
GGTP, a General Gaming Text Protocol

Michel Quenault and Tristan Cazenave
LAMSADE

Université Paris-Dauphine, France
miq75@free.fr

Abstract
This article describes GGTP, a new general gam-
ing text protocol enabling to play and record plays
of many kinds of games. These games range from
classic complete information board games such as
Chess to incomplete information and chance games
such as Bridge. In theory, even real time strategy
games could be managed, but theses games cur-
rently imply practical limits.

1 Text Protocol for games
Many games are played around the world. For most of them,
players training and development of competitions require a
way to describe precisely specific plays of the games. So
many different play systems have been developed, each time
with specific data structures for a specific game.

In artificial intelligence, games have always been a good
domain for the exploration of the performance of decision
methods. Many separated researches are and have been done
all around the world on such themas and many researchers
have to define games engines. One more time, with the same
restrictions than for human players, the specialisation in a
specific rule.

Fewer researches focusses on managing general gaming
engines which are designed to be able to play many games. In
such problems games engines have to be separated from the
rules definitions so they are decomposed in few distinct pro-
grams with their own independents goals. To work together
and to manage the plays of a selected game rule, these sep-
arate components have to use some protocoled communica-
tions. These protocoled communications are inherited from
the description language used by human players to manage
human training and human competitions.

Let’s first focus on what are precisely the different com-
ponents and goals of such a protocol, then we comment on
variety of games and describe some existing protocols.

1.1 Requirements of a text protocol for games
A play description protocol has to define instructions for each
step of a play.

First, initialisation of the play. A general gaming proto-
col has to allow to select the different following elements to
prepare a play:

• the used rule,

• the engines used to play,

• any specific initialisation data from the rule (such as the
first player to play),

• any parameters specific to the rules or the engines se-
lected.

Second, and as many times as the rules define it, the proto-
col has to specify a way to describe the moves selected by the
engines. When moves have to be validated by the rule such
as in Kriegspiel, Phantom Go, Mah Jong or when multiple
players can play at the same turn, moves have to be validated
both by the engine and the referee.

Third, at the end of the play, the protocol has to manage
final information such as the winners, losers, or null players
and optionally scoring data for players if the rule specify any
as in card games.

Possibly, some control commands such as the ability to
navigate between steps of the play (undoing or redoing
moves, or selecting different moves) would be useful to de-
fine too. Perhaps some ability to manage subtrees of plays,
to show for example some specific lines of play that a teacher
thinks important.

Another kind of commands could be considered, those who
enable to manage tournaments. 1

Such protocol can be used to follow and record any play of
any game. It would be nice to use a text style protocol to allow
easy reading of the steps of the play by human analysts. This
format would have the advantage to allow humans to interfere
with the evolution of the play, with possibly some appropriate
commands to override the automatic players choices.

Some of these commands are sent by automatic engines,
some are sent by the rule, and some are sent by the humans.
Obviously, the protocol has to define who can send which
kind of command too.

1.2 Variety of games
Many examples of games have been studied individually in
artificial intelligence researches. We can cite as examples
Solitaire [Beasley, 2008], Sudoku [Geem, 2007], Sokoban

1In a way, a competition is a kind of super rule. So a correctly de-
fined protocol, with an engine able to manage really various games
can define a competition as a specific game rule.

[Botea et al., 2002], Rush Hour [Fernau et al., 2003], Check-
ers [Schaeffer et al., 2007; Khan et al., 2008], Hex [Hender-
son and Hayward, 2008], Chess [Fernández and Salmerón,
2008], Shogi [Soeda et al., 2006], Go [Bouzy and Helmstet-
ter, 2003], Chinese Checkers [Cooper et al., 2004], Backgam-
mon [Azaria and Sipper, 2005], Can’t Stop [Glenn et al.,
2008], Bridge [Galatti et al., 2005], Skat [Kupferschmid and
Helmert, 2006], Poker [Gilpin and Sandholm, 2007], Phan-
tom Go [Cazenave, 2006], Kriegspiel [Ciancarini and Favini,
2007], Mah Jong [Iida et al., 2004], some wargames [Santana
et al., 2004] and some real time strategy games [Ontañón et
al., 2007].

