outline

1. Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2. Conjoint measurement framework
 - Model
 - Axioms
 - Results

3. Results
 - Concordance relations
 - Outranking relations

4. Discussion
Outline

1. Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2. Conjoint measurement framework
 - Model
 - Axioms
 - Results

3. Results
 - Concordance relations
 - Outranking relations

4. Discussion
Outline

1. Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2. Conjoint measurement framework
 - Model
 - Axioms
 - Results

3. Results
 - Concordance relations
 - Outranking relations

4. Discussion
Outline

1 Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2 Conjoint measurement framework
 - Model
 - Axioms
 - Results

3 Results
 - Concordance relations
 - Outranking relations

4 Discussion
Outline

1. Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2. Conjoint measurement framework
 - Model
 - Axioms
 - Results

3. Results
 - Concordance relations
 - Outranking relations

4. Discussion
Classical conjoint measurement setting

- $N = \{1, 2, \ldots, n\}$: set of attributes
- $X = \prod_{i=1}^{n} X_i$ with $n \geq 2$: set of alternatives
- notation: (x_J, y_{-J}) and $(x_i, y_{-i}) \in X$
- \succ asymmetric binary relation X “strict preference”

Remark

- we only study today asymmetric relations \succ à la TACTIC
- analysis can be extended to cover reflexive relations \sim à la ELECTRE I
- the introduction of discordance raises tricky duality problems however
Framework

Classical conjoint measurement setting

- \(N = \{1, 2, \ldots, n\} \): set of attributes
- \(X = \prod_{i=1}^{n} X_i \) with \(n \geq 2 \): set of alternatives
- notation: \((x_J, y_{-J})\) and \((x_i, y_{-i}) \in X\)
- \(\succ \) asymmetric binary relation \(X \) “strict preference”

Remark

- we only study today asymmetric relations \(\succ \) à la TACTIC
- analysis can be extended to cover reflexive relations \(\succeq \) à la ELECTRE I
 - the introduction of discordance raises tricky duality problems however
Definition of strict concordance relations

Strict concordance relations (SCR)

\[x \succ y \iff P(x, y) \triangleright P(y, x) \]

with \(P(x, y) = \{ i \in N : x_i P_i y_i \} \) and

- \(P_i \): asymmetric binary relation \(X_i \)
- \(\triangleright \): binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

\[A \triangleright B, C \supseteq A \text{ and } B \supseteq D \Rightarrow C \triangleright D \]
Definitions and notation

Conjoint measurement framework

Results

Discussion

Setting

Concordance relations

Outranking relations

Example

Definition of strict concordance relations

Strict concordance relations (SCR)

\[x \succ y \iff P(x, y) \succ P(y, x) \]

with \(P(x, y) = \{ i \in N : x_i P_i y_i \} \)

- \(P_i \): asymmetric binary relation \(X_i \)

- \(\succ \): binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

\[A \succ B, C \supseteq A \text{ and } B \supseteq D \Rightarrow C \succ D \]
Definition of strict outranking relations

\[x > y \Leftrightarrow [P(x, y) \triangleright P(y, x) \text{ and } V(y, x) = \emptyset] \]

with \(P(x, y) = \{i \in N : x_i P_i y_i\} \) and \(V(y, x) = \{i \in N : y_i V_i x_i\} \)

- \(P_i \): asymmetric binary relation \(X_i \)
- \(V_i \): a binary relation on \(X_i \) such that \(V_i \subseteq P_i \)
- \(\triangleright \): binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

\[A \triangleright B, C \supseteq A \text{ and } B \supseteq D \Rightarrow C \triangleright D \]
Definition of strict outranking relations

Strict outranking relations (SOR)

\[x \succ y \iff [P(x, y) \succ P(y, x) \text{ and } V(y, x) = \emptyset] \]

with \(P(x, y) = \{ i \in N : x_i \ P_i y_i \} \text{ and } V(y, x) = \{ i \in N : y_i \ V_i x_i \} \)

