An axiomatic approach to outranking relations using the concordance / non-discordance principle

Denis Bouyssou¹ Marc Pirlot²

 1 CNRS Paris, France

²FPMs Mons, Belgium

Lille — ROADEF'2006 — 2006

Introduction

Context

• preference modelling for MCDA

Two main traditions

- Axiomatic: conjoint measurement and additive value functions
 - firm theoretical background (Krantz et al., 1971)
 - implementation often delicate: requires a detailed analysis of preferences
- Pragmatic: dominance relation and refinements
 - outranking relations based on a concordance-discordance principle
 - intuitive...but often criticized for their lack of axiomatic foundations

Introduction

Context

• preference modelling for MCDA

Two main traditions

- Axiomatic: conjoint measurement and additive value functions
 - firm theoretical background (Krantz et al., 1971)
 - implementation often delicate: requires a detailed analysis of preferences
- Pragmatic: dominance relation and refinements
 - outranking relations based on a concordance-discordance principle
 - intuitive...but often criticized for their lack of axiomatic foundations

Outranking relations

Roy (1968), ELECTRE I

• alternative x is "at least as good as" alternative y if

Concordance condition the set of attributes for which x is at
least as good as y is "sufficiently important"

Non-discordance condition there is no attribute on which y is

"far better" than x

This type of comparison:

- is, apparently, quite different from the one used in the additive value function model
- has a definite "ordinal" flavor
- may lead to intransitive/incomplete preference relations
- ⇒ usual conjoint measurement tools are not adequate

Outranking relations

Roy (1968), ELECTRE I

• alternative x is "at least as good as" alternative y if

Concordance condition the set of attributes for which x is at
least as good as y is "sufficiently important"

Non-discordance condition there is no attribute on which y is

"far better" than x

This type of comparison:

- is, apparently, quite different from the one used in the additive value function model
- has a definite "ordinal" flavor
- may lead to intransitive/incomplete preference relations
- ⇒ usual conjoint measurement tools are not adequate

Objectives

Propose a general framework for conjoint measurement

- simple and intuitive
- nontrivial
- having a numerical representation
- tolerating incompleteness and intransitivity

Put this framework to work

• to characterize concordance relations (Tours talk)

Objectives

Propose a general framework for conjoint measurement

- simple and intuitive
- nontrivial
- having a numerical representation
- tolerating incompleteness and intransitivity

Put this framework to work

- to characterize concordance relations (Tours talk)
- to characterize outranking relations (Today's talk)

- Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- Discussion

- Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- 4 Discussion

- Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- Discussion

- Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- 4 Discussion

- 1 Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- 4 Discussion

Framework

Classical conjoint measurement setting

- $N = \{1, 2, \dots, n\}$: set of attributes
- $X = \prod_{i=1}^{n} X_i$ with $n \ge 2$: set of alternatives
- notation: (x_J, y_{-J}) and $(x_i, y_{-i}) \in X$
- \bullet \succ asymmetric binary relation X "strict preference"

Remark

- we only study today asymmetric relations \succ à la TACTIC
- \bullet analysis can be extended to cover reflexive relations \succsim à la ELECTRE I
 - the introduction of discordance raises tricky duality problems however

Framework

Classical conjoint measurement setting

- $N = \{1, 2, \dots, n\}$: set of attributes
- $X = \prod_{i=1}^{n} X_i$ with $n \ge 2$: set of alternatives
- notation: (x_J, y_{-J}) and $(x_i, y_{-i}) \in X$
- \bullet \succ asymmetric binary relation X "strict preference"

Remark

- we only study today asymmetric relations \succ à la TACTIC
- \bullet analysis can be extended to cover reflexive relations \succsim à la ELECTRE I
 - the introduction of discordance raises tricky duality problems however

Definition of strict concordance relations

Strict concordance relations (SCR)

$$x \succ y \Leftrightarrow P(x,y) \rhd P(y,x)$$

with
$$P(x, y) = \{i \in N : x_i P_i y_i\}$$
 and

- P_i : asymmetric binary relation X_i
- >: binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

$$A \triangleright B, C \supset A \text{ and } B \supset D \Rightarrow C \triangleright D$$