These games, except for a part of the wargames and the real
time strategy games, are all discrete and finites games. Dis-
crete games are games with no continuity of any kind. Boards
must be discrete, alternate of players moves must be discrete,
and so on. Finite games are games with no infinity of any
kind. Boards must be finite, list of moves must be finite, and
so on.

Indeed, all of them have different specificities, Here is a
short list of critic ones:
• Number of players:

Some of studied games are one player games. These
puzzle games generally have their own solving class of
methods.
Some other studied games are two player games. These
games use different methods from puzzle games because
they have to consider having an opponent whose goals
are generally in opposition with the player’s goals.
The last part are games with more than 2 players. In
these games, methods from two players games could be
reused but they generally miss some point, because there
are specific parameters to deal with. (For example the
possibility of alliances between players or the definition
of some priority for the players such the choice to be the
only one to win or not.) This kind of games generally
require special algorithms for these problems and this
make them different to program.
Despite theses differences, this distinction between
games do not denote specific problem for the point of
view of a general gaming protocol.

• Randomness:
Some board games, such as backgammon, (and further-
more some non board games) may have to deal with ran-
domness.
As for the number of players, this particularity of games
do not implies any problem for a general gaming proto-
col.

• Incomplete information:
There are two kinds of incomplete information games.
The incomplete information can be about the possible
moves of other players (which depend on their hands in
card games) or about the possible moves of players itself
(as in Phantom Go).
If the first case doesn’t have any impact on a general
game protocol between engines players and the rule, the
second case implies that such a protocol must deal with

the possibility that the rule refuses a move that the en-
gine player considers as legal, with maybe the reason
why. This ability would not be complex to add to such a
protocol.

• Simultaneous moves multiple players games:
In most of games, the players alternate the moves. In
some games, like Mah Jong, their may be case where
the normal succession of the players can be broken, and
where multiple player can play at the same time. There
are specific priority rule to deal in these cases.
In some variants of Uno card games, or in Jungle Speed,
the graph of succession of players moves can be very
complex. It happens many times when playing these
games that multiple players can play, and the fastest one
has the point.
These games are still discrete ones because there is al-
ways a rule to define which of the different player moves
is the valid one and what is the consequence on the next
moves. Indeed, for a general gaming protocol, this falls
back to the case of incomplete information games when
the rules has to refuse a move to a player. So these kind
of games do not represent a difficult problem for such a
protocol.

We now present some existing general gaming protocols.

1.3 Known languages
Some different protocols have already been implemented to
describe multiple games.

We can cite researches from Barney Pell which has de-
scribes with Metagame a general game model dealing with
chess symmetric variants [Pell, 1994], the Stanford logic
group which has defined his own general gaming protocol for
competitions [Love et al., 2008]. The current best General
Game Playing agents use Monte-Carlo methods [Finnsson
and Björnsson, 2008], even if alternative architecture are also
used [Schiffel and Thielscher, 2007]. Arno Hollosi has de-
fined a protocol based on textual commands [Hollosi, 2006]
and another based on XML style [Hollosi, 2002]. Michael
Buro and Igor Ðurd̄anović use NECI’s generic game server,
based on textual commands [Buro and Ðurd̄anović, 2002]. . . .
A widely used protocol to make Go and Hex programs play
against each other and play using an interface is the Go Text
Protocol (GTP) [Farnebäck, 2002].

All these protocols are limited to complete information
games and actually only relatively few games are defined with
each of them. Thus, they may contain rule specific commands
such as Komi or Handicap in SGF which refers to specific
(here: Go) game properties.

These protocols were developed as research tools for gen-
eral gaming. They often come with rule description tools and
independent engines players adding capabilities. The rule de-
scription is generally made with logical languages to allow
easy analyse of the rule for the players engines.

Other tools are designed for specific interactions with an
engine. For example general tools to communicate with en-
gines have been developed for analyzing search trees [Ísleifs-
dóttir and Björnsson, 2008].

