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Abstract. Deep Reinforcement Learning (DRL) combines deep neural
networks with reinforcement learning. These methods, unlike their prede-
cessors, learn end-to-end by extracting high-dimensional representations
from raw sensory data to directly predict the actions. DRL methods were
shown to master most of the ATARI games, beating humans in a good
number of them, using the same algorithm, network architecture and
hyper-parameters. However, why DRL works on some games better than
others has not been fully investigated. In this paper, we propose that
the complexity of each game is defined by a number of factors (the size
of the search space, existence/absence of enemies, existence/absence of
intermediate reward, and so on) and we posit that how fast and well a
game is learned by DRL depends on these factors. Towards this aim, we
use simplified Maze and Pacman environments and we conduct experi-
ments to see the effect of such factors on the convergence of DRL. Our
results provide a first step in a better understanding of how DRL works
and as such will be informative in the future in determining scenarios
where DRL can be applied effectively e.g., outside of games.
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1 Introduction

In their seminal work, Mnih et al. [10] show that a Deep Q-learning Network
(DQN) can learn to play ATARI 2600 games end-to-end. The neural network
takes the raw screen image as input, which it processes through a number of
layers (first convolutional, then fully-connected), and its output units directly
control the actions of the joystick. They show that DQN needs no fine-tuning
for each task and that using the same learning algorithm, network architecture
and hyper-parameters, any one of the 49 games can be learned.

They report that DQN “outperforms competing methods in almost all the
games, and performs at a level that is broadly compatible with or superior to a
professional human games tester in the majority of games.” They also note that
“the games in which DQN excels are extremely varied in their nature,” but that



2 Erdem Emekligil, Ethem Alpaydın

“games demanding more temporally extended planning strategies still constitute
a major challenge.”

Our main idea in this paper is that there are factors that define the com-
plexity of a game and that games that may appear different at first glance may
actually be similar in terms of such abstract factors, or vice versa. For instance,
whether the player is the only agent or if there are other agents, possibly hostile,
that can act is such a factor. We assume not only that there are such factors but
also that the speed a game is learned, e.g., by DQN, depends on these factors.

In this work, we are going to take the DQN as it is and test it on a number
of settings where we vary such factors. It should be noted here that our aim is
not to understand how DQN learns a particular task (game) or what its hidden
units or layers are doing to handle that task, but rather we take the totality of
DQN (the network, learning algorithm, and hyper-parameters) as a black-box
and want to see what type of task attributes affect DQN’s performance and how.
The settings we use is simple by design so that we can easily observe the effect
of changes on DQN’s convergence. We believe that such a study is informative
in understanding where and how DQN, or similar approaches, can best be used,
and finding out such abstract factors that define a learning task and how such
factors effect learning will especially be useful when we want to use models like
DQN outside of the game-playing domain.

2 Background

The DQN takes four consecutive screen images as input which it processes by
three convolutional and then two fully-connected layers with a final output layer
where there is one output for each valid joystick action. Q-learning is used to
update the network weights, with experience replay to randomize over data. We
do not discuss DQN any further here; the interested reader is referred to [10].

Since then, the related literature can be divided into two, as work where DQN
is generalized for other tasks, and works that strive to improve the performance
of DQN.

As examples of the first, Levine et al. [7] use supervised learning before
reinforcement learning for more complex tasks. Similarly in AlphaGo, Silver
et al. [14] take advantage of supervised data to initially train a network that
evaluates the Go board. They combine Monte Carlo tree search with a DQN
variant to create an agent that is able to beat the human player with the second
best Elo rating at the time. AlphaGo Zero [16] goes one step further and is
trained without any supervised data, and is able to beat AlphaGo. Alpha Zero
[15], which is the generalized version of AlphaGo Zero, learns to play Shogi
and Chess better than the best computer programs for each game. DQN is also
used outside of the domain of game-playing; for example, a version with 1D
convolution is used for simulating animal movements [12]. It is also altered for
control tasks such as cart-pole, locomotion and car driving problems by using
deep function approximators [8].
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As improvements to DQN, Double-DQN (DDQN) uses a backup network as
the target action value function [5]. The actual network is used for selecting
the action with the maximum value whereas the target network is used for
estimating that action’s value. Instead of random picks in experience replay,
Schaul et al. [13] define different methods to prioritize the picks from replay
memory and show that prioritizing achieve major improvements. Wang et al.
[17] introduce a new architecture that combines a state value function and an
action advantage function. DQN is also adapted to work on distributed [11]
and multi-core CPU systems [9] using actor-critic (A3C) methods with LSTMs.
Unlike previous methods, Distributional DQN [2] can distinguish risky actions
and the Rainbow method [6] unites six previous developments over DQN and
show that these different methods achieve better results when they are combined.

