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Abstract. The Nested Rollout Policy Adaptation algorithm is a treeclealgo-
rithm known to be efficient on combinatorial problems. Hoaewne problem of
this algorithm is that it can converge to a local optimum aetigguck in it. We
propose a modification which limits this behavior and we expent it on two
combinatorial problems for which the Nested Rollout Pokgjaption is known
to be good at.

1 Introduction

Recently, the Nested Monte-Carlo Search (NMC) has beerogeapfor solving com-
binatorial problems [2, 13]. Based on this algorithm, a néyedathm has been success-
fully introduced, the Nested Rollout Policy Adaptation@iighm [14]. This algorithm
is efficient for numerous combinatorial problems, and irtipalar, the Traveling Sales-
man Problem with time Windows [3] and the Morpion Solitaitezple [14].

The idea behind the NMC algorithm can been seen as a Meta Mzare algorithm.
This is a recursive algorithm. The first level of the searahsists in simply performing
a Monte-Carlo simulation, i.e. each decision is chosenaamg until no more possible
decision are available. At the end, the score of the posttiah has been reached is
sent back. This first level is called the level 0. For each ol vl > 0, the search
consists in launching a NMC algorithm with a level — 1 for each possible decision.
Such as for the level 0, the score for each reached positisenisback, and the deci-
sion with the best score is chosen. This algorithm is preseintSection 3. The NRPA
algorithm is based on this idea, except that a level 0 podidgarned by gradient ascent
and is used instead of the Monte-Carlo policy. This alganith presented in Section 4.
One problem of this algorithm is that it can converge to lagatima due to its simple
learning. In this work, we propose a modification in orderrtgpriove the behavior of
the NRPA algorithm in front of local optima. The principletbi modification consists
in keeping a beam of different sequences (with their coording policies).

The paper is organized as follows. The next section (Se&@jgoresents the two
problems studied in this work, the Traveling Salesman Frobdith Time Windows in
Section 2.1 and the Morpion-Solitaire puzzle in Section lh2Section 3, the Nested
Monte-Carlo Search is presented, in Section 4 we preserifiéiséed Rollout Policy
Adaptation algorithm, and in Section 5 the improvement daméhe NRPA algorithm.
Finally, in Section 6 we present comparisons between theAN&&orithm and the
algorithm designed in this work.



2 Problems

In this Section we present two well-known combinatorialtgemns. The first one, pre-
sented in Section 2.1 is the Traveling Salesman Problem Witie Windows. The
second problem is the puzzle called Morpion-Solitaire @anpresented in Section 2.2.
The NRPA algorithm has been already used for solving thesgtablems [14, 3].

2.1 The Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem (TSP) is a well-known lagstoblem. Given a list
of cities and their pairwise distances, the goal is to find ghertest possible path
that visits each city only once. The path has to start andhfiatsa given depot. The
TSP problem is NP-hard [9]. The Traveling Salesman Problétn Wime Windows
(TSPTW) is a problem based on the TSP. Inputs are the sama difficulty is added.
In this version, a time interval is defined for each city, aadtecity has to be visited
within its corresponding period of time.

Formally, the TSPTW can be defined as follows. CGebe an undirected complete
graph.G = (N, A), whereN = 0,1,...,n corresponds to a set of nodes a#d=
N x N corresponds to the set of edges between the nodes. Th@ sodesponds to the
depot. Each city is represented by thether nodes. A cost functian: A — R is given
and represents the distance between two cities. A soluithig problem is a sequence
of nodesP = (po,p1,...,pn) Wherepg = 0 and(py,...,p,) is a permutation of
[1, N]. Setp,+1 = 0 (the path must finish at the depot), then the goal is to miremiz
the function defined in Equation 1.

