Preface

These proceedings contain the papers of the Computer Games Workshop (CGW 2014) held in Prague, Czech Republic. The workshop took place August 18, 2014, in conjunction with the 21st European Conference on Artificial Intelligence (ECAI 2014). The workshop received 20 submissions. Each paper was sent to two reviewers. In the end, 12 papers were accepted for presentation at the workshop, of which 11 made it into these proceedings. The Computer and Games Workshop series is an international forum for researchers interested in all aspects of artificial intelligence and computer game playing. Earlier workshops took place in Montpellier, France (2012), and Beijing, China (2013).

The published papers cover a wide range of topics related to computer games. They collectively discuss 11 abstract games: 7 Wonders, Amazons, AtariGo, Ataxx, Breakthrough, Chinese Dark Chess, Connect6, NoGo, Pentalath, Othello, and Catch the Lion. Moreover, two papers are on General Game Playing, and four on video game playing. Below we provide a brief outline of the contributions, in the order in which they appear in the proceedings.

“Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search,” a joint collaboration by Tom Pepels, Tristan Cazenave, Mark Winands, and Marc Lanctot. In the paper a new MCTS variant, called Hybrid MCTS (H-MCTS), is introduced that minimizes cumulative and simple regret in different parts of the tree. H-MCTS uses SHOT, a recursive version of Sequential Halving, to minimize simple regret near the root, and UCT to minimize cumulative regret when descending further down the tree. The results show genuine performance increase in Amazons, AtariGo, and Breakthrough.

“On Robustness of CMAB Algorithms: Experimental Approach,” authored by Antonín Komenda, Alexander Shleyfman, and Carmel Domshlak experimentally analyzes the robustness of two state-of-the-art algorithms, Naive Monte Carlo (NMC) and Linear Side-Information (LSI), for online planning with combinatorial actions of the turn-based variant of the strategy game µRTS. The results show that LSI is stronger with smaller budgets and shorter look-ahead.

“Job-Level Algorithms for Connect6 Opening Position Analysis,” by Ting-Han Wei, I-Chen Wu, Chao-Chin Liang, Bing-Tsung Chiang, Wen-Jie Tseng, Shi-Jim Yen, and Chang-Shing Lee, investigates job-level (JL) algorithms to analyze opening positions for Connect6. The paper first proposes four heuristic metrics when using JL-PNS to estimate move quality. Next, it introduces a JL Upper Confidence Tree (JL-UCT) algorithm and heuristic metrics, one of which is the number of nodes in each candidate move’s subtree. In order to compare these metrics objectively, the paper proposes two kinds of measurement methods to analyze the suitability of these metrics when choosing best moves for a set of benchmark positions. The results show that for both metrics this node count...
heuristic metric for JL-UCT outperforms all the others, including the four for
JL-PNS.

“Monte-Carlo Tree Search and Minimax Hybrids with Heuristic Evaluation
Functions,” written by Hendrik Baier and Mark Winands, discusses three dif-
f erent approaches to employ minimax search with static evaluation functions in
MCTS: (1) to choose moves in the play-out phase of MCTS, (2) as a replace-
ment for the play-out phase, and (3) as a node prior to bias move selection. The
MCTS-minimax hybrids are tested and compared with their counterparts using
evaluation functions without minimax in the domains of Othello, Breakthrough,
and Catch the Lion. Results show that introducing minimax search is effective
for heuristic node priors in Othello and Catch the Lion. The MCTS-minimax
hybrids are also found to work well in combination with each other.

“Monte-Carlo Tree Search for the Game of ‘7 Wonders’,” written by Denis
Robilliard, Cyril Fonlupt, and Fabien Teytaud studies MCTS in the game of 7
Wonders. This card game combines several known challenging properties, such as
imperfect information, multi-player, and chance. It also includes an inter-player
trading system that induces a combinatorial search to decide which decisions are
legal. Moreover, it is difficult to build an efficient evaluation function because
the card values are heavily dependent upon the stage of the game and upon the
other player decisions. The paper discusses how to effectively apply MCTS to 7
Wonders.

“Small and Large MCTS Playouts Applied to Chinese Dark Chess Stochastic
Game,” by Nicolas Jouandeau and Tristan Cazenave, presents MCTS modifica-
tions to deal with the stochastic game of Chinese Dark Chess. Experiments are
conducted with group nodes and chance nodes using various configurations: with
different play-out policies, with different play-out lengths, with true or estimated
wins. Results show that extending the play-out length is useful for creating more
informed play-outs, and the usage of an evaluation function can increase or de-
crease player’s effectiveness through modifying the number of draw possibilities.