Definition of strict concordance relations

Strict concordance relations (SCR)

$$x \succ y \Leftrightarrow P(x,y) \rhd P(y,x)$$

with
$$P(x, y) = \{i \in N : x_i P_i y_i\}$$

- P_i : asymmetric binary relation X_i
- D: binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

$$A \triangleright B, C \supseteq A \text{ and } B \supseteq D \Rightarrow C \triangleright D$$

Definition of strict outranking relations

Strict outranking relations (SOR)

$$x \succ y \Leftrightarrow [P(x,y) \rhd P(y,x) \text{ and } V(y,x) = \varnothing]$$

with
$$P(x, y) = \{i \in N : x_i \ P_i \ y_i\}$$
 and $V(y, x) = \{i \in N : y_i \ V_i \ x_i\}$

- P_i : asymmetric binary relation X_i
- V_i : a binary relation on X_i such that $V_i \subseteq P_i$
- b: binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

$$A \triangleright B$$
, $C \supset A$ and $B \supset D \Rightarrow C \triangleright D$

Definition of strict outranking relations

Strict outranking relations (SOR)

$$x \succ y \Leftrightarrow [P(x,y) \rhd P(y,x) \text{ and } V(y,x) = \varnothing]$$

with
$$P(x, y) = \{i \in N : x_i P_i y_i\}$$
 and $V(y, x) = \{i \in N : y_i V_i x_i\}$

- P_i : asymmetric binary relation X_i
- V_i : a binary relation on X_i such that $V_i \subseteq P_i$
- >: binary relation between disjoint subsets of attributes that is increasing w.r.t. inclusion

$$A \triangleright B$$
, $C \supset A$ and $B \supset D \Rightarrow C \triangleright D$

Example

TACTIC (Vansnick, 1986)

$$x \succ y \Leftrightarrow \begin{cases} \sum_{i \in P(x,y)} w_i > \rho \sum_{j \in P(y,x)} w_j + \varepsilon \\ \text{and} \\ V(y,x) = \emptyset \end{cases}$$

with:

- $\rho \ge 1$ and $\varepsilon \ge 0$
- P_i : semiorder
- $V_i \subseteq P_i$: semiorder

- 1 Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- 4 Discussion

Conjoint measurement framework

Model (M)

$$x \succ y \Leftrightarrow F(p_1(x_1, y_1), p_2(x_2, y_2), \dots, p_n(x_n, y_n)) > 0$$
 (M)

with

- p_i skew symmetric $(p_i(x_i, y_i) = -p_i(y_i, x_i))$
- F is $odd (F(\mathbf{x}) = -F(-\mathbf{x}))$
- F is nondecreasing in all its arguments

Interpretation

- p_i measures preference differences between levels on attribute $i \in N$
- F synthesizes these preference differences

Many variants of model (M) not studied here

Conjoint measurement framework

Model (M)

$$x \succ y \Leftrightarrow F(p_1(x_1, y_1), p_2(x_2, y_2), \dots, p_n(x_n, y_n)) > 0$$
 (M)

with

- p_i skew symmetric $(p_i(x_i, y_i) = -p_i(y_i, x_i))$
- F is $odd (F(\mathbf{x}) = -F(-\mathbf{x}))$
- F is nondecreasing in all its arguments

Interpretation

- p_i measures preference differences between levels on attribute $i \in N$
- F synthesizes these preference differences

Many variants of model (M) not studied here

$$\left. \begin{array}{c} (x_i, a_{-i}) \succ (y_i, b_{-i}) \\ \text{and} \\ (z_i, c_{-i}) \succ (w_i, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (x_i, c_{-i}) \succ (y_i, d_{-i}) \\ \text{or} \\ (z_i, a_{-i}) \succ (w_i, b_{-i}) \end{array} \right. ARC1_i$$

$$\begin{array}{c} (x_{i}, a_{-i}) \succ (y_{i}, b_{-i}) \\ \text{and} \\ (y_{i}, c_{-i}) \succ (x_{i}, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}) \\ \text{or} \\ (w_{i}, c_{-i}) \succ (z_{i}, d_{-i}) \end{array} \right. ARC2$$

