
Randomized Greedy Sampling for JSSP

Henrik Abgaryan, Ararat Harutyunyan, and Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. The job shop scheduling problem (JSSP) is a fundamental challenge
in the field of operations research and manufacturing, representing the task of op-
timally assigning a set of jobs to a limited number of machines to optimize one or
more objectives, such as minimizing the total processing time or reducing the de-
lay of jobs. In recent years, AI-driven methods have introduced new approaches to
solving the JSSP. Continuous exploration in deep reinforcement learning (DRL)
is currently concentrated on refining strategies to address the JSSP. Established
DRL techniques mostly focus on better modeling and training of the Policy net-
works for solving JSSP problems. This paper explores the utilization of Policy
networks in search algorithms. We propose two novel algorithms, Random Sec-
ond Greedy Choice (RSGC) and Greedy Sampling (GS). RSGC and GS employ
a randomized approach to consider alternative paths, deviating from the primary
heuristic, while adjusting the probability of selecting these paths dynamically
during the search process. Through experimentation, we show the effectiveness
of the proposed algorithms in comparison to the usual greedy first choice infer-
ence technique and the usual sampling method.

Keywords: Job Shop Scheduling, RSGC, GS, GNN, reinforcement learning, limited
discrepancy search, sampling, search algorithms

1 Introduction

The job shop scheduling problem (JSSP) stands as a pivotal challenge in operations re-
search and manufacturing [9]. This problem entails a set of jobs, each bound by specific
processing rules (like the sequential use of assigned machines), across a variety of ma-
chines. The aim here is to optimize certain parameters such as the overall completion
time, workflow duration, or delay minimization.

It is proved that for JSSP instances having more than 2 machines is NP-hard [10].
Therefore, deriving precise solutions for JSSP is generally unfeasible, thereby making
heuristic and approximate strategies more common for practical efficiency [6]. Tradi-
tional approaches to this problem have predominantly relied on search and inference
techniques developed by the constraint programming community [1]. These techniques
effectively utilize constraints to define the relationships and limitations between jobs
and resources, thus enabling efficient exploration of feasible solution spaces and the
identification of optimal or near-optimal schedules [13]. Another common technique
is the Priority dispatching rule (PDR). It is a heuristic method that is widely used in
real-world scheduling systems [17]. However, designing an effective PDR is very time-
consuming, it requires solid domain knowledge for complex JSSP problems. Another

2

approach for finding suboptimal solutions is through the help of Deep Learning and
Neural Networks [3], [18]. The method based on learning can generally be categorized
into two paradigms: supervised learning and reinforcement learning (RL). Ongoing re-
search in deep reinforcement learning (DRL) is actively focused on developing new
and improved methods to tackle the JSSP. Existing DRL methods represent Job Shop
Scheduling Problem (JSSP) as a Markov decision process (MDP) and then learn the
Policy network based on DRL. The prevailing trend leans towards refining policy net-
works or MDP formulation to generate better solutions. However, the exploration of
effective search methods on top of the policy networks decisions and the integration of
alternative strategies such as tree search, have received less attention. This indicates a
potential area for further research.

In this paper, we present two search algorithms RSGC, GS, provided by pretrained
Policy network inspired by [11] that utilize the categorical distribution of the pretrained
Policy network to find a solution to JSSP problem. In order to check the effectiveness
of the proposed search methods, we have experimented on 2 public test datasets: TA
dataset [15], and DMU dataset [7]. Then we compare the results of RSGC and GS to
the usual sampling algorithm and the current state-of-the-art results [18].

2 Related Work

The success of Deep Reinforcement Learning (DRL) represents a significant advance-
ment in the field of artificial intelligence. Generally, DRL combines the principles of
deep learning and reinforcement learning, enabling computers to learn complex behav-
iors by interacting with an environment and optimizing actions based on feedback.

In [12] the authors utilized deep Q-network (DQN) to solve a JSSP in semicon-
ductor manufacturing plant. In [18], a new method using Deep Reinforcement Learn-
ing (DRL) is introduced to develop effective Priority Dispatching Rules (PDRs) for
the Job Shop Scheduling Problem (JSSP). The approach involves formulating an MDP
(Markov Decision Process) for PDR-oriented scheduling. This method utilizes a dis-
junctive graph representation of JSSP to capture the states, efficiently integrating oper-
ation dependencies and machine statuses for informed scheduling decisions. Addition-
ally, the paper uses a Graph Isomorphism Network (GIN) strategy that efficiently en-
codes disjunctive graph nodes into fixed-dimensional embeddings. On top of the these
embeddings the authors utilized Proximal Policy Optimization (PPO) algorithm [14] to
train Policy network. [16] introduces a new approach for solving JSSP with DRL. It
addresses the deficiencies in state representation, adding more features. This approach
also models JSSP as a Markov decision process, employing a new state representation
based on bidirectional scheduling. This representation allows the agent to capture more
effective state information and avoid the issue of multiple optimal action selections.
They also utilize the technique of Invalid Action Masking (IAM), which narrows the
search space, steering the agent away from sub-optimal solutions.