n

cost(P) = Z c(a(pr, Pr+1)) (1)

k=0

As said previously, the TSPTW version is more difficult bessagach city has to
be visited in a time intervdk;, I;]. This means that a cityhas to be visited befork.
It is possible to visit a city before;, but in that case, the new departure time becomes
e;. Consequently, this case may be dangerous as it generatsaltyp Formally, if
. is the real arrival time at nodg, then the departure timg,, from this node is
dpk- = maz(rpk ) epk)-

Tp

In the TSPTW, the function to minimize is the same as for the {E=juation 1), but
a set of constraints is added and must be satisfied. Let uedefiR) as the number of
violated windows constraints by tour (P).
Two constraints are defined. The first constraint is to chieakthe arrival time is lower
than the fixed time. Formally,

kavTPk < lm-'

The second constraint is the minimization of the time lostwajting at a city.
Formally,

Tpryr = maX(Tpk ) epk) + C(apk,pk+1 )



With algorithms used in this work, paths with violated coastts can be generated.
As presented in [13], a new scdfeost(p) of a pathp can be defined as follows:

Tcost(p) = cost(p) 4+ 10° x 2(p),

with, as defined previously,ost(p) the cost of the patlp and £2(p) the number of
violated constraintsl0° is a constant chosen high enough so that the algorithm first
optimizes the constraints.

A survey of efficient methods for solving the TSPTW can be fbim{10]. Existing
methods for solving the TSPTW are numerous. First, brandrbannd methods were
used [1, 4]. Later, dynamic programing based methods [6lics based algorithms
[15, 8] and methods based on constraint programming [7, &¥¢ tbeen published.
More recently, ant colony optimization algorithms have rbesed [10] and have
established new state of the art scores. Works based on the iNMe been proposed
in [13] and on the NRPA in [3].

2.2 Morpion-Solitaire

Morpion-Solitaire is an NP-hard pencil-and-paper puzisyed on a square grid. A
move consists in adding a circle (on one possible intersean the grid) such that a
line containing five circles can be drawn. The new line is thdded to the grid. Lines
can be horizontal, vertical or diagonal. The initial gricht@ins some starting circles,
as shown in Figure 1. Two versions of this puzzle exist, theling version and the
disjoint version. In this paper, we are interested in the dine, the disjoint version, for
which a circle can not belong to two lines that have the sameetion. The best human
score for this version of the puzzle is 68 moves [5]. The Nks8fente-Carlo search
found a score of 80 moves [2], and [14] found a new record wZtimdves.

3 Nested Monte-Carlo Search

The basic idea of Nested Monte-Carlo Search is to perfornireipal playout with a
bias on the selection of each decision based on the reswdtMohte-Carlo tree search
[2].

The base level of the search build random solutions (i.gopits), random decision
are chosen until the end at this level. When a solution is detely built, the score of
the position that has been reached is sent back.

At each decision of a playout of level 1 it chooses the deniiat gives the best
score when followed by a random playout. Similarly for a jplatyof leveln it chooses
the decision that gives the best score when followed by aoplisgf leveln — 1.

When a search at the highest level is finished and there isl¢ifp@nother search
is performed at the highest level, and so on until the thigkime is elapsed.

Nested Monte-Carlo search has been successful in esiagliglorld records in
single player games such as Morpion Solitaire or SameGainé j@ovides a good
balance between exploration and exploitation and it auticalyy adapts its search be-
havior to the problem at hand without parameters tuning.
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Fig. 1. Example of a puzzle. Circles represent initial points anthbers represent the moves.
This 82 moves grid found by our algorithm equalizes the weeltbrd established by Rosin [14]
through a different solution.
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Fig. 2. At each step of the principal playout shown here with a bade,lian NMC of leveln
performs a NMC of leveh — 1 (shown with wavy lines) for each available decision anddsle
the best one. At level 0, a simple pseudo-random playoutsd.us



Figure 2 illustrates a level 1 Nested Monte-Carlo searche&lselections of cities
at level 1 are shown. The leftmost tree shows that, at the edlopossible cities are
tried and that for each possible decision a playout folldwAmong the three possible
cities at the root, the rightmost city has the best resultQftBerefore this is the first
decision played at level 1. This brings us to the middle tAdter this first city choice,
playouts are performed again for each possible city folhgthe first choice. One of the
cities has result 20 which is the best playout result amosigibiings. So the algorithm

continues with this decision as shown in the rightmost fféxés algorithm is presented
in Algorithm 1.