3 Factors That Define A Game

It is our contention in this paper that games that seem very different at first
glance may be very similar at a more abstract level and beyond their immediate
facade, games can be defined in terms of a number of factors, and furthermore
it is these factors that define the complexity of a game and the best strategy to
play it well.

There is previous work on the various characteristics of games and how they
effect playability, by humans and AI programs; see the book by Elias et al. [4].
Anderson et al. [1] compare performances of several tree-based search algorithms
such as MinMax, MCTS and A* on seven different games that they have created.
Yannakakis et al. [18] define five different factors based on [4] and explain their
effects on AI methods:

– Number of players. Is the game played by a single player or multiple players,
or does a single player play with/against computer controlled enemy units?

– Stochasticity. Does the outcome of the game determined only by the player?
– Time granularity. Is the game turn-based or real-time?
– Observability. Is the game partially observable or the player has perfect

information?
– Action space size. The number of the actions the player can take.

In our case, we take DQN as the game-learner and consider games that can
be learned by DQN, similar to the ATARI 2600 games, where we can define and
test the effect of such factors.

We start by clustering the ATARI 2600 games according to how DQN learns
them. We run DQN on 45 games and for each we record the convergence of DQN
in terms average game scores. We then use dynamic time-warping (DTW) [3]
to measure the distance between vectors of different lengths, each normalized
between 0 and 1, since each game runs for a different number of epochs. The
dendrogram achieved using average-linkage hierarchical clustering is shwown in
Figure 1, with convergence plots of some example games.
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Fig. 1. Hierarchical clustering results of ATARI games, and the convergence of DQN
on some example games.

Games whose convergence plots are similar are placed nearby in the tree
and for certain cases, we can see that actually they correlate with similarities
between the games.

For example, Ms Pacman and Alien, connected early on, are very similar both
in terms of how DQN learns them and also in terms of how they are played. They
are similar in many aspects such as actions, objective, rewards and so on; in both
games, the agent tries to collect as many reward (food items) as possible without
getting caught by the enemy and both have power-up units that temporarily give
the ability to destroy opponents. Interestingly, Bank Heist looks similar to these
but in Bank Heist, instead of power-up, the agent can counter enemies by bombs
which changes the strategy. This difference changes the convergence of DQN and
this explains the distance of Bank Heist to Ms Pacman and Alien on the tree.

Wizard of Wor and Alien are games that look very similar visually, but they
are played differently and hence the convergence behavior of DQN is different
and they are very distant in the dendrogram despite their visual similarity. River
Raid and Venture are two games on which DQN fails and that is why they are on
the same cluster. In Zaxxon and Robotank, the agent controls an airplane, a tank
and the main objective is survival whether from an airplane or a tank crash. The
games look similar, are played similarly and DQN convergence curves on them
are similar and that is why they are not far from each other on the dendrogram.



What’s In A Game? 5

(a) 8× 8 maze (b) 12× 12 maze (c) 16× 16 maze

Fig. 2. Example mazes of different sizes with outer walls (black), the target (dark gray)
and the agent (light gray).

4 Maze Experiments

In this simple Maze task, the objective of the agent is to get to the stationary
target by moving one square, horizontally or vertically, in each step. The position
of the agent and the target are randomly chosen in each episode and a score of
100 is awarded when the agent reaches the target before the maximum number
of allowed moves ((Width + Height) ∗ 10).