ARC1 iff $ARC1_i$, $\forall i \in N$ ARC2 iff $ARC2_i$, $\forall i \in N$

$$\left. \begin{array}{c} (x_i, a_{-i}) \succ (y_i, b_{-i}) \\ \text{and} \\ (z_i, c_{-i}) \succ (w_i, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (x_i, c_{-i}) \succ (y_i, d_{-i}) \\ \text{or} \\ (z_i, a_{-i}) \succ (w_i, b_{-i}) \end{array} \right. ARC1_i$$

$$\left(\begin{array}{c} (x_i, a_{-i}) \succ (y_i, b_{-i}) \\ \text{and} \\ (y_i, c_{-i}) \succ (x_i, d_{-i}) \end{array} \right) \Rightarrow \left\{ \begin{array}{c} (z_i, a_{-i}) \succ (w_i, b_{-i}) \\ \text{or} \\ (w_i, c_{-i}) \succ (z_i, d_{-i}) \end{array} \right. ARC2_i$$

 $ARC1 \text{ iff } ARC1_i, \forall i \in N$ $ARC2 \text{ iff } ARC2_i, \forall i \in N$

$$\left. \begin{array}{c} (x_i, a_{-i}) \succ (y_i, b_{-i}) \\ \text{and} \\ (z_i, c_{-i}) \succ (w_i, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (x_i, c_{-i}) \succ (y_i, d_{-i}) \\ \text{or} \\ (z_i, a_{-i}) \succ (w_i, b_{-i}) \end{array} \right. ARC1_i$$

$$\left(\begin{array}{c} (x_i, a_{-i}) \succ (y_i, b_{-i}) \\ \text{and} \\ (y_i, c_{-i}) \succ (x_i, d_{-i}) \end{array} \right) \Rightarrow \left\{ \begin{array}{c} (z_i, a_{-i}) \succ (w_i, b_{-i}) \\ \text{or} \\ (w_i, c_{-i}) \succ (z_i, d_{-i}) \end{array} \right. ARC2_i$$

 $ARC1 \text{ iff } ARC1_i, \forall i \in N$ $ARC2 \text{ iff } ARC2_i, \forall i \in N$

Results

Theorem (B&P, 2002, JMP)

[When each X_i is at most countably infinite]

A binary relation \succ on X has a representation in model (M) iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$

Remark

• can be generalized to sets of arbitrary cardinality

Results

Theorem (B&P, 2002, JMP)

[When each X_i is at most countably infinite]

A binary relation \succ on X has a representation in model (M) iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$

Remark

• can be generalized to sets of arbitrary cardinality

Remark

Model (M) contains as particular cases

• the additive value function model:

$$x \succ y \Leftrightarrow \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i)$$

• the additive difference model:

$$x \succ y \Leftrightarrow \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) > 0$$

Coming next.

- model (M) also contains concordance relations
- model (M) also contains outranking relations

Remark

Model (M) contains as particular cases

• the additive value function model:

$$x \succ y \Leftrightarrow \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i)$$

• the additive difference model:

$$x \succ y \Leftrightarrow \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) > 0$$

Coming next.

- model (M) also contains concordance relations
- model (M) also contains outranking relations

Remark

Model (M) contains as particular cases

• the additive value function model:

$$x \succ y \Leftrightarrow \sum_{i=1}^{n} u_i(x_i) > \sum_{i=1}^{n} u_i(y_i)$$

• the additive difference model:

$$x \succ y \Leftrightarrow \sum_{i=1}^{n} \Phi_i(u_i(x_i) - u_i(y_i)) > 0$$

Coming next...

