A Problem Library for Computer Go

Tristan Cazenave
Labo IA, Université Paris 8
cazenave(@ai.univ-paris8.fr

Abstract

We propose to renew the interest for problem
libraries in computer Go. The field lacks a free
and open library of problems. The level and
the comparison of programs may well benefit
of such a library, and the scientific papers
published about computer Go could also
benefit from an open and publicly recognized
problem library. We analyze the problem
related to empirical methods in computer Go,
and we propose some improvements to the
current ways of dealing with evaluation of
programs.

1 Introduction

We advocate for an open problem library in computer Go,
its use for giving information on programs performance and
validate experiments, as well as the joint elaboration of such
a library by computer Go researchers.

We do not claim to have a complete and perfect
benchmark for computer Go. Instead we try to establish a
viable one, and we try to support the use of such a
benchmark in computer Go.

The second section introduces computer Go and describes
the work related to problem libraries for computer Go. The
third section supports the claim that it is a good idea to try to
establish a problem library for computer Go. The fourth
section deals with what should be tested in such a library.
The fifth section gives hints on practical problems related to
the use of a problem library in computer Go.

2 Related work

2.1 Computer Go
The game of Go is an old Chinese game, very popular in

Tristan Cazenave, Dept Informatique, 2 rue de la Liberté,
93526 St Denis Cedex, France.
http://www.ai.univ-paris8.fr/~cazenave/

Tel: 331494064 04 Fax: 331494064 10

Korea, Japan and China. Humans have acquired a lot of
knowledge on Go during its long history (to give and idea of
the amount of human experience accumulated over time, we
can cite Chinese historians who often write that Yao, a semi-
mythical emperor of the 23™ century BC invented Go in
order to instruct his son Dan Zhu [Fairbain 1995]). Go is a
perfect information game between two players: Black and
White. A Go board consists of a 19x19 grid, empty at the
beginning of the game. The average number of possible
moves on a Go board is 250, and games easily last for 200
moves. Therefore a brute force combinatorial approach is
not relevant for computerizing the game of Go. Instead,
strategic knowledge and goal directed selective search are
best suited to the game. Go programs are still very weak
compared to humans. The best Go program is officially
ranked 9 Korean kyu, the best Go player is 9 dan. It means
that the best Go players can let the program play the first 17
moves in a row and still win. The main reason for this
weakness is that there is no simple algorithm that can handle
all the intricacies and the combinatorial explosion of the
game. Building a Go program demands some work on quite
different aspects of the game. It is often said that a Go
program is as weak as its weakest part. The problem is that
there are many difficult parts that have to be done well to
have an average Go program. Different specialized searches
are usually used to compute the different sub-goals of the
game. Such specialized sub-goals are for example: capture
(removing the opponent stones of the board), connection
(linking two stones by a path of neighboring stones of the
same color), life and death (living is ensuring that a set of
stones can never be captured), and semeais (a race to capture
between two neighboring sets of stones, the issue is often
that one set ends alive and the other captured).

The world of computer Go is dominated by tournaments
where programs play against other programs. Some
international competitions between programs are organized
every year: the computer Goe Ing cup, the Korean Garosu
cup, the American 21* century cup, or the European
computer Go tournament. A possible test methodology that
could be established for programs could be for instance to
play many games against a fixed version of gnugo [Gnugo
2001], for example gnugo2.6. This is quite easy using the
standard Go Modem Protocol. However, it may not be the
best test for a program. It often happens in competitions that
program A beats program B, program B beats program C,



and program C beats program A because each program has
its specific weaknesses and strong points, and the outcome
of a game depends of a large numbers of factors. So
establishing a freely available program such as gnugo as a
source of experiments is not the best way to have a good
performance measure for programs (even if it still gives
valuable information). For example gnugo2.6 is quite weak
at life and death of groups, so some programs that are also
weak at life and death but better in another domain could
win over gnugo. However, when opposed to a program
strong at life and death, the results would be different.
Whereas a well balanced problem library could find the
strong points and weaknesses of a program. Moreover, a
well balanced test library is easier to build than a well
balanced and strong Go program. Competitions on the tests
suites could be organized as side events of the program to
program competitions. There are many recognized
tournament for programs, but there is not yet a well
recognized test base : this is an important point to improve
program performance, and also the scientific study of
computer Go...