Current methods are mostly based on modeling state representation and the archi-
tecture of the models. There are very few papers that use sampling or search algorithms
on top of policy network to solve JSSP. A widely recognized strategy is to facilitate
the step-by-step development of solutions to JSSP problems, guided by a single-shot

Randomized Greedy Sampling for JSSP 3

(greedy) policy derived from a neural network, as documented in sources like [18] and
[16]. These methods primarily concentrate on developing robust policy network models,
aiming to elevate the quality of solutions generated in a single iteration as close to the
optimal as possible. However, there is a noticeable scarcity of studies dedicated to find-
ing effective inference methods for neural JSSP. In addition to designing and training
high-quality policy networks, devising an effective inference strategy is equally crucial
to maximize the quality of solutions within a specified time budget. In contrast, neural
construction methods focus on generating solutions by sampling from the neural net-
work’s output probability distributions, a technique highlighted in studies such as [2].
An alternative approach to sampling is the use of Monte-Carlo Tree Search (MCTS) [4],
and its variants [5]. These methods create partial solutions within a search tree using
rollouts. MCTS, requires a lot of resources and long running time. Beam search rep-
resents another method used in combinatorial optimization problems [8]. Nevertheless,
beam search operates on a greedy algorithm, which unconditionally adheres to the neu-
ral network’s predictions, regardless of their accuracy. Like MCTS, Beam search also
requires a lot of resources and long running time. Another approach called Limited Dis-
crepancy Search (LDS) incorporates the idea of deviating from the main heuristic and
sometimes selecting less promising choices [11]. It is based on the idea that sometimes,
choosing solutions that don’t initially seem promising might actually lead to better re-
sults. This approach acknowledges that the most obvious choice is not always the best
one.

In developing our approach, we focus on a key strategy: introducing variations to the
primary heuristic, specifically diverging from the initial greedy choice recommended by
the policy network. This strategy lays the groundwork for our newly designed proba-
bilistic sampling algorithms. The essence of these algorithms lies in the smart utilization
of the Policy network’s probability distribution also incorporating a measure of random-
ness to enrich decision-making processes. By integrating randomness at the beginning
of our algorithm, it diverges from conventional deterministic methods, offering a nu-
anced way to explore the search space. It harnesses the robustness of greedy strategies
while mitigating their inherent limitations through calculated randomness. This hybrid
approach aims to strike a balance between the exploration and exploitation, optimizing
the search process.

3 Preliminary

The Job-Shop Scheduling Problem (JSSP) is formally defined as a problem involving
a set of jobs J and a set of machines M . The size of the JSSP problem instance is
described as N_J × N_M , where N_J represents the number of jobs and N_M the
number of machines. For each job Ji ∈ J , it must be processed through ni machines in
a specified order Oi1 → . . . → Oini , where each Oij (for 1 ≤ j ≤ ni) represents
an operation of Ji with a processing time pij ∈ N. This sequence also includes a
precedence constraint. Each machine can process only one job at a time, and switching
jobs mid-operation is not allowed. The objective of solving a JSSP is to determine a
schedule, that is, a start time Sij for each operation Oij , to minimize the makespan

4

Cmax = maxi,j{Cij = Sij + pij} while meeting all constraints. The complexity of a
JSSP instance is given by N_J ×N_M .

Furthermore, a JSSP instance can be represented through a disjunctive graph, a con-
cept well-established in the literature [18]. Let O = {Oij |∀i, j} ∪ {S, T} represent the
set of all operations, including two dummy operations S and T that denote the start-
ing and ending points with zero processing time. A disjunctive graph G = (O,C,D)
is thus a mixed graph (a graph consisting of both directed edges (arcs) and undirected
edges) with O as its vertex set. Specifically, C comprises of directed arcs (conjunctions)
that represent the precedence constraints between operations within the same job, and
D includes undirected arcs (disjunctions) connecting pairs of operations that require
the same machine. Solving a JSSP is equivalent to determining the direction of each
disjunctive arc such that the resulting graph becomes a Directed Acyclic Graph (DAG)
[18]. Markov Decision Process Formulation (MDP), state representation, action space,
state transition follow the methods described in [18]. An action at ∈ At is an eligible
operation at decision step t. The Policy is a neural network π(at|st) that outputs a dis-
tribution over the actions in At. We use the same 2D raw features as in [18], namely a
binary indicator I(O, st) which equals to 1 only if O is scheduled in st, and an integer
CLB(O, st) which is the lower bound of the estimated time of completion (ETC) of O
in st. The training has been done using Proximal Policy algortihm, which is an actor-
critic algorithm [14]. "Actor" denotes the Policy network, whereas the "critic" is a dis-
tinct network that evaluates the outcomes of the decisions made by the Policy network.
Both the Actor (Policy) network and the Critic network have multilayer perceptron ar-
chitecture. We use the same Graph Isomorphism Network (GIN) as feature extractor,
the Actor and the Critic networks as presented in [18]. GIN extracts feature embeddings
of each node in an iterative and non-linear fashion. Then the Policy network uses these
fixed-size embeddings for outputting a distribution over the actions. The training has
been done on 20x20 training instances for 10000 steps. The training is as described in
[18]. Because the Policy network is based on the fixed-sized embeddings outputted by
the GIN network, it is size-agnostic which enables generalization to instances of differ-
ent sizes without requiring any additional training. During the training we sample the
actions according to the probability distribution outputted by the Policy network. Dur-
ing the inference time we utilize our search algorithms over the probability distribution
outputted by the Policy network.