- model (M) also contains concordance relations
- model (M) also contains outranking relations

- 1 Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- 4 Discussion

Concordance relations

Observations

- if \succ is a SCR, it satisfies ARC1 and ARC2
- if \succ has a representation in model (M) in which each p_i takes at most three distinct values $(-k_i, 0, +k_i)$, it is a SCR

Consequences

- model (M) offers an adequate framework for characterizing concordance relations
- the distinctive feature of concordance relation is that they induce comparisons of preference differences that are coarse (at most three classes of preference differences)

Concordance relations

Observations

- if \succ is a SCR, it satisfies ARC1 and ARC2
- if \succ has a representation in model (M) in which each p_i takes at most three distinct values $(-k_i, 0, +k_i)$, it is a SCR

Consequences

- model (M) offers an adequate framework for characterizing concordance relations
- the distinctive feature of concordance relation is that they induce comparisons of preference differences that are coarse (at most three classes of preference differences)

$$\begin{array}{c} (x_{i}, a_{-i}) \succ (y_{i}, b_{-i}) \\ \text{and} \\ (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}) \\ \text{and} \\ (z_{i}, c_{-i}) \succ (w_{i}, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i}) \\ \text{or} \\ (x_{i}, c_{-i}) \succ (y_{i}, d_{-i}) \end{array} \right. Maj 1_{i}$$

$$(x_{i}, a_{-i}) \succ (y_{i}, b_{-i})$$
and
$$(w_{i}, a_{-i}) \succ (z_{i}, b_{-i})$$
and
$$(y_{i}, c_{-i}) \succ (x_{i}, d_{-i})$$

$$(y_{i}, c_{-i}) \succ (x_{i}, d_{-i})$$

$$\Rightarrow \begin{cases} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i})$$
or
$$(z_{i}, c_{-i}) \succ (w_{i}, d_{-i})$$

$$Maj 2_{i}$$

- Maj1 if $Maj1_i$, $\forall i \in N$
- Maj2 if $Maj2_i$, $\forall i \in N$
- RC1, RC2, Maj1 and Maj2 are independent conditions

$$\begin{array}{c} (x_{i}, a_{-i}) \succ (y_{i}, b_{-i}) \\ \text{and} \\ (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}) \\ \text{and} \\ (z_{i}, c_{-i}) \succ (w_{i}, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i}) \\ \text{or} \\ (x_{i}, c_{-i}) \succ (y_{i}, d_{-i}) \end{array} \right. Maj 1_{i}$$

$$\begin{pmatrix}
(x_i, a_{-i}) \succ (y_i, b_{-i}) \\
\text{and} \\
(w_i, a_{-i}) \succ (z_i, b_{-i}) \\
\text{and} \\
(y_i, c_{-i}) \succ (x_i, d_{-i})
\end{pmatrix} \Rightarrow \begin{cases}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} \\
(z_i, c_{-i}) \succ (w_i, d_{-i})
\end{cases}$$

$$Maj 2_i$$

- Maj1 if $Maj1_i$, $\forall i \in N$
- Maj2 if $Maj2_i$, $\forall i \in N$
- RC1, RC2, Maj1 and Maj2 are independent conditions

$$\begin{array}{c} (x_{i}, a_{-i}) \succ (y_{i}, b_{-i}) \\ \text{and} \\ (z_{i}, a_{-i}) \succ (w_{i}, b_{-i}) \\ \text{and} \\ (z_{i}, c_{-i}) \succ (w_{i}, d_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i}) \\ \text{or} \\ (x_{i}, c_{-i}) \succ (y_{i}, d_{-i}) \end{array} \right. Maj 1_{i}$$

$$\begin{pmatrix}
(x_i, a_{-i}) \succ (y_i, b_{-i}) \\
\text{and} \\
(w_i, a_{-i}) \succ (z_i, b_{-i}) \\
\text{and} \\
(y_i, c_{-i}) \succ (x_i, d_{-i})
\end{pmatrix} \Rightarrow \begin{cases}
(y_i, a_{-i}) \succ (x_i, b_{-i}) \\
\text{or} \\
(z_i, c_{-i}) \succ (w_i, d_{-i})
\end{cases}$$

$$Maj 2_i$$

- Maj1 if $Maj1_i$, $\forall i \in N$
- Maj2 if $Maj2_i$, $\forall i \in N$
- RC1, RC2, Maj1 and Maj2 are independent conditions

Result model (M)