2.2 Computer Go Problem Libraries

The first proposal for a test base for computer Go I am
aware of (and the only one) is a paper by M. Miiller [Miiller
1991]. All the arguments in favor of such a base given in this
paper are still valid today. It has been followed by the online
test base associated to M. Miiller's PhD. Thesis [Miiller
1995], and the format has been extended the same year to
take other kind of problems into account [Cazenave &
Miiller 1995]. This work is a good base to build on, and I
will advocate for a more frequent use of problem libraries in
computer Go, and for an extension of the problems covered
by such libraries.

Gnugo has a weak form of problem library, it uses
regression testing on some games by giving three possible
values to a move : Good, OK or Bad. It would be fine to
involve the Gnugo people in the construction of a more
elaborate open problem library.

Thomas Wolf proposes 40.000 problems automatically
generated by GoTools [Wolf 2000], but many of them are
quite artificial and do not represent well the typical problems
a program has to face within a real game. Another obstacle
to their wide use, is that the problems cannot be distributed
freely. In contrast, D. Fotland recently gave in a computer
format the problems in Wolf's paper and asked Go
programmers to test their programs on them. We would like
to generalize such good manners.

Creating a problem library could improve the evaluation
of the myriad of algorithms developed for computer Go. The
hard work made by some Go programmers is sometime not
well deserved by the experiments they choose. Recently
some programmers reported interesting work, but test their
programs using what we think to be bad benchmarks [Ricaud
1997, Tajima & Sanechika 2000]. Problem libraries where

the program has to order three, four or five pre-selected
moves are not very convincing tests. A very simple program
choosing a random order between the moves can be ranked 9
kyus or even better according to such methods. Of course,
the Go programs tested on such test suites have a real
knowledge of Go, but their evaluation is biased by the
inadequacy of the test.

Other attempts to create test suites where tried in Chess
[Kopec & Bratko 1982]. But test suites have to be carefully
built. According to computer Chess experts, there are many
examples from Chess where programs perform well on test
suites, but quite differently in practice. For example it is
possible for the test suite to be biased, having many
examples that illustrate the same fundamental point. This
issue of the balance of the test suite has also to be taken into
account in a Go related test suite. The problems by Kano
[Kano 1985a,b, 1987] are a well balanced test suite,
unfortunately, they are copyrighted, which prevents from
distributing them freely.

3 Why?

In this section, we give arguments in favor of a publicly
available Go problem library.

The everyday work of the full-time programmers of the
best go programs is roughly:

1. Make the program play against another one,

2. find the worst move,

3. correct it,

4. goto 1.

One argument in favor of a standard test suite is to save
the time lost analyzing games, but this is not the main point
of a test suite as it is always beneficial to analyze one's
program games. More important is the problem of finding
many of the relevant positions where the program fails to
play the right and obvious move. Some of these positions
might not appear when testing the program against weak
opponents or against other programs, however it is quite
important to handle them well as it gives a large advantage
to the programs that consistently handles many of them.
Much of the time of the Go programmers is used to find such
positions where programs fail to see a relatively simple but
important move. Archiving them in a problem library will
help programmers improve the level of programs at a faster
pace.

The usual way to test a program is to make it play against
a fixed version of the same or of another program. However,
there are so many things to improve in a Go program that it
can be discouraging to test against another computer
opponent, as the changes made, even when they are positive,
may not have an immediate impact on the results. From a
psychological point of view, it is important for a
programmer to see that his program is improving when he
works on it. Having a meaningful and relatively fast measure
of strength would help some programmers.



A good test bench for Go programs are the books by Kano
[Kano 1985a,b,1987] because they provide a quite extensive
set of examples of frequently occurring tactical Go
problems. However, these examples are copyrighted, so they
cannot be used as an open benchmark for Go programs.
Each time a Go programmer wants to use this benchmark, he
has to buy the book and then enter by hand in his computer
the hundreds of problems. This is clearly a large waste of
time.