On the other hand, the commercial Zillions of games en-
gines [Lefler and Mallett, 2002] use a protocol which can de-
scribe a very big number (more than 1500) of rules, including
one player games or more than two player ones. The rule de-
scription in Zillions of games is logical too, but until recently,
their would be no way to describe it’s own engine. Thus, this
application is still limited to complete information and non
random games.

Either, we had to talk about some protocols which focus
on totally different kind of games than complete information
ones. For example, the ORTS engine would provide similar
tools to play to real time strategy games [Buro, 2002]. This
time, the protocol is very specific to RTS games and could
not be used for other ones. So, we are confronted to the same
problem than existent complete information general gaming
protocols, which is their specialisation to very restricted kinds
of games.

2 GGTP
We have seen that almost all of the engines are limited to
complete information games, and to two players games in
general gaming oriented researches. We have seen that many
other kinds of games are studied in artificial intelligence. So,
we propose here to describe the first steps of a general gam-
ing protocol that would manage both complete information
games and incomplete information ones. We focus on mak-
ing it usable for a maximum of these games, so we intend to
develop it to include random games, any number of players
games and multiple simultaneous players moves games. The
limit we fix to our protocol is the possibility to use it with any
discrete and finite game. Here is our proposition.

This protocol has to allow an application using it to be a to-
tally automated engine usable in general gaming researches.

We use a textual protocol with one line per command.
Commands and each arguments are separated with space or
tabulations. An earlier add ability for the protocol was the
possibility to add spaces in moves names, because it was re-
strictive for rules to define only non spaced ones. So the move
names or list of moves names are always the last argument
and spaces are no more considered as separators when the
maximum number of arguments for a command is reached.
Thus, due to the wide variety of possible moves description
in games, the line length was defined as unlimited. This way,
the protocol can manage spaces in move names and complex
multiple part move on some games could be used easily.

2.1 Supervisor part
To develop a general gaming system, their are a few different
items to consider. The first is a way to describe the rules and
to manage a play of the described rule, the second is a way
to define general players engines that can be connected to the
part that manages the rule, and the last is the protocol that al-
lows communications between the elements cited below and
with a human supervisor of the play. We now refer to these
components as the Rules, the Engines and the Protocol. We
add the Supervisor component to represent the human regu-
lating them.

The part of communication from Rules to Supervisor is the
output of the main application. For each command the Super-
visor can send, there are three kinds of answers:

• An answer relative to the query, such as the version num-
ber of the Rules for the get_version command, pre-
ceded with the “=” symbol.

• A validation mark (“Done”) if the command is not in-
terrogative.

• An error message if the command is incorrectly formu-
lated, preceded with the “?” symbol. The message tells
to use “list_commands” if the command is unknown
and describe the arguments needed by the command in
the other case.

We add to these returns some options relatives to the Rules
output. The options we had defined are “show_command”,
“show_when_play”, “show_possible_moves”,
“show_results” and “show_table” (which refer to
the complete set of the physical elements of the game). They
all can take the two values “on” or “off”, defining this way
if Rules informations are displayed or not on the screen after
each step of the play. These informations are preceded with
the “->” symbol when they are shown.

A last option is relative to the Rules management, the
“genmove” option which determinate if Engines are playing
as soon as the Rules allows them to do it or only on Supervi-
sor request.

With these elements we have described the first part of the
Protocol, which is the way the Rules communicate with the
Supervisor. The way the Supervisor communicate with the
Rules is described in the Table 1.

The first command shows the program version, the second
one leaves it.

The commands 3 to 5 are about file manipulations. They
allow to use files as convenient ways to store plays. In a play
file, only a part of the commands executed since the begin-
ning of application, are stored. These commands are marked
with a “�” in the table. They mainly are commands that ef-
fectively do an alteration on the play or the play initialisa-
tion. Every made move is marked as if is was selected by the
command “force_play”. Thus, a play could be stored in
the middle of its unfolding and be restored later. Command
“force_play” is not registered itself but the move which
has been validated by the rule is. The support for storage of
multiple branches has not been defined yet.

Commands 6 and 7 are queries about the possible com-
mands list.