- \(P_i \): asymmetric binary relation \(X_i \)
- \(V_i \): a binary relation on \(X_i \) such that \(V_i \subseteq P_i \)
- \(\succ \): binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

\[A \succ B, C \supseteq A \text{ and } B \supseteq D \Rightarrow C \succ D \]
Example

TACTIC (Vansnick, 1986)

\[x \succ y \iff \left\{ \begin{array}{l}
\sum_{i \in P(x,y)} w_i > \rho \sum_{j \in P(y,x)} w_j + \epsilon \\
\text{and} \\
V(y, x) = \emptyset
\end{array} \right. \]

with:
- \(\rho \geq 1 \) and \(\epsilon \geq 0 \)
- \(P_i: \text{semiorder} \)
- \(V_i \subseteq P_i: \text{semiorder} \)
Outline

1. Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2. Conjoint measurement framework
 - Model
 - Axioms
 - Results

3. Results
 - Concordance relations
 - Outranking relations

4. Discussion
Conjoint measurement framework

Model (M)

\[x \succ y \iff F(p_1(x_1, y_1), p_2(x_2, y_2), \ldots, p_n(x_n, y_n)) > 0 \]

(M)

with

- \(p_i \text{ skew symmetric} \) \((p_i(x_i, y_i) = -p_i(y_i, x_i)) \)
- \(F \text{ is odd} \) \((F(x) = -F(-x)) \)
- \(F \text{ is nondecreasing in all its arguments} \)

Interpretation

- \(p_i \text{ measures preference differences between levels on attribute} \)
 \(i \in N \)
- \(F \text{ synthesizes these preference differences} \)

Many variants of model (M) not studied here
Conjoint measurement framework

Model (M)

\[x \succ y \iff F(p_1(x_1, y_1), p_2(x_2, y_2), \ldots, p_n(x_n, y_n)) > 0 \quad (M) \]

with

- \(p_i \) skew symmetric \((p_i(x_i, y_i) = -p_i(y_i, x_i)) \)
- \(F \) is odd \((F(x) = -F(-x)) \)
- \(F \) is nondecreasing in all its arguments

Interpretation

- \(p_i \) measures preference differences between levels on attribute \(i \in N \)
- \(F \) synthesizes these preference differences

Many variants of model (M) not studied here
Axioms

\[
\begin{align*}
(x_i, a_i) &\succ (y_i, b_i) \\
\text{and} \\
(z_i, c_i) &\succ (w_i, d_i) \\
\Rightarrow \\
(x_i, c_i) &\succ (y_i, d_i) \\
\text{or} \\
(z_i, a_i) &\succ (w_i, b_i)
\end{align*}
\]

\[ARC_1\]

\[
\begin{align*}
(x_i, a_i) &\succ (y_i, b_i) \\
\text{and} \\
(y_i, c_i) &\succ (x_i, d_i) \\
\Rightarrow \\
(z_i, a_i) &\succ (w_i, b_i) \\
\text{or} \\
(w_i, c_i) &\succ (z_i, d_i)
\end{align*}
\]

\[ARC_2\]

ARC1 iff \(ARC_1_i, \forall i \in N\)
ARC2 iff \(ARC_2_i, \forall i \in N\)
Axioms

\[
\begin{align*}
(x_i, a_{-i}) \succ (y_i, b_{-i}) \quad \text{and} \quad (z_i, c_{-i}) \succ (w_i, d_{-i}) \implies & \quad (x_i, c_{-i}) \succ (y_i, d_{-i}) \\
& \quad \text{or} \\
& \quad (z_i, a_{-i}) \succ (w_i, b_{-i}) \\
\end{align*}
\]

\[
\begin{align*}
(x_i, a_{-i}) \succ (y_i, b_{-i}) \quad \text{and} \quad (y_i, c_{-i}) \succ (x_i, d_{-i}) \implies & \quad (z_i, a_{-i}) \succ (w_i, b_{-i}) \\
& \quad \text{or} \\
& \quad (w_i, c_{-i}) \succ (z_i, d_{-i}) \\
\end{align*}
\]