“On the Complexity of General Game Playing,” authored by Édouard Bonnet
and Abdallah Saffidine, discusses the computational complexity of reasoning in
General Game Playing (GGP) using various combinations of multiple features
of the Game Description Language (GDL). Their analysis offers a complexity
landscape for GGP with fragments ranging from NP to EXPSPACE in the single-
agent case, and from PSPACE to 2-EXPTIME in the multi-agent case.

“Efficient Grounding of Game Descriptions with Tabling,” by Jean-Noël Vit-
taut and Jean Méhat, presents a method to instantiate game descriptions used
in GGP with the tabling engine of a Prolog interpreter. Instantiation is a crucial
step for speeding up the interpretation of the game descriptions and increasing
the playing strength of general game players. The method allows one to ground
almost all of the game descriptions present on the GGP servers in a time that is
compatible with the common time settings of the GGP competition. It instan-
tiates descriptions more rapidly than previous published methods.

“SHPE: HTN Planning for Video Games,” written by Alexandre Menif, Éric
Jacopin, and Tristan Cazenave, describes SHPE (Simple Hierarchical Planning
Engine. It is a hierarchical task network planning system designed to generate dynamic behaviors for real-time video games. SHPE is based on a combination of domain compilation and procedural task application/decomposition techniques in order to compute plans in a very short time-frame. The planner is able to return relevant plans in less than three milliseconds for several problem instances of the SimpleFPS planning domain.

“Predicting Player Disengagement in Online Games,” by Hanting Xie, Daniel Kudenko, Sam Devlin, and Peter Cowling, introduces a pure data-driven method to foresee whether players will quit the game given their previous activity within the game, by constructing decision trees from historical gameplay data of previous players. The method is assessed on two popular commercial online games: I Am Playr and Lyroke. The former is a football game while the latter is a music game. The results indicate that the decision tree built by their method is valuable for predicting the players’ disengagement and that its human-readable form allow us to search out further reasons about which in-game events made them quit.

“Coordinating Dialogue Systems and Stories Through Behavior Composition,” a joint effort by Stefano Cianciulli, Daniele Riccardelli, and Stavros Vassos, exploits behavior composition in AI as a formal tool for facilitating interactive storytelling in video games. This is motivated by (1) the familiarity of transition systems in video game development, and (2) the fact that behavior composition extends the spectrum of approaches for non-linear storylines by introducing a new paradigm based on planning for a target desired process instead of a goal state. Moreover, the approach provides support for the debugging of deadlocks in stories at design level. The paper describes the behavior composition framework, and shows the details for an interactive dialogue system scenario in order to illustrate how interactive storytelling can be phrased in terms of the framework. A simple architecture for implementing a demo game over the scenario using existing behavior composition tools is also reported.

These proceedings would not have been produced without the help of many persons. In particular, we would like to mention the authors and reviewers for their help. Moreover, the organizers of ECAI 2014 contributed substantially by bringing the researchers together.

November 2014

Tristan Cazenave
Mark Winands
Yngvi Björnsson
Organization

Program Chairs
Tristan Cazenave Université Paris-Dauphine, France
Mark Winands Maastricht University, The Netherlands
Yngvi Björnsson Reykjavik University, Iceland

Program Committee
Yngvi Björnsson Reykjavik University, Iceland
Bruno Bouzy Université Paris-Descartes, France
Tristan Cazenave Université Paris-Dauphine, France
Rémi Coulom Université Lille 3, France
Stefan Edelkamp University of Bremen, Germany
Nicolas Jouandeau Université Paris 8, France
Peter Kissmann University Bremen, Germany
Sylvain Lagrue Université d’Artois, France
Marc Lanctot Maastricht University, The Netherlands
Viliam Lisý Czech Technical University in Prague, Czech Republic
Jean Méhat Université Paris 8, France
Jochen Renz The Australian National University, Australia
Abdallah Saffidine University of New South Wales, Australia
Fabien Teytaud Université du Littoral Côte d’Opale, France
Olivier Teytaud Université Paris-Sud, France
Mark Winands Maastricht University, The Netherlands

Additional Reviewers
Tom Pepels Maastricht University, The Netherlands
Stephan Schiffel Reykjavik University, Iceland
Tsan-sheng Hsu Institute of Information Science, Academia Sinica, Taiwan
Table of Contents

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search ... 1