Commands from 8 to 11 are used to set the parameters
defining the format of outputs for the Supervisor we have seen
above.

Commands from 12 to 18 concern the current rule which
is selected by the engine and it’s specific options. One of
these options called “starting_player” is automatically
generated if the rule doesn’t define its first player.

While command 19 references the current list of players se-
lected by the rule, the following commands until 22 select the
Engines to connect to the players of the current rule. When an
Engine is selected this way, it is created and connected to the

1 get_version
2 quit
3 load_file filename
4 save_file filename
5 close_file
6 list_commands
7 known_command command
8 list_options
9 get_option option
10 list_option_choices option
11 set_option option value �
12 list_rules
13 set_rule rule �
14 get_rule
15 list_rule_options
16 get_rule_option option
17 list_rule_option_choices option
18 set_rule_option option value �
19 list_players
20 list_engines
21 set_engine player engine �
22 get_engine player
23 list_engine_options player
24 get_engine_option player option
25 list_engine_option_choices player option
26 set_engine_option player option value �
27 start �
28 list_possible_moves [[player] table]
29 get_result [[player] table
30 get_table [[player] table
31 get_last_move
32 list_played_moves
33 play player move
34 force_play player move �
35 genmove
36 undo
37 redo

Table 1: GGTP Supervisor to Rules commands.

Rules with a new bidirectional socket. The Supervisor can
set any player of the current game to human. This way, the
Supervisor can play against Engines. Today, the Engines are
locals and created when they are required by the application,
but we intend to implement later a network interface for play-
ers. This way, some human or Engines players would have
the ability to play through the internet or any network.

Commands from 23 to 26 manage specific options for the
Engines.

Then the Supervisor needs the command 27 to initiate the
play.

Commands 28 to 32 enable to display informations about
the play. The same information would be displayed when ac-
tivating the correct relative to Rules output or management
options. (The optional arguments in command 28 to 30 refer
to the point of view of a player and his knowledge about the
play, not to the specific to the player possible moves knowns
by the Rules. The second argument refers to the number of

the simulation space (table) used by the player). These in-
formations are necessary to play when the Supervisor has de-
fined human players.

Commands 33 to 35 are controlling the next moves in the
play. They are respectively used to play as a human player,
play as the Supervisor and launch the play of an Engine player
if the “genmove” option is unactivated.

The two last commands enable the supervisor to navigate
through the played moves and to test other moves at any step.
Today, this would delete the previous branch of moves but in
a next version we would like to manage the ability to store the
explored tree.

2.2 Engine part
After we have described the Supervisor parts of the Protocol,
we focus on the Engine part. Unlike the Supervisor com-
mands, there is no place for syntax errors or malformed com-
mands. No unknown command is admitted and a query re-
quests an immediate answer, except for the move selection
which is asynchronous. The Rules to Engines commands are
enumerated in Table 2.

38 connect_engine
39 disconnect_engine
40 list_options
41 get_option option
42 list_option_choices option
43 set_option option value
44 start
45 list_possible_moves table
46 get_result table
47 get_table table
48 have_to_play [delay]
49 made_move player move
50 illegal_move move [any]
51 undone_move
52 redone_move

Table 2: GGTP Rules to Engines commands.

Commands 38 and 39 are about connecting the Engine to
a player in the current game. They are consequences of the
command 21. They initiate the connection (after the Engines
has possibly been created) and terminate it (before the En-
gines are destroyed).

Commands from 40 to 45 are redirections from commands
23 to 28 on the right Engine.

Command 48 is sent whenever the Engine has to se-
lect a move. This happens in two cases depending on the
“genmove” option’s value: When the command 35 is called
by the Supervisor or when the Rules has computed the last
move and possibly the result. The rule may define a delay in
which the Engine has to send an answer and pass it as argu-
ment of the command.

The commands 49 to 52 are those who actually validate (or
not) the chosen move, inform that a move has been undone
or redone by the Rules. The Engine has to consider them
immediately. Command 50 is used in games such as Phantom
Go so that the referee can tell the engine a move is illegal,

the second argument can contain any additional information
specific to the rule.