\(ARC_1\) iff \(ARC_1\), \(\forall i \in N\)

\(ARC_2\) iff \(ARC_2\), \(\forall i \in N\)
Axioms

\[(x_i, a_{-i}) \succ (y_i, b_{-i}) \quad \text{and} \quad (z_i, c_{-i}) \succ (w_i, d_{-i}) \Rightarrow \begin{cases} (x_i, c_{-i}) \succ (y_i, d_{-i}) \\ (z_i, a_{-i}) \succ (w_i, b_{-i}) \end{cases} \]

\[ARC_1^i\]

\[(x_i, a_{-i}) \succ (y_i, b_{-i}) \quad \text{and} \quad (y_i, c_{-i}) \succ (x_i, d_{-i}) \Rightarrow \begin{cases} (z_i, a_{-i}) \succ (w_i, b_{-i}) \\ (w_i, c_{-i}) \succ (z_i, d_{-i}) \end{cases} \]

\[ARC_2^i\]

\[ARC_1 \iff ARC_1^i, \forall i \in N\]

\[ARC_2 \iff ARC_2^i, \forall i \in N\]
Theorem (B&P, \textit{JMP})

\[\text{[When each } X_i \text{ is at most countably infinite]} \]

A binary relation \succ on X has a representation in model (M) iff

- \succ is asymmetric
- \succ satisfies ARC_1 and ARC_2

Remark
- can be generalized to sets of arbitrary cardinality
Theorem (B&P, JMP)

[When each X_i is at most countably infinite]
A binary relation \succ on X has a representation in model (M) iff
- \succ is asymmetric
- \succ satisfies $ARC1$ and $ARC2$

Remark
- can be generalized to sets of arbitrary cardinality
Remark

Model (M) contains as particular cases

- the additive value function model:

\[x \succ y \iff \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i) \]

- the additive difference model:

\[x \succ y \iff \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) > 0 \]

Coming next...

- model (M) also contains concordance relations
- model (M) also contains outranking relations
Model (M) contains as particular cases

- the additive value function model:

\[x \succ y \iff \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i) \]

- the additive difference model:

\[x \succ y \iff \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) > 0 \]

Coming next...

- model (M) also contains concordance relations
- model (M) also contains outranking relations
Remark

Model \((M)\) contains as particular cases

1. the additive value function model:

\[
x \succ y \iff \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i)
\]

2. the additive difference model:

\[
x \succ y \iff \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) > 0
\]

Coming next. . .

- model \((M)\) also contains concordance relations
- model \((M)\) also contains outranking relations
Outline

1. Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example

2. Conjoint measurement framework
 - Model
 - Axioms
 - Results

3. Results
 - Concordance relations
 - Outranking relations

4. Discussion
Concordance relations

Observations

- If \(\succ \) is a SCR, it satisfies \(ARC1 \) and \(ARC2 \)
- If \(\succ \) has a representation in model (M) in which each \(p_i \) takes at most three distinct values \((-k_i, 0, +k_i) \), it is a SCR

Consequences

- Model (M) offers an adequate framework for characterizing concordance relations
- The distinctive feature of concordance relation is that they induce comparisons of preference differences that are coarse (at most three classes of preference differences)
Concordance relations

Observations

- If \succ is a SCR, it satisfies ARC_1 and ARC_2.
- If \succ has a representation in model (M) in which each p_i takes at most three distinct values ($-k_i$, 0, $+k_i$), it is a SCR.