Theorem (B&P, 2002, JMP)

A binary relation \succ on X has a representation in model (M) iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$

Remark

• model (M) can be used to analyze other types of models (e.g., additive value functions or additive differences)

Result SCR

Theorem (B&P, 2005, EJOR)

A binary relation \succ on X is a SCR iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$
- $\bullet \succ satisfies Maj1 and Maj2$

Remark

• model (M) can be used to analyze other types of models (e.g., additive value functions or additive differences)

Result SCR

Theorem (B&P, 2005, EJOR)

A binary relation \succ on X is a SCR iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$
- ≻ satisfies Maj1 and Maj2

Remark

• model (M) can be used to analyze other types of models (e.g., additive value functions or additive differences)

Outranking relations

Observations

- if \succ is an outranking relation, it satisfies ARC1 and ARC2
- if the preference difference (x_i, y_i) is larger than (y_i, x_i) , it is the largest possible preference difference, so that Maj1 holds
- if the preference difference (x_i, y_i) is larger than (y_i, x_i) , it may happen that (y_i, x_i) is not the smallest possible preference difference

Consequences

- keep ARC1 and ARC2
- keep Maj1
- relax Maj2 in order to allow for veto effects
 - at most five classes of preference differences, the last one playing a very special rôle

Outranking relations

Observations

- if \succ is an outranking relation, it satisfies ARC1 and ARC2
- if the preference difference (x_i, y_i) is larger than (y_i, x_i) , it is the largest possible preference difference, so that Maj1 holds
- if the preference difference (x_i, y_i) is larger than (y_i, x_i) , it may happen that (y_i, x_i) is not the smallest possible preference difference

Consequences

- \bullet keep ARC1 and ARC2
- keep Maj1
- relax Maj2 in order to allow for veto effects
 - at most five classes of preference differences, the last one playing a very special rôle

Axiom Maj2

$$(x_{i}, a_{-i}) \succ (y_{i}, b_{-i})$$
and
$$(w_{i}, a_{-i}) \succ (z_{i}, b_{-i})$$
and
$$(y_{i}, c_{-i}) \succ (x_{i}, d_{-i})$$

$$\Rightarrow \begin{cases} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i}) \\ \text{or} \\ (z_{i}, c_{-i}) \succ (w_{i}, d_{-i}), \end{cases}$$

$$Maj2_{i}$$

- Maj3 if $Maj3_i$, $\forall i \in N$
- $Maj2_i$ implies $Maj3_i$
- an outranking relation satisfies Maj3
- RC1, RC2, Maj1 and Maj3 are independent conditions
- condition Maj3 is inspired by GMS (2001)

Axiom Maj3

$$\begin{array}{c} (x_{i}, a_{-i}) \succ (y_{i}, b_{-i}) \\ \text{ and } \\ (w_{i}, a_{-i}) \succ (z_{i}, b_{-i}) \\ \text{ and } \\ (y_{i}, c_{-i}) \succ (x_{i}, d_{-i}) \\ \text{ and } \\ (z_{i}, e_{-i}) \succ (w_{i}, f_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i}) \\ \text{ or } \\ (z_{i}, c_{-i}) \succ (w_{i}, d_{-i}), \end{array} \right.$$

- Maj3 if $Maj3_i$, $\forall i \in N$
- $Maj2_i$ implies $Maj3_i$
- an outranking relation satisfies Maj3
- RC1, RC2, Maj1 and Maj3 are independent conditions
- condition Maj3 is inspired by GMS (2001)

Axiom Maj3

$$\begin{array}{c} (x_{i}, a_{-i}) \succ (y_{i}, b_{-i}) \\ \text{and} \\ (w_{i}, a_{-i}) \succ (z_{i}, b_{-i}) \\ \text{and} \\ (y_{i}, c_{-i}) \succ (x_{i}, d_{-i}) \\ \text{and} \\ (z_{i}, e_{-i}) \succ (w_{i}, f_{-i}) \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} (y_{i}, a_{-i}) \succ (x_{i}, b_{-i}) \\ \text{or} \\ (z_{i}, c_{-i}) \succ (w_{i}, d_{-i}), \end{array} \right. Maj3_{i}$$