In our experiments, we keep the original DQN network, learning algorithm,
and hyper-parameters of [10]1 and test it first on a maze. The only parameter
changed is the decay rate ε, which is adapted to the complexity of the maze
by setting it to its minimal value that allows convergence. Since our generated
mazes are much smaller, they are stretched to fit 84× 84; the mazes contain the
outer walls so the actual playable area is one less on all four sides. Each agent
is evaluated after every 250,000 training frames for 125,000 test frames and the
average episode score is plotted.

4.1 The Effect of the Size of the Search Space

We start by testing the effect of the maze size, which is an indication of the
search space: A larger maze requires longer sequences of actions. We use mazes
of 8 × 8, 12 × 12 and 16 × 16. A maze contains only the outer walls, the agent
and the target. The walls are colored white, the target is dark gray, the agent is
light gray. The background is black (encoded as 0) to help the network to learn
faster (see Figure 2; the colors are inverted to save from ink). We did five runs
with different random seeds and plot the one that best represents the average
behavior.

Because increasing the maze size increases the average number of actions
required to get to the goal, as expected, and as we see in Figure 3, the number
of training epochs it takes for DQN to converge also increases.

1 We expand and use Nathan Sprague’s replication: https://github.com/spragunr/
deep_q_rl
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Fig. 3. Convergence of DQN as a function of maze size. As expected, larger mazes take
longer to learn.

(a) Maze with a hori-
zontal wall

(b) Maze with a verti-
cal wall

(c) Maze with two
walls

Fig. 4. Example 12× 12 mazes.

4.2 The Effect of Obstacles

The complexity of the path to solve the maze can be increased by adding ob-
stacles. The agent cannot just take any path to the goal but needs to recognize
and avoid the obstacles. In our experiments, we simulate this by a wall with a
single gate. The positions of agent and target, as well as the location of the gate
and the wall orientation are also randomly assigned in each episode. To make
the task more complex, we also experimented with two intersecting walls that
divide the maze into four playable areas connected by three randomly located
gates. Randomly generated examples are shown in Figure 4.

We trained DQN on these three setups with different obstacle structures
(no wall, one wall, two walls) and three different sizes just like in the previous
experiment. In Figure 5, we see that because adding walls increases the path
complexity and consequently the number of actions to achieve the goal, con-
vergence of DQN is much slower needing more training iterations; with larger
mazes, the differences get larger.
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Fig. 5. Convergence of DQN as a function of maze sizes and wall structures. With
more obstacles, learning gets slower.

4.3 The Effect of Hostile Agents

If the game-player is not the only agent that can change the environment, the
presence and actions of other agents make the task harder. In our maze exper-
iments, we added stationary unit-sized enemies that ends the game on contact
(without any reward), to test if the network can learn to recognize and avoid
them efficiently. As shown in Figure 6, a different gray level is chosen to encode
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Fig. 6. A 12× 12 sample maze with outer walls (black), a target (dark gray), an agent
(light gray) and four enemies (medium gray).

the enemy, and the locations of these enemy units are chosen randomly in each
episode.

Our results are given in Figure 7, where we see that the presence of an enemy
makes the task harder to learn, regardless of maze size. The number of enemies,
as long as it is nonzero, does not seem to have a drastic effect. Plots with 2,
3, 4 enemies seem to be clustered together for mazes of 8 × 8 and 12 × 12; for
the maze of 16× 16, we believe that the variability is due to chance. Once DQN
learns to recognize an enemy and how to avoid it, and it is enough to do enough
episodes with a single enemy for that, DQN can then recognize and avoid any
number of enemies that it later encounters.

4.4 The Effect of Intermediate Reward

In most games, the reward is given not only at the end but also at some special
intermediate state, such as destroying an enemy unit or passing through a check-
point. Such an intermediate reward is useful in hinting the learning agent that
it is on the correct path to the goal. In our maze experiments, we implement
this in the case with one wall with a gate and by giving a reward of 10 as an
intermediate reward upon reaching the gate. Afterwards, if the agent achieves
its goal an additional 90 points is given to get the same total of 100.