Then, the next part of the protocol are the communications
from Engines to Rules which is describe with the Table 3.

53 reply requested data
54 acknowledge
55 invalid_option_name
56 invalid_option_value
57 invalid_table_number
58 select_move move

Table 3: GGTP Engines to Rules commands.

The 53 to 57 commands are the different immediate an-
swers that the Engines has to manage. Command 53 is used
in any of the commands 40, 41, 42, 45, 46, 47 with the asked
result and command 54 to 57 reply to other commands to val-
idate them or refuse their incorrect arguments.

The last command tells to the Rules the selected next pos-
sible move. It’s an asynchronous reply to command 46.

Commands 45, 46, 47 and 58 show that the Engines have
their own representation of the play state. This avoids the
need for communications between Rules and Engines in the
simulations of possible tree of plays.

With these last items we have finished to describe our
GGTP Protocol. Next will come the description of an ap-
plication using it.

3 Description of the application
With the GGTP protocol we have defined a complete general
gaming engine. This engine has been developed to manage
all the games that GGTP can support. Without having a too
deep description of the way it manages the rule, which (an
older version) can be found in [Quenault and Cazenave, June
2007], we shortly describe the way our Rules and Engines
separated components interfer with each others and enable
general play.

3.1 Rules descriptions
Here is the list of what our Rules uses from GGTP:

• The almost complete commands list. The few excep-
tions are cited below.

• The complete set of relative to Rules output and man-
agement options described above.

• Any specialisation of the Rule via the options com-
mands.

• The players list abilities, including the
“starting_player” option, based on a graph
description of the turn order.

• A machine representation of the physics components of
the game (cards, pawns, board. . .), corresponding to the
“table” expression used in command 30.

• The initialisation of the game, applied with the com-
mand 27.

• The end of the game with specifying the winning or los-
ing players, used by the command 29.

• The moves that are allowed to the players at each step of
the play. The way to identify moves is totally rule spe-
cific and only the Rules and possibly the Engines have
to attribute to moves names a sense. This is why we
consider that for the Protocol point of view, each move
description is meaningless and could just be a textual
item.

Our way to describe an new rule today is a c++ source
compiled with the application and all the Engines. This is a
problem for developing an ability to analyse the rules for the
engines. That is why GGTP does not implement commands
in this way yet.

Both the nature of c++ code of our rules and their abilities
to have rule’s specialised components made that our com-
pilation tree first nodes are rules objects. So, each of our
rules are linked as independent programs. That’s why the
“set_rule” command has not been implemented. In a ver-
sion based on a logical description of the rule, we guess that
this problem would be unwound.

The “save_file” command is not implemented yet.
There is no storage of current session before the “start”
command. (But the list of moves is stored and navigation
throughout is operational.)

Optional argument for the “list_possible_moves”
command is implemented only with human players. The
commands doesn’t refer to the Engines point of view and the
corresponding commands in the engine part of the protocol
are not yet implemented.

No timing systems are implemented, only the asyn-
chronous nature of the players yet.

3.2 Engines descriptions
We now list what our Engines uses from GGTP:
• The complete command list concerning Engines, with

few simplifications.
• Any specialisation of the Engine via the options com-

mands.
• Complete access to simulations spaces (we call them ta-

bles) containing all the elements of the games rule in
their current state. This enables the engine to manage its
own simulations of plays.

Each engine may have any number of simulation spaces
(tables). To manage incomplete information games, each ta-
ble is a complete information view of a possible real table of
the play. In any game, when a move is validated, all the ta-
bles are updated. If the game is an incomplete information
one, the validated move could be illegal on some tables. In
such a case, the tables have to operate few alterations (reorder
few components as cards in hands) to make the move legal.
In incomplete information games, the same manipulation is
performed when using the “force_play”.

Our engine allows a filename argument when the applica-
tion is started on the command line. This file is automatically
read at the beginning of the session. This way, and using cor-
rectly some predefined options of the protocol, we could use

our application as a totally automated one able to play any
defined Engines against any defined Rules.