4 Search Algorithm

Finding the right action at at each state st is a search problem, where the Policy net-
work π(at|st) is used as a heuristic. When the π(at|st) is trained and is ready for the
inference, the usual method is to pick the first greedy choice action at, where at is the
action with the highest probability at the state st, according to the categorical probabil-
ity distribution of π(at|st).

Our approach is slightly different; we formulate the problem of selecting the "cor-
rect" action at at each state st as a search problem. Let us denote by T the binary search
tree. At each node ni of the search tree T there are two options: selecting the action
with the highest probability (the first greedy choice), or another action according to the

Randomized Greedy Sampling for JSSP 5

probability distribution recommended by π(at|st). Then the height of the search tree T
becomes h = N_J ×N_M . At each node ni the approach of [18] is to always choose
the first greedy choice, action at with the highest probability at the state st. However
as described in [11], always following the heuristic, or in our case only the first greedy
choice recommended by π(at|st), might not lead to the best possible solution. We ar-
gue that doing "discrepancies" or deviating from the first greedy choice of π(at|st) can
sometimes be better. In the context of the search trees, a "discrepancy" refers to a devi-
ation from the most preferred or recommended path, typically represented as taking a
right turn in a binary search tree that is organized based on heuristic evaluations (where
the left path is usually considered the default or the more promising direction based
on some criteria). There is a systematic approach of considering all of the paths in a
binary search tree, as described in [11]. This systematic approach allows the search to
first consider paths that are closely aligned with heuristic recommendations, and only
later to explore less recommended paths. But this method can quickly become unfea-
sible when the search tree is large, in our case when the set of jobs J and a set of
machines M is large. Our Algorithm (RSGC) Random Second Greedy Choice with
Decreasing Probability gets inspiration from [11], but it also utilizes randomness. The
pseudo code of our algorithm is presented in Algorithm 1. Our algorithm has two hyper-
parameters Dmin and Dmax, which are the least possible and the most possible second
greedy choices we can make during the search. At each node ni of the search tree T we
compute the probability (based on the hyperparameters) of selecting the second greedy
choice action. At the beginning, the probability of selecting the second greedy choice
action is high. The probability then decreases as we make more and more greedy sec-
ond choices. The greedy_2nd_action_count is the number of second greedy choices
done so far. Initially, total_num_greedy_2nd_action_count is set to Dmin. The full
search is done using this fixed hyperparameter Dmin obtaining the first makespan. Then
we adjust the value of total_num_greedy_2nd_action_count by increasing it by an
amount of 5% of the height h, obtaining the next makespan. We repeat this process
until total_num_greedy_2nd_action_count reaches Dmax . We then choose the best
makespan.

probability_of_2nd_action = 1− greedy_2nd_action_count
total_num_greedy_2nd_action_count

The idea is that it is harder for the policy network to select correct actions at the
beginning of the search, than at the end. Through extensive experimentation, we found
that it is best to start to do around 0.25h second greedy choice actions. We increment
the value of 0.25h by 0.01h for each subsequent iteration until we reach 0.75h (i.e.,
Dmin = 0.25h and Dmax = 0.75h). This methodical approach facilitates a more
effective exploration of options, thereby aiding in the identification of the optimal path
characterized by the minimal completion time (makespan).

We also have a second similar algorithm called Greedy Sampling (GS). In GS
instead of randomly selecting second probable action in line 14 of the Algorithm 1
(RSGC) we randomly sample an action according to the probability distribution rec-
ommended by the policy network π(at|st). Note that this is not the usual sampling
algorithm, as we decide whether we sample or just take the first greedy choice with

6

probability probability_of_2nd_action. In the Experimental section we compare the
results of these two algorithms with the usual sampling algorithm.

Algorithm 1 (RSGC) Random Second Greedy Choice with Decreasing Probability
Require: dataset
Ensure: Results list
1: h← N_J ×N_M
2: Dmin ← integer(0.25× h)
3: Dmax ← integer(0.75× h)
4: Initialize results list
5: for each data in dataset do
6: Initialize best makespan tracking list
7: for total_num_greedy_2nd_action_count in Dmin to Dmax do
8: Reset environment with data
9: Initialize episode reward and greedy_2nd_action_count

10: while not Terminal do
11: categorical_policy_distribution← inference with policy network π(at|st)
12: probability_of_2nd_action = 1− greedy_2nd_action_count

total_num_greedy_2nd_action_count

r ∼ Uniform(0, 1)
13: if r < probability_of_2nd_action then
14: Select the second probable action from categorical_policy_distribution
15: Increment greedy_2nd_action_count
16: else
17: Greedily select the most probable action from categorical_policy_distribution
18: end if
19: Execute the action
20: end while
21: Update best makespan if current makespan is better
22: Record makespan
23: end for
24: Save results for current data instance
25: end for
26: return Results list