Algorithm 1 Nested Monte-Carlo search
nested level,node)
if level==0then
ply < 0
seq  {}
while num.children(node)> 0 do
CHOOSE seq[plyk— child i with probability 1/numchildrengode)
node < child(node,seq[ply])
ply < ply+1
end while
RETURN (scoretode),seq)
ese
ply <+ 0
seq —{}
best_score < 0o
while num.childrengode) > 0 do
for children i ofnode do
temp < child(node,i)
(results,new) < nested(level-temp)
if results<best_score then
best_score + results
seq[plyl=i
seq[ply+1l.. .]J=new
end if
end for
node=child(node,seq[ply])
ply < ply+1
end while
RETURN (est_score,seq)
end if

At each choice of a playout of level 1 it chooses the city the¢gthe best score
when followed by a single random playout. Similarly for aymat of leveln it chooses
the city that gives the best score when followed by a playblevel n — 1.



4 The Nested Rollout Policy Adaptation algorithm

The Nested Rollout Policy Adaptation algorithm (NRPA) isagorithm that learns a
playout policy. There are different levels in the algoritibach level is associated to the
best sequence found at that level. The playout policy is tovet weights that are used
to calculate the probability of choosing a city. A city is clem proportionally to the
exponential of its associated weight. Learning the playality consists in increasing
the weights associated to the best cities and decreasingdights associated to the
other cities. The algorithm is given in Algorithm 2.

Algorithm 2 Nested Rollout Policy Adaptation
NRPA (level,pol)
if level = Othen
node < root
ply <0
seq < {}
while there are possible decisiods
CHOOSEseq[ply] + child i the with probability proportional to expél[codeode,i)])
node < child(node, seq [ply])
ply < ply+1
end while
return (scorerfode), seq)
else
bestScore < oo
for N iterationsdo
(result,new)k— NRPA (evel — 1, pol)
if result< bestScore then
bestScore < result
seq < new
end if
pol < Adaptpol,seq)
end for
end if
return pestScore,seq)

Adapt (pol,seq)

node < root

pol’ <+ pol

for ply < 0 to lengthgeq) - 1 do
pol’[codeqode,seq[ply])] += Alpha
z <+ SUM exppol[codefode,i)]) over node’s children i
for children i ofnode do

pol’[codefuode,i)] -= Alpha x exppol[codefiode,i)]) / =

end for
node < child(node, seq [ply])

end for

returnpol’




5 TheBeam Nested Rollout Policy Adaptation algorithm

The idea of Beam Nested Rollout Policy Adaptation is to coratd beam search with
the Nested Rollout Policy Adaptation algorithm. Insteacheimorizing one sequence at
each level of the algorithm, a set of the best sequences ioniwed at each level. The
size of the beam for a given level is the number of sequendbeiget of this level. Note
that the sequences are not memorized alone. Each memaceizeerse is associated to
a score and a policy. The algorithm is given in Algorithm 3.the algorithmr is a
score,s is a sequence angis a policy.

As can be seen in the algorithm, a recursive call is perforfoedach sequence in
the set of best sequences for each level. At the end of theithigoa set of the best
sequences and the associated policies and scores is cetlime set is used to adapt
the policies at the upper level and these adapted policeemaerted in the set of best
sequences at the upper level. When all the sequences camingtfe calls at the lower
level have been inserted, only the B best ones are kept (B ble@nsize of the beam at
that level).

The Adapt function that learns the policy is the same as irtiggnal NRPA algo-
rithm.