3.3 Short example
Now that we had expose our application components let’s
have a look at Figure 1, a short example of a play using it
and GGTP.

This example shows two different processes displayed with
vertical lines. The continue one is the Supervisor to Rules
part of the protocol and the disjoint one is the Rules to En-
gines part of the protocol (Here, the “Circle”’s engine).
Whenever the Supervisor part begins with a letter it repre-
sents a command send by the Supervisor. In the other cases
(“=”, “?” or “->”) it represents the Rules answers. For the
Engines part, the symbol “←↩” separates the commands sent
by the Rules to the Engines (before the symbol, or if it is
omitted) to the commands sent by the Engines to the Rules,
which are always answers (after the symbol).

This example of the protocol is totally implemented by our
application, with the exception of the “set_rule” com-
mand.

During the real use of the application only the Supervisor
part is printed on screen. We have represented here both parts
to illustrate the complete GGTP protocol.

4 Conclusion and future works
Most of the GGTP protocol has been implemented. It can
be used for general gaming development purposes. Our main
goal is now to complete the associated engines so as to man-
age incomplete information games using Monte Carlo meth-
ods. We would also like to manage games with time limits,
incomplete information about the possible players moves and
the basics of all kinds of discrete and finite games.

But there are still some lacks in our engine and GGTP pro-
tocol:
• Commands to enable engines players to deliberate with

other players.
• A way to enable the storage of multiple subtrees of the

possible plays graphs.
• Commands to manage the networked connection of gen-

eral gaming players.
• Commands to manage competition between general

gaming players.
• Adding much more games and much more general gam-

ing players.
When all these different points are realized, GGTP would

probably be a reference in general game playing protocols.
GGTP enables to manage many different kinds of games in-
cluding incomplete information ones.

References
[Azaria and Sipper, 2005] Yaniv Azaria and Moshe Sipper.

Using gp-gammon: Using genetic programming to evolve
backgammon players. In Maarten Keijzer, Andrea Tet-
tamanzi, Pierre Collet, Jano I. van Hemert, and Marco
Tomassini, editors, EuroGP, volume 3447 of Lecture

set_rule TicTacToe
= Done
set_option show_when_play on
= Done
set_option genmove on
= Done
list_players
= Cross=human, Circle=human
set_rule_option starting_player Cross
= Done
set_enginz Circle Minimax
? Use get_commands to see commands.
set_engine Circle Minimax

connect_engine←↩ acknowledge
= done
set_engine_option Circle Depth 8

set_option Depth 8←↩ acknowledge
= done
start

start←↩ acknowledge
= done
play Cross A1
-> Cross plays A1

made_move Cross A1←↩ acknowledge
have_to_play

= done
←↩ select_move B2

-> Circle plays B2
made_move Circle B2←↩ acknowledge

play Cross A1
? No move named A1 for player Cross.
get_possible_moves
= cross=B1,C1,A2,C2,A3,B3,C3
set_option get_possible_moves on
= Done
set_option genmove off
= Done
play Cross A2
-> Cross plays A2

made_move Cross A2←↩ acknowledge
-> Circle=B1,C1,C2,A3,B3,C3
= Done
genmove

have_to_play
= Done

←↩ select_move A3
-> Circle plays A3

made_move Circle A3←↩ acknowledge
-> Cross=B1,C1,C2,B3,C3
undo
-> Undoing a move

undone_move←↩ acknowledge
-> Circle=B1,C1,C2,A3,B3,C3
= Done
...

Figure 1: GGTP part of sample play.

Notes in Computer Science, pages 132–142. Springer,
2005.

[Beasley, 2008] John D. Beasley. Solitaire: Recent develop-
ments. CoRR, abs/0811.0851, 2008.

[Botea et al., 2002] Adi Botea, Martin Müller 0003, and
Jonathan Schaeffer. Using abstraction for planning in
sokoban. In Schaeffer et al. [2003], pages 360–375.

[Bouzy and Helmstetter, 2003] Bruno Bouzy and Bernard
Helmstetter. Monte-carlo go developments. In H. Jaap
van den Herik, Hiroyuki Iida, and Ernst A. Heinz, editors,
ACG, volume 263 of IFIP, pages 159–174. Kluwer, 2003.

