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Abstract. The Nested Rollout Policy Adaptation algorithm is a tree search algo-
rithm known to be efficient on combinatorial problems. However, one problem of
this algorithm is that it can converge to a local optimum and get stuck in it. We
propose a modification which limits this behavior and we experiment it on two
combinatorial problems for which the Nested Rollout PolicyAdaption is known
to be good at.

1 Introduction

Recently, the Nested Monte-Carlo Search (NMC) has been proposed for solving com-
binatorial problems [2, 13]. Based on this algorithm, a new algorithm has been success-
fully introduced, the Nested Rollout Policy Adaptation algorithm [14]. This algorithm
is efficient for numerous combinatorial problems, and in particular, the Traveling Sales-
man Problem with time Windows [3] and the Morpion Solitaire puzzle [14].
The idea behind the NMC algorithm can been seen as a Meta Monte-Carlo algorithm.
This is a recursive algorithm. The first level of the search consists in simply performing
a Monte-Carlo simulation, i.e. each decision is chosen randomly until no more possible
decision are available. At the end, the score of the positionthat has been reached is
sent back. This first level is called the level 0. For each other level lvl > 0, the search
consists in launching a NMC algorithm with a levellvl − 1 for each possible decision.
Such as for the level 0, the score for each reached position issent back, and the deci-
sion with the best score is chosen. This algorithm is presented in Section 3. The NRPA
algorithm is based on this idea, except that a level 0 policy is learned by gradient ascent
and is used instead of the Monte-Carlo policy. This algorithm is presented in Section 4.
One problem of this algorithm is that it can converge to localoptima due to its simple
learning. In this work, we propose a modification in order to improve the behavior of
the NRPA algorithm in front of local optima. The principle ofthe modification consists
in keeping a beam of different sequences (with their corresponding policies).

The paper is organized as follows. The next section (Section2) presents the two
problems studied in this work, the Traveling Salesman Problem with Time Windows in
Section 2.1 and the Morpion-Solitaire puzzle in Section 2.2. In Section 3, the Nested
Monte-Carlo Search is presented, in Section 4 we present theNested Rollout Policy
Adaptation algorithm, and in Section 5 the improvement doneon the NRPA algorithm.
Finally, in Section 6 we present comparisons between the NRPA algorithm and the
algorithm designed in this work.



2 Problems

In this Section we present two well-known combinatorial problems. The first one, pre-
sented in Section 2.1 is the Traveling Salesman Problem withTime Windows. The
second problem is the puzzle called Morpion-Solitaire and is presented in Section 2.2.
The NRPA algorithm has been already used for solving these two problems [14, 3].

2.1 The Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem (TSP) is a well-known logistic problem. Given a list
of cities and their pairwise distances, the goal is to find theshortest possible path
that visits each city only once. The path has to start and finish at a given depot. The
TSP problem is NP-hard [9]. The Traveling Salesman Problem with Time Windows
(TSPTW) is a problem based on the TSP. Inputs are the same, buta difficulty is added.
In this version, a time interval is defined for each city, and each city has to be visited
within its corresponding period of time.

Formally, the TSPTW can be defined as follows. LetG be an undirected complete
graph.G = (N,A), whereN = 0, 1, . . . , n corresponds to a set of nodes andA =
N×N corresponds to the set of edges between the nodes. The node0 corresponds to the
depot. Each city is represented by then other nodes. A cost functionc : A → R is given
and represents the distance between two cities. A solution to this problem is a sequence
of nodesP = (p0, p1, . . . , pn) wherep0 = 0 and (p1, . . . , pn) is a permutation of
[1, N ]. Setpn+1 = 0 (the path must finish at the depot), then the goal is to minimize
the function defined in Equation 1.

cost(P ) =

n∑

k=0

c(a(pk, pk+1)) (1)

As said previously, the TSPTW version is more difficult because each cityi has to
be visited in a time interval[ei, li]. This means that a cityi has to be visited beforeli.
It is possible to visit a city beforeei, but in that case, the new departure time becomes
ei. Consequently, this case may be dangerous as it generates a penalty. Formally, if
rpk

is the real arrival time at nodepk, then the departure timedpk
from this node is

dpk
= max(rpk

, epk
).