Another point is that it is sometime too complicated to
describe all the parts of a Go program. Giving the detailed
result of a program on a benchmark may give more
information on the strength and weaknesses of a program
than a general written overview of the program. Even the
author can gain some knowledge out of this kind of test and
realize that other programs handle well some cases where his
program is bad. The potential problem with strong Go
programs is that they are commercial programs, and that
their authors are not willing to give information on how they
work. They acquired the hard way the information on the
sub-games of Go that can be analyzed and programmed.
However, they do not give vital information on their
program when giving their performances on a problem
library, much less information than when they uncover a
well hidden secret. This information on problem solving
performance is still useful for them to publicly claim that
their program is the best on some points, while the other
programmers are happy to know the state of the art on the
same point and to measure the distance between their
program and the best one.

Other researchers dealing with various search algorithms
have similar problems [Gent & al. 1997] [Kaindl & Kainz
1999] evaluating their algorithms. The good side of the
game of Go is that programs can play against each other to
find the best one. The bad side is that due to the competition,
knowledge is often not shared among programmers. A
problem library is a middle way, where programmers might
accept to share some information, and could also check their
algorithms on more or less standard pitfalls.

From a research point of view, an interesting research
issue is the Meta-Knowledge used when developing a large
software project based on a lot of knowledge [Menzies
1999]. This is typically the case when developing a Go
program. Such concerns as initial acquisition of knowledge,
better testing and better maintenance [Menzies 1998]
naturally arise. Analyzing the development and the
usefulness of a Go problem library for the development of a
Go program with a knowledge engineering approach might
give interesting results. A related study can be found in
[Kierulf & al. 1990].

4 What?

In this section, we focus on the problems related to the
selection of experiments.

Recently a nice approach to static analysis of life and
death has been published [Chen & Chen 1999]. The authors
detailed a number of cases where the life and death of a
group can be determined statically. Every cases should be
covered by at least one problem in a life and death test base.
A life and death test base should also contain all the problem
mentioned by T. Wolf in his paper [Wolf 2000]. Other
simple problems should also be included to check that
programs avoid obviously bad moves, and find obviously
good ones.

The same kind of case by case analysis would be worthy
for other sub-games of the game of Go, such as semeais,
capture, connection etc... Here again, each case should be
covered by at least one problem.

Some of the problems are mandatory because they are the
typical example of an important class of problems. Some
other are non-mandatory ones as they cover situations that
do not often appears in real games...

Another important issue in the development of a Go
program is the creation of a regression test : when the author
makes a change in a program in order to play a good move
in a position, this change should not make the program play
a bad move in another already debugged position. So the
good way to make incremental changes to a program is to
memorize all the positions where a bug or a wrong move has
been corrected and run the test for all the positions once a
new bug has been corrected. Given the complexity of Go, it
is very likely that a programmer that does not use this
methodology performs circles in the space of Go programs:
it often happens that fixing a bad behavior in a position
unfixes a previous change. One counter measure is to use
theorem proving so as to ensure that once a thing is added, it
cannot give false results anymore. The good news is that by
proving theorems at the tactical level, programs can also get
better and smarter [Cazenave 2000,2001a]. However, it is
not always possible to rely on theorem proving, especially at
the strategic level or when tactical positions are inter-related.
Even when using theorem proving, test libraries can be used
to improve it by detecting the missing knowledge in some
situations. It would be nice that author of Go programs
exchange their regression test libraries (some of them are
composed of more than 10.000 positions...).

There are different types of Go problems, some programs
excel in some parts and have practically no knowledge of
some other parts:

- Escape/Capture problems

- Connect/Cut problems

- Eye/Remove Eye problems

- Life/Death problems

- Semeai problems

- Endgame problems

- Fuzeki problems (openings)

- Obvious moves problems

- Bad moves problems

- Professional moves problems



- Influence and Moyos problems

- Double Threat problems

- Problems illustrating strategic concepts such as miai,

aji, kikashi, yosu-miru...

- Small board problems

- and some more...