5 Experimental Results

In order to show the effectiveness of our searching algorithm, we have conducted ex-
periments on well known TA dataset [15], and DMU dataset [7]. The Policy network
is trained on instances of size N_J = 20 and N_M = 20. We also compare the re-
sults with those of [18]. Each run of our search algorithm makes (Dmax −Dmin)× h
calls to the Policy network, where h = N_J × N_M is the height of the search tree.
During the experiments we have repeated the search algorithms 10 times and noted the
overall minimum and the average makespans on the corresponding tables. We compare
the makespans of (RSGC) Algorithm 1 with Greedy Sampling (Ours-GS). The two al-
gorithms just differ on line 14 of the Algorithm 1, where instead of the Greedy second
choice we randomly sample an action from the probability distribution provided by the

Randomized Greedy Sampling for JSSP 7

pre-trained Policy network. For the Taillard dataset instances 50 × 15, 50 × 20 and
100 × 20 and also for the DMU dataset 40 × 15, 40 × 20, 50 × 15, 50 × 20 we com-
pared the best result of [18], which was inferred with Policy network trained on 30×20
instances. We have also tried to run beam search algorithm, however we had to keep
many copies of the environment, and due to memory constraints it was unfeasible.

5.1 Result on Taillard’s Benchmark Dataset

Table 1: Results on Taillard’s Benchmark (Part I). Ours - RSGC is the result of the Algorithm 1. In
Ours-GS instead of randomly selecting second probable action in line 14 of the Algorithm 1 (RSGC)
we randomly sample an action according to the probability distribution recommended by the policy
network π(at|st). We repeat each experiment 10 times due to the algorithm’s randomness and record
the minimum and the average makespan across the 10 experiment. The "Samp (min)" and the "Samp
(avg)" columns are the results of the usual sampling method. The "UB" column represents the best-
known solutions from literature, with "*" indicating optimal solutions.

Instance L2D Ours-RS (min) Ours-RS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
15x15

Ta01 1443 (17.22%) 1401 (13.81%) 1413.4 (14.79%) 1387 (12.66%) 1403.9 (14.03%) 1444(17.30%) 1448.3(17.65%) 1231*
Ta02 1544 (24.12%) 1404 (12.86%) 1404.0 (12.86%) 1361 (9.40%) 1394 (12.06%) 1447(16.32%) 1462.0(17.52%) 1244*
Ta03 1440 (18.23%) 1420 (16.59%) 1420.6 (16.64%) 1408 (15.60%) 1430.1 (17.40%) 1447(18.80%) 1452.6(19.26%) 1218*
Ta04 1637 (39.32%) 1412 (20.17%) 1412.7 (20.23%) 1423 (21.11%) 1433.8 (22.04%) 1460(24.26%) 1484.0(26.30%) 1175*
Ta05 1619 (32.27%) 1394 (13.89%) 1410.0 (15.20%) 1431 (16.91%) 1435.7 (17.29%) 1437(17.40%) 1448.0(18.30%) 1224*
Ta06 1601 (29.32%) 1392 (12.44%) 1401.8 (13.23%) 1413 (14.12%) 1418.3 (14.55%) 1444(16.64%) 1444.6(16.69%) 1238*
Ta07 1568 (27.79%) 1402 (14.26%) 1411.5 (15.03%) 1384 (12.78%) 1392.3 (13.45%) 1451(18.26%) 1469.0(19.72%) 1227*
Ta08 1468 (20.62%) 1372 (12.73%) 1380.1 (13.39%) 1404 (15.36%) 1406.4 (15.53%) 1425(17.09%) 1427.3(17.28%) 1217*
Ta09 1627 (27.70%) 1483 (16.41%) 1491.4 (17.05%) 1467 (15.15%) 1469.4 (15.34%) 1544(21.19%) 1546.0(21.35%) 1274*
Ta10 1527 (23.04%) 1401 (12.89%) 1419.1 (14.34%) 1437 (15.79%) 1444.4 (16.39%) 1444(16.36%) 1466.6(18.18%) 1241*

20x15
Ta11 1794 (32.19%) 1583 (16.65%) 1622.4 (19.57%) 1617 (19.16%) 1631.1 (20.18%) 1668(22.92%) 1684.1(24.10%) 1357*
Ta12 1805 (32.01%) 1590 (16.31%) 1595.1 (16.68%) 1568 (14.70%) 1573.6 (15.11%) 1658(21.29%) 1665.0(21.80%) 1367*
Ta13 1932 (43.85%) 1628 (21.22%) 1634.5 (21.69%) 1619 (20.55%) 1619.0 (20.55%) 1693(26.06%) 1697.0(26.36%) 1343*
Ta14 1664 (23.72%) 1596 (18.66%) 1600.3 (18.97%) 1604 (19.26%) 1624.7 (20.78%) 1640(21.93%) 1651.1(22.76%) 1345*
Ta15 1730 (29.20%) 1625 (21.36%) 1629.1 (21.65%) 1633 (21.96%) 1640.1 (22.47%) 1690(26.21%) 1694.9(26.58%) 1339*
Ta16 1710 (25.74%) 1613 (18.60%) 1641.6 (20.71%) 1598 (17.50%) 1610.1 (18.39%) 1693(24.49%) 1696.3(24.73%) 1360*
Ta17 1897 (29.75%) 1728 (18.19%) 1728.0 (18.19%) 1735 (18.66%) 1736.5 (18.76%) 1797(22.91%) 1798.0 (22.98%) 1462*
Ta18 1794 (28.51%) 1664 (19.20%) 1667.9 (19.49%) 1675 (20.00%) 1679.0 (20.34%) 1712(22.64%) 1712.3(22.66%) 1396
Ta19 1682 (26.28%) 1591 (19.44%) 1602.2 (20.29%) 1592 (19.52%) 1603.5 (20.39%) 1650(23.87%) 1653.8(24.16%) 1332*
Ta20 1739 (28.97%) 1635 (21.29%) 1635.0 (21.29%) 1628 (20.77%) 1657.7 (22.98%) 1666 (23.59%) 1666.3 (23.61%) 1348*