In the TSPTW, the function to minimize is the same as for the TSP (Equation 1), but
a set of constraints is added and must be satisfied. Let us defineΩ(P ) as the number of
violated windows constraints by tour (P).
Two constraints are defined. The first constraint is to check that the arrival time is lower
than the fixed time. Formally,

∀pk, rpk
< lpk

.

The second constraint is the minimization of the time lost bywaiting at a city.
Formally,

rpk+1
= max(rpk

, epk
) + c(apk,pk+1

).



With algorithms used in this work, paths with violated constraints can be generated.
As presented in [13], a new scoreTcost(p) of a pathp can be defined as follows:

Tcost(p) = cost(p) + 106 ∗Ω(p),

with, as defined previously,cost(p) the cost of the pathp andΩ(p) the number of
violated constraints.106 is a constant chosen high enough so that the algorithm first
optimizes the constraints.

A survey of efficient methods for solving the TSPTW can be found in [10]. Existing
methods for solving the TSPTW are numerous. First, branch and bound methods were
used [1, 4]. Later, dynamic programing based methods [6], heuristics based algorithms
[15, 8] and methods based on constraint programming [7, 11] have been published.
More recently, ant colony optimization algorithms have been used [10] and have
established new state of the art scores. Works based on the NMC have been proposed
in [13] and on the NRPA in [3].

2.2 Morpion-Solitaire

Morpion-Solitaire is an NP-hard pencil-and-paper puzzle played on a square grid. A
move consists in adding a circle (on one possible intersection on the grid) such that a
line containing five circles can be drawn. The new line is thenadded to the grid. Lines
can be horizontal, vertical or diagonal. The initial grid contains some starting circles,
as shown in Figure 1. Two versions of this puzzle exist, the touching version and the
disjoint version. In this paper, we are interested in the first one, the disjoint version, for
which a circle can not belong to two lines that have the same direction. The best human
score for this version of the puzzle is 68 moves [5]. The Nested Monte-Carlo search
found a score of 80 moves [2], and [14] found a new record with 82 moves.

3 Nested Monte-Carlo Search

The basic idea of Nested Monte-Carlo Search is to perform a principal playout with a
bias on the selection of each decision based on the results ofa Monte-Carlo tree search
[2].

The base level of the search build random solutions (i.e. playouts), random decision
are chosen until the end at this level. When a solution is completely built, the score of
the position that has been reached is sent back.

At each decision of a playout of level 1 it chooses the decision that gives the best
score when followed by a random playout. Similarly for a playout of leveln it chooses
the decision that gives the best score when followed by a playout of leveln− 1.

When a search at the highest level is finished and there is timeleft, another search
is performed at the highest level, and so on until the thinking time is elapsed.

Nested Monte-Carlo search has been successful in establishing world records in
single player games such as Morpion Solitaire or SameGame [2]. It provides a good
balance between exploration and exploitation and it automatically adapts its search be-
havior to the problem at hand without parameters tuning.



Fig. 1. Example of a puzzle. Circles represent initial points and numbers represent the moves.
This 82 moves grid found by our algorithm equalizes the worldrecord established by Rosin [14]
through a different solution.
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Fig. 2. At each step of the principal playout shown here with a bold line, an NMC of leveln
performs a NMC of leveln− 1 (shown with wavy lines) for each available decision and selects
the best one. At level 0, a simple pseudo-random playout is used.