Consequences

- Model (M) offers an adequate framework for characterizing concordance relations.
- The distinctive feature of concordance relation is that they induce comparisons of preference differences that are coarse (at most three classes of preference differences).
Axioms

\[
\begin{align*}
(x_i, a_i) &\succ (y_i, b_i) \\
\text{and} \\
(z_i, a_i) &\succ (w_i, b_i) \\
\text{and} \\
(z_i, c_i) &\succ (w_i, d_i)
\end{align*}
\]

\[
\Rightarrow \begin{cases}
(y_i, a_i) &\succ (x_i, b_i) \\
\text{or} \\
(x_i, c_i) &\succ (y_i, d_i)
\end{cases}
\]

\[
\begin{align*}
(x_i, a_i) &\succ (y_i, b_i) \\
\text{and} \\
(w_i, a_i) &\succ (z_i, b_i) \\
\text{and} \\
(y_i, c_i) &\succ (x_i, d_i)
\end{align*}
\]

\[
\Rightarrow \begin{cases}
(y_i, a_i) &\succ (x_i, b_i) \\
\text{or} \\
(z_i, c_i) &\succ (w_i, d_i)
\end{cases}
\]

\begin{itemize}
\item Maj1 if Maj1_i, \ \forall i \in N
\item Maj2 if Maj2_i, \ \forall i \in N
\item RC1, RC2, Maj1 and Maj2 are independent conditions
\end{itemize}
Axioms

\[
\begin{align*}
(x_i, a_{-i}) \succ (y_i, b_{-i})
\quad & \text{and} \\
(z_i, a_{-i}) \succ (w_i, b_{-i})
\quad & \text{and} \\
(z_i, c_{-i}) \succ (w_i, d_{-i})
\end{align*}
\]
\Rightarrow
\begin{align*}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} \\
(x_i, c_{-i}) \succ (y_i, d_{-i})
\end{align*}
\tag{Maj 1_i}

\[
\begin{align*}
(x_i, a_{-i}) \succ (y_i, b_{-i})
\quad & \text{and} \\
(w_i, a_{-i}) \succ (z_i, b_{-i})
\quad & \text{and} \\
(y_i, c_{-i}) \succ (x_i, d_{-i})
\end{align*}
\]
\Rightarrow
\begin{align*}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} \\
(z_i, c_{-i}) \succ (w_i, d_{-i})
\end{align*}
\tag{Maj 2_i}

- \text{Maj 1 if Maj 1_i, } \forall i \in N
- \text{Maj 2 if Maj 2_i, } \forall i \in N
- RC1, RC2, Maj 1 and Maj 2 are independent conditions
Axioms

\[
\begin{align*}
(x_i, a_{-i}) & \succ (y_i, b_{-i}) \\
\text{and} & \\
(z_i, a_{-i}) & \succ (w_i, b_{-i}) \\
\text{and} & \\
(z_i, c_{-i}) & \succ (w_i, d_{-i})
\end{align*}
\]
\[
\Rightarrow \begin{cases}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} & \\
(x_i, c_{-i}) \succ (y_i, d_{-i})
\end{cases} \quad Maj_1_i
\]

\[
\begin{align*}
(x_i, a_{-i}) & \succ (y_i, b_{-i}) \\
\text{and} & \\
(w_i, a_{-i}) & \succ (z_i, b_{-i}) \\
\text{and} & \\
(y_i, c_{-i}) & \succ (x_i, d_{-i})
\end{align*}
\]
\[
\Rightarrow \begin{cases}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} & \\
(z_i, c_{-i}) \succ (w_i, d_{-i})
\end{cases} \quad Maj_2_i
\]

- Maj_1 if Maj_1_i, \forall i \in N
- Maj_2 if Maj_2_i, \forall i \in N
- RC_1, RC_2, Maj_1 and Maj_2 are independent conditions
Result model \((M)\)

Theorem (B&P, , JMP)

A binary relation \(\succ\) on \(X\) has a representation in model \((M)\) iff

- \(\succ\) is asymmetric
- \(\succ\) satisfies \(ARC1\) and \(ARC2\)

Remark

- model \((M)\) can be used to analyze other types of models (e.g., additive value functions or additive differences)
Theorem (B&P, EJOR)

A binary relation \succ on X is a SCR iff

- \succ is asymmetric
- \succ satisfies ARC_1 and ARC_2
- \succ satisfies Maj_1 and Maj_2