20x20
Ta21 2252 (37.18%) 1964 (19.61%) 1973.5 (20.18%) 1905 (16.02%) 1914.6 (16.60%) 2021(23.08%), 2044.0(24.48%) 1642*
Ta22 2102 (31.38%) 1887 (17.94%) 1895.7 (18.48%) 1853 (15.81%) 1854.6 (15.91%) 1950(21.88%) 1953.7(22.11%) 1600
Ta23 2085 (33.91%) 1838 (18.05%) 1841.0 (18.24%) 1818 (16.76%) 1822.9 (17.05%) 1902(22.16%) 1918.8(23.24%) 1557
Ta24 2200 (33.82%) 1930 (17.40%) 1931.2 (17.48%) 1907 (16.00%) 1916.2 (16.54%) 1986(20.80%) 2035.3(23.80%) 1644*
Ta25 2201 (38.00%) 1918 (20.25%) 1924.4 (20.65%) 1903 (19.31%) 1904.6 (19.42%) 1997(25.20%) 2002.2(25.53%) 1595
Ta26 2176 (32.44%) 1961 (19.36%) 1970.4 (19.91%) 1918 (16.73%) 1928.9 (17.38%) 2014(22.58%) 2042.2(24.30%) 1643
Ta27 2132 (26.90%) 2019 (20.18%) 2028.8 (20.76%) 2026 (20.60%) 2026.0 (20.60%) 2092(24.52%) 2099.0(24.94%) 1680
Ta28 2146 (33.94%) 1883 (17.47%) 1886.6 (17.68%) 1833 (14.35%) 1841.5 (14.87%) 1947(21.46%) 1954.8(21.95%) 1603*
Ta29 1952 (20.12%) 1885 (16.00%) 1905.8 (17.28%) 1877 (15.51%) 1897.4 (16.76%) 1937(19.20%) 1984.4(22.12%) 1625
Ta30 2035 (28.47%) 1868 (17.93%) 1868.8 (17.98%) 1876 (18.43%) 1892.2 (19.44%) 1927(21.65%) 1934.6(22.13%) 1584

30x15
Ta31 2565 (45.37%) 2115 (19.91%) 2121.0 (20.24%) 2169 (22.94%) 2183.5 (23.81%) 2170(23.02%) 2183.1(23.76%) 1764*
Ta32 2388 (33.87%) 2212 (23.99%) 2212.0 (23.99%) 2230 (24.94%) 2242.1 (25.65%) 2303(29.09%) 2318.0(29.93%) 1784
Ta33 2324 (29.80%) 2204 (23.09%) 2219.0 (23.92%) 2292 (28.03%) 2299.5 (28.45%) 2301(28.48%) 2307.8(28.86%) 1791
Ta34 2332 (27.60%) 2207 (20.75%) 2226.3 (21.81%) 2225 (21.74%) 2225.7 (21.79%) 2250(23.09%) 2262.7(23.78%) 1828*
Ta35 2505 (24.82%) 2250 (12.08%) 2260.5 (12.63%) 2256 (12.39%) 2256.0 (12.39%) 2293(14.25%) 2303.0(14.75%) 2007*
Ta36 2497 (37.31%) 2243 (23.31%) 2252.1 (23.83%) 2253 (23.87%) 2259.1 (24.22%) 2318(27.43%) 2320.6(27.58%) 1819*
Ta37 2325 (31.28%) 2146 (21.20%) 2157.1 (21.79%) 2159 (21.93%) 2168.0 (22.44%) 2181(23.15%) 2213.4(24.98%) 1771*
Ta38 2302 (37.61%) 2046 (22.30%) 2048.6 (22.45%) 2014 (20.38%) 2017.8 (20.63%) 2079(24.27%) 2114.9(26.41%) 1673*
Ta39 2410 (34.26%) 2152 (19.94%) 2152.8 (19.99%) 2160 (20.33%) 2166.8 (20.77%) 2181(21.50%) 2199.7(22.55%) 1795*
Ta40 2140 (28.21%) 2002 (19.95%) 2018.5 (20.93%) 1989 (19.17%) 1989.0 (19.17%) 2067(23.85%) 2083.4(24.83%) 1669