[Buro and Ðurd̄anović, 2002] Michael Buro and Igor
Ðurd̄anović. An overview of neci’s generic game server.
2002. http://www.cs.ualberta.ca/ mburo/ps/ggs.pdf.

[Buro, 2002] Michael Buro. Orts: A hack-free rts game en-
vironment. In Schaeffer et al. [2003], pages 280–291.

[Cazenave, 2006] Tristan Cazenave. A phantom-go pro-
gram. In van den Herik et al. [2006], pages 120–125.

[Ciancarini and Favini, 2007] Paolo Ciancarini and
Gian Piero Favini. Representing kriegspiel states
with metapositions. In Manuela M. Veloso, editor, IJCAI,
pages 2450–2455, 2007.

[Cooper et al., 2004] Nicholas Cooper, Aaron Keatley,
Maria Dahlquist, Simon Mann, Hannah Slay, Joanne
Zucco, Ross Smith, and Bruce H. Thomas. Augmented
reality chinese checkers. In Advances in Computer
Entertainment Technology, pages 117–126. ACM, 2004.

[Farnebäck, 2002] Gunnar Farnebäck. Specification of
the go text protocol, version 2. Technical report,
http://www.lysator.liu.se/ gunnar/gtp, October 2002.

[Fernández and Salmerón, 2008] Antonio Fernández and
Antonio Salmerón. Bayeschess: A computer chess
program based on bayesian networks. Pattern Recognition
Letters, 29(8):1154–1159, 2008.

[Fernau et al., 2003] Henning Fernau, Torben Hagerup,
Naomi Nishimura, Prabhakar Ragde, and Klaus Reinhardt.
On the parameterized complexity of the generalized rush
hour puzzle. In CCCG, pages 6–9, 2003.

[Finnsson and Björnsson, 2008] Hilmar Finnsson and Yngvi
Björnsson. Simulation-based approach to general game
playing. In AAAI, pages 259–264, 2008.

[Galatti et al., 2005] John Galatti, Sung-Hyuk Cha,
Michael L. Gargano, and Charles C. Tappert. Ap-
plying artificial intelligence techniques to problems of
incomplete information: Optimizing bidding in the game
of bridge. In Hamid R. Arabnia and Rose Joshua, editors,
IC-AI, pages 385–392. CSREA Press, 2005.

[Geem, 2007] Zong Woo Geem. Harmony search algorithm
for solving sudoku. In Bruno Apolloni, Robert J. Howlett,
and Lakhmi C. Jain, editors, KES (1), volume 4692 of Lec-
ture Notes in Computer Science, pages 371–378. Springer,
2007.

[Gilpin and Sandholm, 2007] Andrew Gilpin and Tuomas
Sandholm. Better automated abstraction techniques for

imperfect information games, with application to texas
hold’em poker. In Edmund H. Durfee, Makoto Yokoo,
Michael N. Huhns, and Onn Shehory, editors, AAMAS,
page 192. IFAAMAS, 2007.

[Glenn et al., 2008] James Glenn, Haw ren Fang, and
Clyde P. Kruskal. A retrograde approximation algorithm
for multi-player can’t stop. In van den Herik et al. [2008],
pages 252–263.

[Henderson and Hayward, 2008] Philip Henderson and
Ryan B. Hayward. Probing the 4-3-2 edge template in
hex. In van den Herik et al. [2008], pages 229–240.

[Hollosi, 2002] Arno Hollosi. Xgf - an xml game format.
2002. http://www.red-bean.com/sgf/xml/.

[Hollosi, 2006] Arno Hollosi. Sgf file format. 2006.
http://www.red-bean.com/sgf/.

[Iida et al., 2004] Hiroyuki Iida, Kazutoshi Takahara, Jun
Nagashima, Yoichiro Kajihara, and Tsuyoshi Hashimoto.
An application of game-refinement theory to mah jong. In
Matthias Rauterberg, editor, ICEC, volume 3166 of Lec-
ture Notes in Computer Science, pages 333–338. Springer,
2004.