Figure 2 illustrates a level 1 Nested Monte-Carlo search. Three selections of cities
at level 1 are shown. The leftmost tree shows that, at the root, all possible cities are
tried and that for each possible decision a playout follows it. Among the three possible
cities at the root, the rightmost city has the best result of 30, therefore this is the first
decision played at level 1. This brings us to the middle tree.After this first city choice,
playouts are performed again for each possible city following the first choice. One of the
cities has result 20 which is the best playout result among his siblings. So the algorithm
continues with this decision as shown in the rightmost tree.This algorithm is presented
in Algorithm 1.

Algorithm 1 Nested Monte-Carlo search
nested (level,node)
if level==0 then
ply← 0
seq← {}
while num children(node)> 0 do

CHOOSE seq[ply]← child i with probability 1/numchildren(node)
node← child(node,seq[ply])
ply← ply+1

end while
RETURN (score(node),seq)

else
ply← 0
seq←{}
best score←∞
while num children(node) > 0 do

for children i ofnode do
temp← child(node,i)
(results,new)← nested(level-1,temp)
if results<best score then

best score← results
seq[ply]=i
seq[ply+1. . .]=new

end if
end for
node=child(node,seq[ply])
ply← ply+1

end while
RETURN (best score,seq)

end if

At each choice of a playout of level 1 it chooses the city that gives the best score
when followed by a single random playout. Similarly for a playout of leveln it chooses
the city that gives the best score when followed by a playout of level n− 1.



4 The Nested Rollout Policy Adaptation algorithm

The Nested Rollout Policy Adaptation algorithm (NRPA) is analgorithm that learns a
playout policy. There are different levels in the algorithm. Each level is associated to the
best sequence found at that level. The playout policy is a vector of weights that are used
to calculate the probability of choosing a city. A city is chosen proportionally to the
exponential of its associated weight. Learning the playoutpolicy consists in increasing
the weights associated to the best cities and decreasing theweights associated to the
other cities. The algorithm is given in Algorithm 2.

Algorithm 2 Nested Rollout Policy Adaptation
NRPA (level,pol)
if level = 0 then
node← root
ply← 0
seq← {}
while there are possible decisionsdo

CHOOSEseq[ply]← child i the with probability proportional to exp(pol[code(node,i)])
node← child(node, seq [ply])
ply← ply + 1

end while
return (score (node), seq)

else
bestScore←∞
for N iterationsdo

(result,new)← NRPA (level− 1, pol)
if result≤ bestScore then

bestScore← result
seq← new

end if
pol← Adapt(pol,seq)

end for
end if
return (bestScore,seq)

Adapt (pol,seq)
node← root
pol′← pol

for ply← 0 to length(seq) - 1 do
pol′[code(node,seq[ply])] += Alpha
z← SUM exp(pol[code(node,i)]) over node’s children i
for children i ofnode do

pol′[code(node,i)] -= Alpha× exp(pol[code(node,i)]) / z
end for
node← child(node, seq [ply])

end for
returnpol′



5 The Beam Nested Rollout Policy Adaptation algorithm

The idea of Beam Nested Rollout Policy Adaptation is to combine a beam search with
the Nested Rollout Policy Adaptation algorithm. Instead ofmemorizing one sequence at
each level of the algorithm, a set of the best sequences is memorized at each level. The
size of the beam for a given level is the number of sequences inthe set of this level. Note
that the sequences are not memorized alone. Each memorized sequence is associated to
a score and a policy. The algorithm is given in Algorithm 3. Inthe algorithmr is a
score,s is a sequence andp is a policy.

As can be seen in the algorithm, a recursive call is performedfor each sequence in
the set of best sequences for each level. At the end of the algorithm a set of the best
sequences and the associated policies and scores is returned. This set is used to adapt
the policies at the upper level and these adapted policies are inserted in the set of best
sequences at the upper level. When all the sequences coming from the calls at the lower
level have been inserted, only the B best ones are kept (B being the size of the beam at
that level).

The Adapt function that learns the policy is the same as in theoriginal NRPA algo-
rithm.