Continued on next page

8

Table 1 continued from previous page
Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB

30x20
Ta41 2667 (33.02%) 2489 (24.14%) 2507.5 (25.06%) 2490 (24.19%) 2496.4 (24.51%) 2540(26.68%) 2568.7(28.11%) 2005
Ta42 2664 (37.53%) 2383 (23.03%) 2383.0 (23.03%) 2358 (21.73%) 2373.1 (22.51%) 2479(27.98%) 2490.3(28.56%) 1937
Ta43 2431 (31.69%) 2347 (27.14%) 2364.8 (28.10%) 2332 (26.33%) 2332.0 (26.33%) 2437(32.02%) 2457.6(33.13%) 1846
Ta44 2714 (37.14%) 2512 (26.93%) 2515.2 (27.09%) 2471 (24.86%) 2482.2 (25.43%) 2590(30.87%) 2595.8(31.17%) 1979
Ta45 2637 (31.85%) 2435 (21.75%) 2440.7 (22.03%) 2380 (19.00%) 2410.8 (20.54%) 2518(25.90%) 2530.5(26.53%) 2000
Ta46 2776 (38.38%) 2523 (25.77%) 2531.7 (26.21%) 2435 (21.39%) 2449.6 (22.11%) 2590(29.11%) 2595.5(29.39%) 2006
Ta47 2476 (31.07%) 2364 (25.15%) 2381.0 (26.05%) 2344 (24.09%) 2354.6 (24.65%) 2418(28.00%) 2429.0(28.59%) 1889
Ta48 2490 (28.55%) 2397 (23.75%) 2401.4 (24.00%) 2339 (20.75%) 2354.3 (21.54%) 2458(26.90%) 2462.9(27.15%) 1937
Ta49 2556 (30.34%) 2362 (20.45%) 2363.8 (20.54%) 2349 (19.79%) 2365.3 (20.62%) 2448(24.83%) 2459.0(25.40%) 1961
Ta50 2628 (36.66%) 2395 (24.54%) 2395.0 (24.54%) 2411 (25.38%) 2417.4 (25.71%) 2462(28.03%) 2463.7(28.12%) 1923

50x15
Ta01 3599 (30.40%) 3361 (21.78%) 3368.2 (22.04%) 3417 (23.80%) 3417.0 (23.80%) 3404(23.33%) 3409.2(23.52%) 2760*
Ta02 3341 (21.23%) 3212 (16.55%) 3212.0 (16.55%) 3249 (17.89%) 3270.0 (18.65%) 3304(19.88%) 3313.8(20.24%) 2756*
Ta03 3186 (17.26%) 3000 (10.42%) 3004.1 (10.57%) 3045 (12.07%) 3050.1 (12.26%) 3084(13.51%) 3091.6(13.79%) 2717*
Ta04 3266 (15.04%) 3120 (9.90%) 3132.6 (10.34%) 3134 (10.39%) 3134.0 (10.39%) 3183(12.12%) 3201.0(12.75%) 2839*
Ta05 3232 (20.64%) 3132 (16.91%) 3140.1 (17.21%) 3111 (16.13%) 3124.8 (16.64%) 3196(19.30%) 3226.3(20.43%) 2679*
Ta06 3378 (21.47%) 3134 (12.69%) 3146.7 (13.15%) 3169 (13.95%) 3175.4 (14.18%) 3197(14.96%) 3206.4(15.30%) 2781*
Ta07 3471 (17.94%) 3310 (12.47%) 3316.6 (12.69%) 3349 (13.80%) 3353.6 (13.95%) 3340(13.49%) 3357.1(14.07%) 2943*
Ta08 3732 (29.36%) 3289 (14.00%) 3296.6 (14.27%) 3276 (13.55%) 3300.3 (14.40%) 3350(16.12%) 3352.9(16.22%) 2885*
Ta09 3381 (27.34%) 3131 (17.93%) 3136.8 (18.15%) 3129 (17.85%) 3129.0 (17.85%) 3151(18.68%) 3174.4(19.56%) 2655*
Ta10 3352 (23.10%) 3035 (11.46%) 3045.5 (11.84%) 3065 (12.56%) 3067.7 (12.66%) 3076(12.96%) 3078.7(13.06%) 2723*