Algorithm 3 Beam Nested Rollout Policy Adaptation

beamNRPA [evel,pol)
if level = Othen
node < root
ply < 0
seq — {}
while there are possible decisiods
CHOOSEsegq[ply] < child i the with probability proportional to expél[codeode,i)])
node < child(node, seq [ply])
ply < ply+1
end while
return (scorerode), seq, pol)
else
beam + {(c0,{}.pol)}
for N iterationsdo
newBeam + {}
for (r,s,p) inbeam do
insert (r,s,p) imewBeam
beaml < beamNRPA fevel — 1,p)
for (r1,s1,pl) in beam1 do
pl < Adapt(p,s1)
insert (r1,s1,pl) imewBeam
end for
end for
beam < B best scores ofewBeam
end for
returnbeam
end if




6 Experimental Results

We apply the beam NRPA algorithm to two applications, the T&Ppresented in
Section 2.1 and the Morpion-Solitaire puzzle, presentetkiction 2.2. Results are pre-
sented respectively in Section 6.1 and in Section 6.2. Waedfie complexity of the
algorithm as the total number of evaluations (rollout) dbyehe algorithm. Formally,
for the beam NRPA algorithm, the complexity is

C = (N Bl

with B the size of the beanhy! the level of the algorithm an®f the number of iterations
done for the learning. Experimentally, we have found thaidga beam sizé3 > 1
only for the level 1 was the best choice in terms of compleXihe complexity becomes
then

C=N"«B

. For all our experiments, the size of the beam is fixed to 1 lfdewels above 1 and is
changed at level 1. Consequently, increasing the compleginhes to increase the size
of the beam at level 1. In order to have comparable compéexitr both beam NRPA
and NRPA algorithms, we repeat the NRPA algoritihimes, and we take the best
value found during thé? runs as the return value of the algorithm.

6.1 Traveling Salesman Problem with Time Windows

In a first experiment on the TSPTW, we compare the best scordfby the two al-
gorithms on two fixed problems from the set of problems fro2][The two problems
are the problem rc203.1, which is a simple one, with 19 citiesl the rc202.3, which
has 29 cities and is then harder. We measure the averagérigaseore as a function
of C. We experimentV = {20,50,100} and B = {2,4,8,16,32,64} for N = 20,
B =1{2,4,8,16} for N = 50 and B = {2, 4,8} for N = 100. Results for the problem
rc203.1 are presented in Figure 3. We experiment threerdiffesalues ofV in level
2. The beam NRPA is always better than the classic algoritralf complexities (i.e.,
for all different sizes of beam)V = 20 and N = 50 for the beam algorithm are the
only versions that are able to find valid paths (i.e. withdatated constraints).

For the second problem (rc202.3), results are presentedime=4. Here again, itis
always better to use the beam NRPA algorithm. We can noteltbasuse this problem
is harder, a larger value & is needed, meaning that more time need to be spent during
the learning phase. Best results are found with the beam NERFAithm with N = 50
andN = 100.

The last experiment on the TSPTW, is to run the beam NRPA itgoron all
problems from the set of problems from [12], and to compare@sults with the results
found by the NRPA algorithm from [3]. Results are presentetible 1.

As expected, we can see that the beam NRPA algorithm is ala@ggo find better
scores than the NRPA algorithm. The beam NRPA is able to fifd 6Bstate of the art
scores, and this without any expert knowledge. Expert kadgé can be added to the
beam NRPA algorithm, in the same way as in the NRPA versiam {&].
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Fig. 3. Experience on the problem rc203.1 with level 2. The lowerttiiger. Average on 30 runs.
Best results are found by the beam NRPA algorithm wth= 20. In this experiment, only the

beam NRPA algorithm is able to find a valid path, without viethconstraints. The best known
score for this problem i453.48. This score is reached for the Beam NRPA wih= 20.
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Fig. 4. Experience on the problem rc202.3 with level 2. The lowerttiiger. Average on 30 runs.
Best results are found by the beam NRPA algorithm wWitk= 50 and N = 100. The best known
score for this problem i837.72