Algorithm 3 Beam Nested Rollout Policy Adaptation
beamNRPA (level,pol)
if level = 0 then
node← root
ply← 0
seq← {}
while there are possible decisionsdo

CHOOSEseq[ply]← child i the with probability proportional to exp(pol[code(node,i)])
node← child(node, seq [ply])
ply← ply + 1

end while
return (score (node), seq, pol)

else
beam← {(∞,{},pol)}
for N iterationsdo

newBeam← {}
for (r,s,p) inbeam do

insert (r,s,p) innewBeam

beam1← beamNRPA (level − 1,p)
for (r1, s1, p1) in beam1 do

p1← Adapt(p,s1)
insert (r1,s1,p1) innewBeam

end for
end for
beam← B best scores ofnewBeam

end for
returnbeam

end if



6 Experimental Results

We apply the beam NRPA algorithm to two applications, the TSPTW, presented in
Section 2.1 and the Morpion-Solitaire puzzle, presented inSection 2.2. Results are pre-
sented respectively in Section 6.1 and in Section 6.2. We define the complexity of the
algorithm as the total number of evaluations (rollout) doneby the algorithm. Formally,
for the beam NRPA algorithm, the complexity is

C = (N ∗B)lvl

with B the size of the beam,lvl the level of the algorithm andN the number of iterations
done for the learning. Experimentally, we have found that having a beam sizeB > 1
only for the level 1 was the best choice in terms of complexity. The complexity becomes
then

C = N lvl ∗B

. For all our experiments, the size of the beam is fixed to 1 for all levels above 1 and is
changed at level 1. Consequently, increasing the complexity comes to increase the size
of the beam at level 1. In order to have comparable complexities for both beam NRPA
and NRPA algorithms, we repeat the NRPA algorithmB times, and we take the best
value found during theB runs as the return value of the algorithm.

6.1 Traveling Salesman Problem with Time Windows

In a first experiment on the TSPTW, we compare the best score found by the two al-
gorithms on two fixed problems from the set of problems from [12]. The two problems
are the problem rc203.1, which is a simple one, with 19 cities, and the rc202.3, which
has 29 cities and is then harder. We measure the average traveling score as a function
of C. We experimentN = {20, 50, 100} andB = {2, 4, 8, 16, 32, 64} for N = 20,
B = {2, 4, 8, 16} for N = 50 andB = {2, 4, 8} for N = 100. Results for the problem
rc203.1 are presented in Figure 3. We experiment three different values ofN in level
2. The beam NRPA is always better than the classic algorithm for all complexities (i.e.,
for all different sizes of beam).N = 20 andN = 50 for the beam algorithm are the
only versions that are able to find valid paths (i.e. without violated constraints).

For the second problem (rc202.3), results are presented in Figure 4. Here again, it is
always better to use the beam NRPA algorithm. We can note that, because this problem
is harder, a larger value ofN is needed, meaning that more time need to be spent during
the learning phase. Best results are found with the beam NRPAalgorithm withN = 50
andN = 100.

The last experiment on the TSPTW, is to run the beam NRPA algorithm on all
problems from the set of problems from [12], and to compare our results with the results
found by the NRPA algorithm from [3]. Results are presented in Table 1.

As expected, we can see that the beam NRPA algorithm is alwaysable to find better
scores than the NRPA algorithm. The beam NRPA is able to find 63% of state of the art
scores, and this without any expert knowledge. Expert knowledge can be added to the
beam NRPA algorithm, in the same way as in the NRPA version from [3].



Fig. 3. Experience on the problem rc203.1 with level 2. The lower thebetter. Average on 30 runs.
Best results are found by the beam NRPA algorithm withN = 20. In this experiment, only the
beam NRPA algorithm is able to find a valid path, without violated constraints. The best known
score for this problem is453.48. This score is reached for the Beam NRPA withN = 20.