50x20
Ta11 3654 (27.40%) 3447 (20.18%) 3464.6 (20.78%) 3472 (21.04%) 3474.5 (21.11%) 3534(23.22%) 3551.2(23.82%) 2868*
Ta12 3722 (29.73%) 3419 (19.16%) 3461.7 (20.65%) 3408 (18.78%) 3411.7 (18.92%) 3544(23.53%) 3555.3(23.92%) 2869*
Ta13 3536 (28.32%) 3143 (14.08%) 3172.7 (15.17%) 3147 (14.23%) 3165.5 (14.88%) 3253(18.08%) 3257.2(18.23%) 2755*
Ta14 3631 (34.39%) 3143 (16.32%) 3149.1 (16.54%) 3132 (15.91%) 3135.2 (16.03%) 3239(19.87%) 3239.8(19.90%) 2702*
Ta15 3359 (23.28%) 3233 (18.67%) 3242.0 (18.98%) 3186 (16.92%) 3193.3 (17.19%) 3325(22.02%) 3338.4(22.51%) 2725*
Ta16 3555 (24.96%) 3296 (15.85%) 3304.1 (16.14%) 3270 (14.94%) 3275.5 (15.13%) 3374(18.59%) 3393.2(19.27%) 2845*
Ta17 3567 (26.27%) 3423 (21.17%) 3428.3 (21.36%) 3384 (19.79%) 3403.6 (20.48%) 3463(22.58%) 3490.4(23.55%) 2825*
Ta18 3680 (32.18%) 3168 (13.79%) 3168.0 (13.79%) 3178 (14.15%) 3196.9 (14.83%) 3300(18.53%) 3304.7(18.70%) 2784*
Ta19 3592 (16.97%) 3482 (13.38%) 3494.7 (13.80%) 3480 (13.32%) 3505.8 (14.16%) 3559(15.89%) 3560.5(15.94%) 3071*
Ta20 3643 (21.64%) 3551(18.56%) 3601 (20.23%) 3482 (16.26%) 3490.8 (16.55%) 3596(20.07%) 3599.7(20.19%) 2995*

100x20
Ta21 6452 (18.08%) 6049 (10.71%) 6057.0 (10.85%) 6023 (10.23%) 6036.0 (10.47%) 6064(10.98%) 6084.2(11.35%) 5464*
Ta22 5695 (9.92%) 5609 (8.26%) 5615.0 (8.38%) 5540 (6.93%) 5540.6 (6.94%) 5667(9.38%) 5698.1(9.98%) 5181*
Ta23 6462 (16.06%) 6148 (10.42%) 6168.4 (10.78%) 6109 (9.72%) 6109.0 (9.72%) 6139(10.26%) 6139.0(10.26%) 5568*
Ta24 5885 (10.23%) 5717 (7.08%) 5731.0 (7.34%) 5749 (7.68%) 5749.0 (7.68%) 5775(8.17%) 5780.0(8.26%) 5339*
Ta25 6355 (17.86%) 6167 (14.37%) 6174.4 (14.51%) 6247 (15.86%) 6276.8 (16.41%) 6137(13.82%) 6177.1(14.56%) 5392*
Ta26 6135 (14.84%) 5890 (10.26%) 5890.0 (10.26%) 5905 (10.54%) 5932.0 (11.04%) 5909(10.61%) 6019.2(12.68%) 5342*
Ta27 6056 (11.41%) 5768 (6.11%) 5791.2 (6.53%) 5777 (6.27%) 5799.2 (6.68%) 5824(7.14%) 5879.0(8.15%) 5436*
Ta28 6101 (13.11%) 5924 (9.83%) 5926.0 (9.86%) 5984 (10.94%) 5985.4 (10.96%) 5920(9.75%) 5958.0(10.46%) 5394*
Ta29 5943 (10.92%) 5782 (7.91%) 5782.0 (7.91%) 5738 (7.09%) 5747.4 (7.27%) 5839(8.98%) 5850.0(9.18%) 5358*
Ta30 5892 (13.68%) 5692 (9.82%) 5705.2 (10.08%) 5695 (9.88%) 5705.0 (10.07%) 5707(10.11%) 5717.0(10.30%) 5183*

Table 2: Results on DMU’s Benchmark (Part I). Ours - RSGC is the result of the Algorithm 1. In
Ours-GS instead of randomly selecting second probable action in line 14 of the Algorithm 1 (RSGC)
we randomly sample an action according to the probability distribution recommended by the policy
network π(at|st). We repeat each experiment 10 times due to the algorithm’s randomness and record
the minimum and the average makespan across the 10 experiment. The "Samp (min)" and the "Samp
(avg)" columns are the results of the usual sampling method. The "UB" column represents the best-
known solutions from literature, with "*" indicating optimal solutions.

Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
20x15

Dmu01 3323 (29.65%) 3132 (22.20%) 3132.0 (22.20%) 3198 (24.78%) 3204.7 (25.04%) 3218(25.56%) 3270.4(27.60%) 2563
Dmu02 3630 (34.15%) 3269 (20.81%) 3302.5 (22.04%) 3266 (20.69%) 3270.8 (20.87%) 3360(24.17%) 3363.8(24.31%) 2706
Dmu03 3660 (34.02%) 3287 (20.36%) 3287.0 (20.36%) 3375 (23.58%) 3384.4 (23.93%) 3392(24.20%) 3429.9(25.59%) 2731*
Dmu04 3816 (42.97%) 3171 (18.81%) 3192.9 (19.63%) 3261 (22.18%) 3267.4 (22.42%) 3229(20.98%) 3286.7(23.14%) 2669
Dmu05 3897 (41.76%) 3377 (22.84%) 3392.0 (23.39%) 3394 (23.46%) 3394.0 (23.46%) 3465(26.05%) 3491.5(27.01%) 2749*
Dmu41 4316 (32.88%) 4070 (25.31%) 4085.2 (25.78%) 4050 (24.69%) 4070.0 (25.31%) 4250(30.85%) 4256.8(31.06%) 3248
Dmu42 4858 (43.30%) 4493 (32.54%) 4493.0 (32.54%) 4526 (33.51%) 4541.3 (33.96%) 4650(37.17%) 4654.6(37.30%) 3390
Dmu43 4887 (42.02%) 4373 (27.09%) 4373.0 (27.09%) 4445 (29.18%) 4455.1 (29.47%) 4531(31.68%) 4558.4(32.47%) 3441