State of NRPA beam NRPA

Problem City the art

rc206.1 4 117.85 117.85 117.85
rc207.4 6 119.64 119.64 119.64
rc202.2 14 304.14 304.14 304.14
rc205.1 14 343.21 34321 343.21
rc203.4 15 314.29 314.29 314.29
rc203.1 19 453.48 453.48 453.48
rc201.1 20 444.54 44454 44454
rc204.3 24  455.03 455.03 455.03
rc206.3 25 574.42 574.42 574.42
rc201.2 26 711.54 711.54 71154
rc201.4 26 793.64 793.64 793.64
rc205.2 27  755.93 755.93 755.93
rc202.4 28 793.03 800.18 793.03
rc205.4 28 760.47 765.38 765.38
rc202.3 29 837.72 839.58 839.58
rc208.2 29 533.78 537.74 533.78
rc207.2 31 701.25 702.17 702.17
rc201.3 32 790.61 796.98 795.43
rc204.2 33 662.16 673.89 663.19
rc202.1 33 771.78 775.59 772.17
rc203.2 33 784.16 784.16 798.73

rc207.3 33 68240 688.50 682.40
rc207.1 34 732.68 743.72 732.68
rc205.3 35 825.06 828.36 825.06

rc208.3 36 634.44 656.40 649.93
rc203.3 37 817.53 820.93 817.53
rc206.2 37 828.06 829.07 842.17
rc206.4 38 831.67 831.72 831.67
rc208.1 38 789.25 799.24 795.57
rc204.1 46 868.76 883.85 878.76

Table 1. Results on all problems from the set from Potvin and Bengaj.[Eirst Column cor-
responds to the problem, second column is the number o§cttied column is the state of the
art score, found in [10]. Fourth column is the best score dooyithe NRPA algorithm in [3] and
fifth column is the best score found by the beam NRPA algorithhe problems for which we
find the state of the art solutions are in bold. With the beanPAIB3% of state of the art scores
are found, where as with the classic NRPA algorithm only 488esof the art scores are found.



6.2 Morpion-Solitaire

The second experimented application is the Morpion-Saditauzzle. As for the two
first experiments on the TSPTW, we measure the best score fouthe beam NRPA
and the NRPA algorithms as a function of the complexity irel&: For this application,
the higher scores the better. Results are presented ineFtgufor beam sizes larger
than 2, results are always better for the beam NRPA algoriflonB = 2, results are
equivalent.
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Fig. 5. Experience on the Morpion-Solitaire puzzle with level 2eTigher the better. Best results
are found by the beam NRPA algorithm withi = 100. Each point is an average of 30 runs.

7 Conclusion

In this work we show how to improve the Nested Rollout Poliayafatation algorithm.
For both applications, results are good for a beam size ofteiVthe size of the beam
increases, results are even better. On the first experichapiglication, the traveling
salesman problem with time windows, we do not use any expenvledge. Our goal
was then, not to find new records, but to show the efficiencyeirty numerous learned
policies. The classic NRPA algorithm find 43% of state of theaecords, whereas the
beam NRPA algorithm is able to find 63% of records. Only for @ypems we are not
able to find equal or better scores than the NRPA algorithrosak other problems,
scores are equal or better for the beam NRPA algorithm. OMtrpion Solitaire puz-
zle, we reach the current record (82 moves), but we are nettaliveat it. However,
as shown in Figure 5 best scores are found faster with the ladgaonithm than with



the classic NRPA algorithm. This behaviour has been alserobd for the traveling
salesman problem with time windows (Figures 4 and 3).

As pointed out in the future works of the NRPA algorithm’steartin [14], realizing a
parallel version of the NRPA algorithm is a challenging wofke beam NRPA algo-
rithm has the advantage to be easily parallelizable, becaliolicies from the beam
can be evaluated in parallel.

An interesting future work is to keep distances betweenhadl gequences from the
beam. Having such a modification should be much more robdsirm of local optima.
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