We also propose to extend the format to take into account
all these goals and possibly others. For example, we build on
the accepted internet standard for Go programs: the SGF
standard. However, there is no standard notation for defining
a problem. We have defined one, as an extension of the
previous attempt [Cazenave & Miiller 1995]. It includes new
statements to take into account moves that do not reach
directly any given goal, but that threatens two goals, and will
reach at least one of them as the opponent will protect the
other. The double atari move is the most simple example of
such moves (atari means only one empty neighboring
intersection left, it is a threat to capture the stone). We
introduce the predicate move(db):captureOneString(cb,dc)
in our problems to denote that the move in cc capture one of
the two strings in cb or dc (see figure 1). A more complete
definition of the new predicate we introduce can be found on
our web site [Cazenave 2001b].

Fig. 1: Black at A is a double atari

Another issue is the creation of a web interface to enable
people to enter problems and test themselves the problems
by playing online against a program, such as for the
GoTools applet [Vesinet & Wolf 2001]. An advantage of a
web based Go program is debugging: allowing people to
submit error reports, and therefore saving the programmer's
time. Another possibility for an online program, is to
automatically detect important missing knowledge by
selecting games that were lost by large margins. Playing
games against humans is important in computer Go because
programs never refutes some moves as they are too weak to
do so. Such an interface would also facilitate the comparison
with human problem solving abilities, which are still better
than that of computers in Go [Macfadyen 2000]. However,
on some relatively well defined and localized problems,
humans can be out performed [Wolf 2000]. Following the
published results of Wolf, some Go programmers tested the
64 published problems in their programs, it would be nice to
know the relative programs strengths for other kinds of
problems.

We propose a basis for a problem library [Cazenave
2001b], which will be extended regularly. We hope enough
Go programmers will be interested to enhance it and make it

alive proposing new problems, revising the current ones,
testing their programs with them and sharing the results.

5 Practical Problems

There are many practical problems related to the effective
organization of such a competition. First, as we said before,
all the programs should be able to understand the format of
the problems. Second, some choices have to be made to fix
the rules of the competition: do we set a limited time for all
the tests, a limited time for each test, or a penalty associated
to the time taken to solve the problems? How to choose the
problems in the test suite, and how to weight the relative
importance of the problems in the final evaluation of the
program? Maybe it is better to separate the competition into
well defined sub-competitions such as a life and death
competition, a semeai competition and so on, letting
programmers enter the competitions they choose? All these
questions and many others should be debated between Go
programmers, and advice from people used to organize
similar competitions is particularly welcome.

Reports on other experiences in organizing such
competitions based on search problems such as SAT [Hoos
& Stiitzle 2000], TPTP [Sutcliffe & Suttner 2001] and
CSPLib [Gent, Walsh & Selman 2001] can help us. The
knowledge of the usual pitfalls and remedies of such
competitions may be re-used to avoid them in a new one of a
similar style.

Competitions on the problem library could be organized
during some of the international programs competitions. Of
course, some people could be tempted to add very specific
knowledge in their program to perform well at the standard
test set, and still have very weak Go programs. A possible
remedy would be to create a new small but well balanced
test suite for each competition. However, it is more
important to keep in mind that the problem library do not
replace the program to program confrontation, it should only
be considered as a tool to have a reliable and fast evaluation
of a program strength, as well as an help to debug Go
programs. It is a facility for the correct evaluation of Go
programs rather than a goal in itself.

6 Conclusion

Another idea that I did not developed is to make Go
programs automatically play against each other on an
internet based server. Many programs are already present on
Go servers, but there is not yet an automatic program that
make them play each other on a regular and frequent basis.

It would be a good idea for computer Go tournament
organizers to reserve a little prize for the programs that
perform best on a carefully chosen test suite. Provided that
the format of the problems are well recognized and that
some programs are able to read it. We propose guidelines to



establish such a format, and already provide a first computer
Go problem library following this format [Cazenave 2001b].
All the good programs come to the high prized tournaments,
and we think that it will contribute to improve the general
level of Go programs to create such a problem-based
competition.

References

[Cazenave & Miiller 1995] Cazenave T., Miiller M.:
Extending the sgf format to handle automatic program
testing.
http://web.cs.ualberta.ca/~mmueller/cgo/readmenew.html.

[Cazenave 2000] Cazenave T.: Abstract Proof Search.
Proceedings of CG2000. To be published in LNCS 2001.