In this experiment, we use different sized mazes all having one wall. The
target and agent locations are forced to be on different sides of the wall (this was
not forced in previous experiments) and the intermediate reward area is given in
a different color, close to white. We tested using different sizes of intermediate
reward areas to check if extending the reward area increases the learning speed
(see Figure 8).

As we can see in Figure 9, adding an intermediate reward increases the learn-
ing speed as the maze size gets larger. In the 8 × 8 setting, the search space is
already so small that no intermediate reward seems necessary. But especially in
the 16 × 16 maze with its larger search space it helps and is more helpful when
the intermediate reward area gets larger.
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Fig. 7. Convergence of DQN as a function of maze size and the number of enemies. It
is whether there is any enemy or not, rather than the number of enemies, that slows
down learning.

5 Pacman Experiments

For our next set of experiments, we use the game of Pacman, which is a more
interesting maze game2. This environment provides customizable mazes and ba-

2 We use the Pacman environment prepared for the course UC Berkeley CS188 Intro-
duction to AI, available at http://ai.berkeley.edu/reinforcement.html
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(a) Maze with 1×1 in-
termediate reward

(b) Maze with 1×3 in-
termediate reward

(c) Maze with 3×3 in-
termediate reward

Fig. 8. 12× 12 mazes with different sizes of intermediate rewards.

sic AI options for enemy units. We adapted the maze style of the Ms. Pacman
ATARI game to this environment and selected enemy units with random move-
ment capabilities. These enemies pursue their path until they reach the end and
select their next path randomly when they are at a junction point. A contact
with an enemy ends the game with −500 reward points. Intermediate reward
gives +10 points whereas the goal gives +500.

Just like in the maze experiments, we test for factors that change the com-
plexity of the game to see their effect on the convergence of DQN. There are
three factors: (a) There are two paths from the initial position at the bottom to
the goal at the top, and one can block either of them or not, (b) There may be
enemy units or not to avoid contact with, and (c) There may be intermediate
rewards on the correct path. We also try combinations of those factors and in
Figure 10, we show the seven different setups. By training DQN in each of these
setups with zero or two enemy units, we experiment with a total of fourteen
different setups.

We start by closing some paths by adding obstacles (see Figure 11). In setup
(c), we make one of the two possible routes longer by closing some paths and in
setup (e), both the leftmost and the rightmost solution paths are extended by
adding obstacles. We can see in Figure 11.1 that extending the leftmost path (c)
decreases learning with respect to (a). However, if we examine Figure 11.2, we
can see that adding some enemy units to (c) increases the learning speed, since
most of the time the agent gets destroyed in the leftmost path by the enemies,
thus the agent learns that it should not dwell on the leftmost path concentrating
on the correct path which is the rightmost path. If we compare setup (e) with
(a) and (c), we see that making all possible paths longer decreases the learning
speed, as expected.

If we examine setups (a) and (b) (see Figure 12), we see that adding an
intermediate reward increases DQN’s learning speed considerably in the two-
enemy setup. This is expected since the intermediate reward helps algorithm
to focus on one of the two paths. In the no-enemy setup however, the agent
learns getting the intermediate reward quickly, but it tends to stay near the
intermediate reward for many epochs to come since ε value gets its lower bound
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Fig. 9. Convergence of DQN as a function of maze size and the intermediate reward
area. With small mazes intermediate reward does not help, but as the maze gets larger,
larger areas of intermediate reward help more.

in four epochs and the agent cannot explore the target quickly. Thus, it decreases
the learning speed.