Remark

- model (M) can be used to analyze other types of models (e.g., additive value functions or additive differences)
Result SCR

Theorem (B&P, EJOR)

A binary relation \succ on X is a SCR iff

- \succ is asymmetric
- \succ satisfies ARC_1 and ARC_2
- \succ satisfies Maj_1 and Maj_2

Remark

- model (M) can be used to analyze other types of models (e.g., additive value functions or additive differences)
Observations

- if \succ is an outranking relation, it satisfies $ARC1$ and $ARC2$
- if the preference difference (x_i, y_i) is larger than (y_i, x_i), it is the largest possible preference difference, so that $Maj1$ holds
- if the preference difference (x_i, y_i) is larger than (y_i, x_i), it may happen that (y_i, x_i) is not the smallest possible preference difference

Consequences

- keep $ARC1$ and $ARC2$
- keep $Maj1$
- relax $Maj2$ in order to allow for veto effects
 - at most five classes of preference differences, the last one playing a very special rôle
Outranking relations

Observations

- If \succ is an outranking relation, it satisfies $ARC1$ and $ARC2$.
- If the preference difference (x_i, y_i) is larger than (y_i, x_i), it is the largest possible preference difference, so that $Maj1$ holds.
- If the preference difference (x_i, y_i) is larger than (y_i, x_i), it may happen that (y_i, x_i) is not the smallest possible preference difference.

Consequences

- Keep $ARC1$ and $ARC2$.
- Keep $Maj1$.
- Relax $Maj2$ in order to allow for veto effects.
 - at most five classes of preference differences, the last one playing a very special rôle.
Axiom \textit{Maj}2

\[
\begin{align*}
(x_i, a_{-i}) &\succ (y_i, b_{-i}) \\
\text{and} \\
(w_i, a_{-i}) &\succ (z_i, b_{-i}) \\
\text{and} \\
(y_i, c_{-i}) &\succ (x_i, d_{-i})
\end{align*}
\]

\[
\Rightarrow
\left\{ \begin{array}{c}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} \\
(z_i, c_{-i}) \succ (w_i, d_{-i})
\end{array} \right. \quad \text{Maj2}_i
\]

- \textit{Maj3} if \textit{Maj3}_i, \forall i \in N
- \textit{Maj2}_i \text{ implies } \textit{Maj3}_i
- an outranking relation satisfies \textit{Maj3}
- \textit{RC1}, \textit{RC2}, \textit{Maj1} and \textit{Maj3} are independent conditions
- condition \textit{Maj3} is inspired by GMS ()
Axiom Maj3

\[
\begin{align*}
&(x_i, a_{-i}) \succ (y_i, b_{-i}) \\
&\quad \text{and} \\
&(w_i, a_{-i}) \succ (z_i, b_{-i}) \\
&\quad \text{and} \\
&(y_i, c_{-i}) \succ (x_i, d_{-i}) \\
&\quad \text{and} \\
&(z_i, e_{-i}) \succ (w_i, f_{-i})
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \begin{cases}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} \\
(z_i, c_{-i}) \succ (w_i, d_{-i}),
\end{cases}
\end{align*}
\]

- Maj3 if Maj3_i, $\forall i \in N$
- Maj2_i implies Maj3_i
- an outranking relation satisfies Maj3
- RC1, RC2, Maj1 and Maj3 are independent conditions
- condition Maj3 is inspired by GMS (2001)
Axiom \textit{Maj3}

\[
\begin{aligned}
(x_i, a_{-i}) \succ (y_i, b_{-i}) \\
\text{and} \\
(w_i, a_{-i}) \succ (z_i, b_{-i}) \\
\text{and} \\
(y_i, c_{-i}) \succ (x_i, d_{-i}) \\
\text{and} \\
(z_i, e_{-i}) \succ (w_i, f_{-i})
\end{aligned}
\] \Rightarrow \begin{cases}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
or \\
(z_i, c_{-i}) \succ (w_i, d_{-i}),
\end{cases}