[Cazenave 2001a] Cazenave T.: Iterative Widening.
Proceedings of IJCAI-01, Seattle 2001.

[Cazenave 2001b] Cazenave T.: Golib. http://www.ai.univ-
paris8.fr/~cazenave/Golib.html.

[Chen & Chen 1999] K. Chen, Z. Chen, Static analysis of
life and death in the game of Go, Information Sciences,
121, (1-2), (1999), pp. 113-134.

[Fairbain 1995] Fairbain J.: Go in ancient China. London,
1995.

[Gent & al. 1997] Gent I.P., Grant S. A., MaclIntyre E.,
Prosser P., Shaw P., Smith B. M., Walsh T.: How Not To
Do It. Report 97.27, University of Leeds.

[Gent, Walsh & Selman 2001] Gent 1.P., Walsh T., Selman
B.: CSPLib: a problem library for constraints.
http://www-users.cs.york.ac.uk/~tw/csplib/

[GnuGo 2001] http://www.gnu.org/software/gnugo/

[Hoos & Stiitzle 2000] Hoos H. H. , Stiitzle T.: SATLIB -
The Satisfiability Library. http://www.satlib.org/.

[Kaind]l & Kainz 1999] Kaindl H., Kainz G.: Guidelines for
the Experimental Comparison of Search Algorithms.
1JCAI-99 Workshop on Empirical Al, Stockholm, 1999.

[Kano 1985a] Kano Y.: Graded Go Problems For Beginners.
Volume One. The Nihon Ki-in. ISBN 4-8182-0228-2
C2376. 1985.

[Kano 1985b] Kano Y.: Graded Go Problems For
Beginners. Volume Two. The Nihon Ki-in. ISBN 4-
906574-47-5. 1985.

[Kano 1987] Kano Y.: Graded Go Problems For Beginners.
Volume Three. The Nihon Ki-in. ISBN 4-8182-0230-4.
1987.

[Kierulf & al. 1990] Kierulf, A., Chen, K., and Nievergelt,
J.: Smart game board and Go Explorer: a study in
software and knowledge engineering. Communications of
the ACM, 33(2):152 - 167, February 1990.

[Kopec & Bratko 1982] Kopec D., Bratko I.: The Bratko-
Kopec Experiment: A Comparison of Human and
Computer Performance in Chess. In Advances in
Computer Chess 3. Clarke M. R. B. (ed.). Pergamon
Press Oxford, 1982.

[Macfadyen 2000] Macfadyen M.: What Grade are
Problems for? http://www.jklmn.demon.co.uk/gradprob.ht
ml

[Menzies 1998] Menzies T.: Evaluation Issues for Problem
Solving Methods, T.J. Menzies, Banff Knowledge
Acquisition workshop, 1998.

[Menzies 1999] Menzies T.: Knowledge Maintenance: The
State of the Art, , The Knowledge Engineering Review,
14, 1, pages 1-46

[Miiller 1991] Miiller M.: Measuring the performance of Go
programs. In International Go Congress, Beijing. 1991.

[Miiller 1995] Miiller M.: Computer Go Test Collection.
http://web.cs.ualberta.ca/~mmueller/cgo/cgtc.html.

[Ricaud 1997] P. Ricaud, A Model of Strategy for the Game
of Go Using Abstraction Mechanisms, in: Proceedings
IJCATI’97, 1997, pp. 678-683.

[Sutcliffe & Suttner 2001] Sutcliffe G., Suttner C.: The
TPTP Problem Library for Automated Theorem Proving.
http://www.cs.jcu.edu.au/~tptp/

[Tajima & Sanechika 2000] Tajima, M. and Sanechika, N.:
An Improvement of the Method on the Strategic Placing
of Stones Based on the Possible Omission Number, IPSJ
SIG Notes, Vol.2000, No.98, pp.85-94 (2000).

[Vesinet & Wolf 2001] Vesinet J.P., Wolf T.:
http://lie.maths.qmw.ac.uk/GoToolsApplet.html

[Wolf 2000] Wolf T.: Forward pruning and other heuristic
search techniques in tsume go, Information Sciences, 122,
(2000), pp. 59-76.