The intermediate reward in setup (d) was actually designed to hinder learning
since it is en route to a longer path. In the no-enemy case, the results show that
this reward actually hinders learning as can be seen in Figure 13. After the agent
takes this reward, instead of choosing the leftmost path, it uses the rightmost
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(a) Original setting (b) With intermediate re-
ward

(c) Harder left path

(d) Harder left path with
intermediate reward

(e) Harder paths on both
sides

(f) Harder paths on both
sides with intermediate re-
ward

(g) Harder left path with
further intermediate re-
ward

Fig. 10. The different setups of Ms. Pacman environment we tested DQN on. The
agent starts from the bottom and tries to get the goal at the top. Two enemy units are
shown at their spawn location in the center. Intermediate reward is colored in brighter
gray. Changes between setups are denoted with red circles

path which is the closer one to the target. However, it results with even better
outcomes than setup (c) when there are enemies. The agent in this case is able
to learn to choose between left or right paths according to the closeness of the
enemies to those paths. In setup (g), we move the intermediate reward to a
further position on the left path and saw that it decreases learning speed in
no-enemy setup, better than (d). This also helps learning when there are two
enemies and provides worse results than (d), because the risk of death is higher
in the path with the intermediate reward. Nevertheless, when the algorithm
converges, the agent is able to wait for risk of the opponents to pass and go back
if it is necessary.
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Fig. 11. Comparison of DQN convergences on original Pacman setup (a), harder left
path (c) and harder paths on both sides (e)

Comparison of setups (e) and (f) are given in Figure 14. Similar to the previ-
ous results, since the ε value gets to its minimum value quickly, the intermediate
reward in this case (f) slows down the learning process. Slow down rate is ex-
tremely high because most of the paths are blocked and the agent cannot get
the target. It helps when there are enemies, because enemies force the agent to
explore.

6 Conclusions and Future Work

Deep reinforcement learning is a recent research area that combines deep neural
networks with reinforcement learning. The Deep Q-Network learns to play Atari
games end-to-end; but it learns some games better, some faster, and we do not
know why. Our assumption is that the complexity of a game depends on some
factors and and these factors affect DQN’s learning speed and quality.

To validate this claim, we clustered the DQN convergence curves of 45 ATARI
2600 games. We find that there seems to be indeed a dependence between game
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Fig. 12. Comparison of DQN convergences on original Pacman setup (a) and interme-
diate reward (b)

characteristics and DQN performance, that games that are played similarly are
learned similarly by DQN and are placed nearby in the clustering dendrogram,
whereas games that look the same visually but need different strategies are
placed far apart.

We defined variants of a Maze task on which we defined a number of factors
and tested their effect using DQN as it is, with no changes to the network
architecture or learning algorithm. The four factors we tested are the maze size,
presence/absence of walls, presence/absence of enemies, and presence/absence
of intermediate reward. We see that larger mazes and the presence of enemy
units generally delay convergence since the environment becomes more complex.
Intermediate rewards, however, increase the learning speed since they provide a
hint for the main goal, dividing a long sequence into smaller sequences.

In the second set of experiments, we use a Pacman environment with similar
factors with a total of 14 different setups. We find that the factors affect learning
differently if there are enemies. Blocking a path with a wall usually decreases the
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Fig. 13. Comparison of DQN convergences on Pacman setup with harder left path (c),
early intermediate reward (d) and hard intermediate reward (g)

learning speed, but has the opposite effect if it is blocking many of the possible
paths thereby reducing possible actions.

Overall, most of the experiments led to expected results, but not all. These
cases should be further investigated to see if they are due to chance, or if there is
any dependence or interaction between factors that we cannot see immediately.
Another future research direction is to add more factors that affect the difficulty.
For example, in most games there is randomness. In our maze setup, the initial
positions of units are randomly selected but the moves of agents are not random;
it could certainly affect the learning performance if any random event should
occur during the game.

The ultimate aim is to transfer what we learn from DQN’s behavior on games
to what deep reinforcement learning can do in real life. From these experiments,
we would like to move a level up and define at a more abstract level, general
tasks and general strategies to solve them, as well as how such strategies can be
learned. Our work is one small step towards this aim.
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Fig. 14. Comparison of DQN convergences on Pacman setup with harder paths on
both sides (e) and intermediate reward (f)
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