Fig. 4. Experience on the problem rc202.3 with level 2. The lower thebetter. Average on 30 runs.
Best results are found by the beam NRPA algorithm withN = 50 andN = 100. The best known
score for this problem is837.72



Problem City
State of NRPA beam NRPA
the art

rc206.1 4 117.85 117.85 117.85
rc207.4 6 119.64 119.64 119.64
rc202.2 14 304.14 304.14 304.14
rc205.1 14 343.21 343.21 343.21
rc203.4 15 314.29 314.29 314.29
rc203.1 19 453.48 453.48 453.48
rc201.1 20 444.54 444.54 444.54
rc204.3 24 455.03 455.03 455.03
rc206.3 25 574.42 574.42 574.42
rc201.2 26 711.54 711.54 711.54
rc201.4 26 793.64 793.64 793.64
rc205.2 27 755.93 755.93 755.93
rc202.4 28 793.03 800.18 793.03
rc205.4 28 760.47 765.38 765.38
rc202.3 29 837.72 839.58 839.58
rc208.2 29 533.78 537.74 533.78
rc207.2 31 701.25 702.17 702.17
rc201.3 32 790.61 796.98 795.43
rc204.2 33 662.16 673.89 663.19
rc202.1 33 771.78 775.59 772.17
rc203.2 33 784.16 784.16 798.73
rc207.3 33 682.40 688.50 682.40
rc207.1 34 732.68 743.72 732.68
rc205.3 35 825.06 828.36 825.06
rc208.3 36 634.44 656.40 649.93
rc203.3 37 817.53 820.93 817.53
rc206.2 37 828.06 829.07 842.17
rc206.4 38 831.67 831.72 831.67
rc208.1 38 789.25 799.24 795.57
rc204.1 46 868.76 883.85 878.76

Table 1. Results on all problems from the set from Potvin and Bengio [12]. First Column cor-
responds to the problem, second column is the number of cities, third column is the state of the
art score, found in [10]. Fourth column is the best score found by the NRPA algorithm in [3] and
fifth column is the best score found by the beam NRPA algorithm. The problems for which we
find the state of the art solutions are in bold. With the beam NRPA 63% of state of the art scores
are found, where as with the classic NRPA algorithm only 43% state of the art scores are found.



6.2 Morpion-Solitaire

The second experimented application is the Morpion-Solitaire puzzle. As for the two
first experiments on the TSPTW, we measure the best score found by the beam NRPA
and the NRPA algorithms as a function of the complexity in level 2. For this application,
the higher scores the better. Results are presented in Figure 5. For beam sizes larger
than 2, results are always better for the beam NRPA algorithm. ForB = 2, results are
equivalent.
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Fig. 5. Experience on the Morpion-Solitaire puzzle with level 2. The higher the better. Best results
are found by the beam NRPA algorithm withN = 100. Each point is an average of 30 runs.

7 Conclusion

In this work we show how to improve the Nested Rollout Policy Adaptation algorithm.
For both applications, results are good for a beam size of 4. When the size of the beam
increases, results are even better. On the first experimented application, the traveling
salesman problem with time windows, we do not use any expert knowledge. Our goal
was then, not to find new records, but to show the efficiency of having numerous learned
policies. The classic NRPA algorithm find 43% of state of the art records, whereas the
beam NRPA algorithm is able to find 63% of records. Only for 2 problems we are not
able to find equal or better scores than the NRPA algorithms. For all other problems,
scores are equal or better for the beam NRPA algorithm. On theMorpion Solitaire puz-
zle, we reach the current record (82 moves), but we are not able to beat it. However,
as shown in Figure 5 best scores are found faster with the beamalgorithm than with



the classic NRPA algorithm. This behaviour has been also observed for the traveling
salesman problem with time windows (Figures 4 and 3).
As pointed out in the future works of the NRPA algorithm’s author in [14], realizing a
parallel version of the NRPA algorithm is a challenging work. The beam NRPA algo-
rithm has the advantage to be easily parallelizable, because, all policies from the beam
can be evaluated in parallel.
An interesting future work is to keep distances between all the sequences from the
beam. Having such a modification should be much more robust infront of local optima.
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