[Ísleifsdóttir and Björnsson, 2008] Jónheidur Ísleifsdóttir
and Yngvi Björnsson. Gtq: A language and tool for game-
tree analysis. In Computers and Games, volume 5131
of Lecture Notes in Computer Science, pages 217–228.
Springer, 2008.

[Khan et al., 2008] Gul Muhammad Khan, Julian Francis
Miller, and David M. Halliday. Coevolution of neuro-
developmental programs that play checkers. In Gregory
Hornby, Lukás Sekanina, and Pauline C. Haddow, editors,
ICES, volume 5216 of Lecture Notes in Computer Science,
pages 352–361. Springer, 2008.

[Kupferschmid and Helmert, 2006] Sebastian Kupferschmid
and Malte Helmert. A skat player based on monte-carlo
simulation. In H. Jaap van den Herik, Paolo Ciancarini,
and H. H. L. M. Donkers, editors, Computers and Games,
volume 4630 of Lecture Notes in Computer Science, pages
135–147. Springer, 2006.

[Lefler and Mallett, 2002] Mark Lefler and Jeff Mallett. Zil-
lions of games, 2002. http://www.zillions-of-games.com.

[Love et al., 2008] Nathaniel Love, Timothy Hin-
richs, David Haley, Eric Schkufza, and Michael
Genesereth. General game playing: Game
description language specification. 2008.
http://games.stanford.edu/language/spec/gdl_spec_2008_03.pdf.

[Ontañón et al., 2007] Santiago Ontañón, Kinshuk Mishra,
Neha Sugandh, and Ashwin Ram. Case-based planning
and execution for real-time strategy games. In Rosina We-
ber and Michael M. Richter, editors, ICCBR, volume 4626
of Lecture Notes in Computer Science, pages 164–178.
Springer, 2007.

[Pell, 1994] Barney Pell. A strategic metagame player for
general chesslike games. In AAAI, pages 1378–1385,
1994.

[Quenault and Cazenave, June 2007] Michel Quenault and
Tristan Cazenave. Extended general gaming model. In
CGW 2007, pages 195–204, June 2007.

[Santana et al., 2004] Hugo Santana, Geber Ramalho, Vin-
cent Corruble, and Bohdana Ratitch. Multi-agent pa-
trolling with reinforcement learning. In AAMAS, pages
1122–1129. IEEE Computer Society, 2004.

[Schaeffer et al., 2003] Jonathan Schaeffer, Martin Müller
0003, and Yngvi Björnsson, editors. Computers and
Games, Third International Conference, CG 2002, Ed-
monton, Canada, July 25-27, 2002, Revised Papers, vol-
ume 2883 of Lecture Notes in Computer Science. Springer,
2003.

[Schaeffer et al., 2007] Jonathan Schaeffer, Neil Burch, Yn-
gvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is solved.
Science, 317:1518–1522, 2007.

[Schiffel and Thielscher, 2007] Stephan Schiffel and
Michael Thielscher. Fluxplayer: A successful general
game player. In AAAI, pages 1191–1196, 2007.

[Soeda et al., 2006] Shunsuke Soeda, Tomoyuki Kaneko,
and Tetsuro Tanaka. Dual lambda search and shogi
endgames. In van den Herik et al. [2006], pages 126–139.

[van den Herik et al., 2006] H. Jaap van den Herik, Shun
chin Hsu, Tsan sheng Hsu, and H. H. L. M. Donkers, ed-
itors. Advances in Computer Games, 11th International
Conference, ACG 2005, Taipei, Taiwan, September 6-9,
2005. Revised Papers, volume 4250 of Lecture Notes in
Computer Science. Springer, 2006.

[van den Herik et al., 2008] H. Jaap van den Herik, Xinhe
Xu, Zongmin Ma, and Mark H. M. Winands, editors.
Computers and Games, 6th International Conference, CG
2008, Beijing, China, September 29 - October 1, 2008.
Proceedings, volume 5131 of Lecture Notes in Computer
Science. Springer, 2008.