- Maj3 if $Maj3_i$, $\forall i \in N$
- $Maj2_i$ implies $Maj3_i$
- an outranking relation satisfies Maj3
- RC1, RC2, Maj1 and Maj3 are independent conditions
- condition Maj3 is inspired by GMS (2001)

Result model (M)

Theorem (B&P, 2002, JMP)

A binary relation \succ on X has a representation in model (M) iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$

Result SCR

Theorem (B&P, 2005, EJOR)

A binary relation \succ on X is a SCR iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$
- $\bullet \succ satisfies\ Maj1\ and\ Maj2$

Result SCR SOR

Theorem (B&P, 2005, EJOR WP)

A binary relation \succ on X is a SCR SOR iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$
- $\bullet \succ satisfies\ Maj1\ and\ Maj2\ Maj3$

Result SOR

Theorem (B&P, 2005, WP)

A binary relation \succ on X is a SOR iff

- \bullet \succ is asymmetric
- $\bullet \succ satisfies \ ARC1 \ and \ ARC2$

Outline

- Definitions and notation
 - Setting
 - Concordance relations
 - Outranking relations
 - Example
- 2 Conjoint measurement framework
 - Model
 - Axioms
 - Results
- Results
 - Concordance relations
 - Outranking relations
- 4 Discussion

Summary

Model (M)

- is quite flexible but nontrivial
- has a simple and intuitive interpretation using preference differences
- has a simple axiomatic characterization
- allows to understand the main distinctive characteristics of concordance and outranking relations
 - in Tours we showed that the use of Fishburn's "noncompensation" condition was not adequate to characterize concordance relations
 - the extension to outranking relations would have been impossible using the "noncompensation track"

Discussion

What about SOR in which S_i and V_i have nice transitivity properties?

- add additional axioms
- these additional axioms are independent from the previous ones
- underlying model

$$x \succ y \Leftrightarrow F(\varphi_1(u_1(x_1), u_1(y_1)), \dots, \varphi_n(u_n(x_n), u_n(y_n))) > 0$$

with $\varphi_i(\nearrow,\searrow)$

What about SOR in which ▷ has nice properties?

- add additional axioms
- these additional axioms are independent from the previous ones

Discussion

What about SOR in which S_i and V_i have nice transitivity properties?

- add additional axioms
- these additional axioms are independent from the previous ones
- underlying model

$$x \succ y \Leftrightarrow F(\varphi_1(u_1(x_1), u_1(y_1)), \dots, \varphi_n(u_n(x_n), u_n(y_n))) > 0$$

with $\varphi_i(\nearrow, \searrow)$

What about SOR in which \triangleright has nice properties?

- add additional axioms
- these additional axioms are independent from the previous ones

Extensions and future research

Reflexive outranking relations à la ELECTRE I

- no major problem: Bouyssou & Pirlot (2005)
 - duality: "veto" and "bonus" effects

ELECTRE TRI

• extension to sorting models: Bouyssou & Marchant (2005)

${ m New\ models?}$

- models using preference differences:
 - not as rich as in the additive value functions model
 - not as coarse as in outranking relations
- examples: models with "sophisticated discordance"

Extensions and future research

Reflexive outranking relations à la ELECTRE I

- no major problem: Bouyssou & Pirlot (2005)
 - duality: "veto" and "bonus" effects

ELECTRE TRI

• extension to sorting models: Bouyssou & Marchant (2005)

New models?

- models using preference differences:
 - not as rich as in the additive value functions model
 - not as coarse as in outranking relations
- examples: models with "sophisticated discordance"

Extensions and future research

Reflexive outranking relations à la ELECTRE I

- no major problem: Bouyssou & Pirlot (2005)
 - duality: "veto" and "bonus" effects

ELECTRE TRI

• extension to sorting models: Bouyssou & Marchant (2005)

New models?

- models using preference differences:
 - not as rich as in the additive value functions model
 - not as coarse as in outranking relations
- examples: models with "sophisticated discordance"