\text{Maj} 3_i

\begin{itemize}
\item \textit{Maj3} if \textit{Maj} 3_i, \forall i \in N
\item \textit{Maj} 2_i \text{ implies } \textit{Maj} 3_i
\item an outranking relation satisfies \textit{Maj3}
\item \textit{RC1}, \textit{RC2}, \textit{Maj1} and \textit{Maj3} are independent conditions
\item condition \textit{Maj3} is inspired by GMS (2001)
\end{itemize}
Theorem (B&P, 2002, JMP)

A binary relation \succ on X has a representation in model (M) iff

- \succ is asymmetric
- \succ satisfies ARC1 and ARC2
Theorem (B&P, EJOR)

A binary relation \succ on X is a SCR iff

- \succ is asymmetric
- \succ satisfies ARC_1 and ARC_2
- \succ satisfies Maj_1 and Maj_2
Result **SCR SOR**

Theorem (B&P, EJOR WP)

A binary relation \succ on X is a **SCR SOR** iff

- \succ is asymmetric
- \succ satisfies ARC_1 and ARC_2
- \succ satisfies Maj_1 and Maj_2 and Maj_3
A binary relation \succ on X is a SOR iff

- \succ is asymmetric
- \succ satisfies ARC_1 and ARC_2
- \succ satisfies Maj_1 and Maj_3
Model (M)

- is quite flexible but nontrivial
- has a simple and intuitive interpretation using preference differences
- has a simple axiomatic characterization
- allows to understand the main distinctive characteristics of concordance and outranking relations
 - in Brest we showed that the use of Fishburn’s “noncompensation” condition was not adequate to characterize concordance relations
 - the extension to outranking relations would have been impossible using the “noncompensation track”
What about SOR in which \(S_i \) and \(V_i \) have nice transitivity properties?

- add additional axioms
- these additional axioms are independent from the previous ones
- underlying model

\[
x \succ y \iff F(\phi_1(u_1(x_1), u_1(y_1)), \ldots, \phi_n(u_n(x_n), u_n(y_n))) > 0
\]

with \(\phi_i(\uparrow, \downarrow) \)

What about SOR in which \(\succ \) has nice properties?

- add additional axioms
- these additional axioms are independent from the previous ones
What about SOR in which S_i and V_i have nice transitivity properties?

- add additional axioms
- these additional axioms are independent from the previous ones
- underlying model

$$x \succ y \iff F(\phi_1(u_1(x_1), u_1(y_1)), \ldots, \phi_n(u_n(x_n), u_n(y_n))) > 0$$

with $\phi_i(\uparrow, \downarrow)$

What about SOR in which \succ has nice properties?

- add additional axioms
- these additional axioms are independent from the previous ones
Extensions and future research

Reflexive outranking relations à la ELECTRE I

- no major problem: Bouyssou & Pirlot (2005)
 - duality: “veto” and “bonus” effects

ELECTRE TRI

- extension to sorting models: Bouyssou & Marchant (2005)

New models?

- models using preference differences:
 - not as rich as in the additive value functions model
 - not as coarse as in outranking relations
- examples: models with “sophisticated discordance”
Extensions and future research

Reflexive outranking relations à la ELECTRE I
- no major problem: Bouyssou & Pirlot (2005)
 - duality: “veto” and “bonus” effects

ELECTRE TRI
- extension to sorting models: Bouyssou & Marchant (2005)

New models?
- models using preference differences:
 - not as rich as in the additive value functions model
 - not as coarse as in outranking relations
- examples: models with “sophisticated discordance”
Extensions and future research

Reflexive outranking relations à la ELECTRE I
- no major problem: Bouyssou & Pirlot (2005)
 - duality: “veto” and “bonus” effects

ELECTRE TRI
- extension to sorting models: Bouyssou & Marchant (2005)

New models?
- models using preference differences:
 - not as rich as in the additive value functions model
 - not as coarse as in outranking relations
- examples: models with “sophisticated discordance”