Continued on next page

Randomized Greedy Sampling for JSSP 9

Table 2 continued from previous page
Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
Dmu44 5151 (47.68%) 4592 (31.65%) 4604.9 (32.02%) 4637 (32.94%) 4637.0 (32.94%) 4692(34.52%) 4807.5(37.83%) 3488
Dmu45 4615 (41.05%) 4377 (33.77%) 4387.4 (34.09%) 4387 (34.08%) 4399.6 (34.46%) 4454(36.12%) 4472.4(36.69%) 3272

20x20
Dmu06 4358 (34.34%) 3880 (19.61%) 3890.2 (19.92%) 3844 (18.50%) 3876.0 (19.48%) 3977(22.60%) 4011.5(23.66%) 3244
Dmu07 3671 (20.51%) 3621 (18.88%) 3640.3 (19.51%) 3621 (18.88%) 3637.8 (19.43%) 3733(22.55%) 3750.2(23.12%) 3046
Dmu08 4048 (26.98%) 3726 (16.88%) 3760.2 (17.95%) 3730 (17.00%) 3755.1 (17.79%) 3882(21.77%) 3946.3(23.79%) 3188
Dmu09 4482 (44.95%) 3790 (22.57%) 3817.8 (23.47%) 3695 (19.50%) 3695.0 (19.50%) 3893(25.91%) 3925.0(26.94%) 3092
Dmu10 4021 (34.75%) 3494 (17.09%) 3551.9 (19.03%) 3519 (17.93%) 3550.2 (18.97%) 3578(19.91%) 3632.5(21.73%) 2984
Dmu46 5876 (45.63%) 5066 (25.55%) 5066.0 (25.55%) 5063 (25.48%) 5085.5 (26.03%) 5310(31.60%) 5314.3(31.71%) 4035
Dmu47 5771 (46.51%) 4930 (25.16%) 4965.7 (26.06%) 4872 (23.69%) 4962.5 (25.98%) 5177(31.43%) 5227.6(32.71%) 3939
Dmu48 5034 (33.78%) 4725 (25.56%) 4741.0 (25.99%) 4640 (23.31%) 4667.0 (24.02%) 4891(29.98%) 4906.5(30.39%) 3763
Dmu49 5470 (47.44%) 4671 (25.90%) 4683.3 (26.23%) 4731 (27.52%) 4738.8 (27.73%) 4952(33.48%) 4984.1(34.34%) 3710
Dmu50 5314 (42.50%) 4862 (30.38%) 4880.1 (30.87%) 4837 (29.71%) 4845.5 (29.94%) 5052(35.48%) 5088.6(36.46%) 3729

30x15
Dmu11 4435 (29.30%) 4183 (21.95%) 4194.5 (22.29%) 4232 (23.38%) 4236.5 (23.51%) 4282(24.84%) 4285.3(24.94%) 3430
Dmu12 4864 (39.17%) 4247 (21.52%) 4260.3 (21.90%) 4247 (21.52%) 4254.5 (21.73%) 4414(26.29%) 4431.4(26.79%) 3495
Dmu13 4918 (33.60%) 4486 (21.87%) 4515.2 (22.66%) 4457 (21.08%) 4478.5 (21.67%) 4613(25.32%) 4641.5(26.09%) 3681*
Dmu14 4130 (21.69%) 3969 (16.94%) 3977.7 (17.20%) 3930 (15.79%) 3933.5 (15.90%) 4085(20.36%) 4097.5(20.73%) 3394*
Dmu15 4392 (31.38%) 4054 (21.27%) 4064.0 (21.57%) 4072 (21.81%) 4076.4 (21.94%) 4114(23.06%) 4138.1(23.78%) 3343*
Dmu51 6241 (49.77%) 5919 (42.04%) 5951.7 (42.83%) 6090 (46.15%) 6095.2 (46.27%) 6093(46.22%) 6128.1(47.06%) 4167
Dmu52 6714 (55.74%) 6032 (39.92%) 6093.2 (41.34%) 6081 (41.06%) 6172.6 (43.18%) 6235(44.63%) 6266.0(45.35%) 4311
Dmu53 6724 (53.03%) 6010 (36.78%) 6096.0 (38.73%) 6163 (40.26%) 6187.8 (40.82%) 6287(43.08%) 6308.5(43.57%) 4394
Dmu54 6522 (49.52%) 6034 (38.33%) 6050.8 (38.72%) 6072 (39.20%) 6072.0 (39.20%) 6201(42.16%) 6234.9(42.94%) 4362
Dmu55 6639 (55.44%) 5917 (38.54%) 5917.0 (38.54%) 5931 (38.87%) 5945.2 (39.20%) 6031(41.21%) 6042.4(41.48%) 4271

30x20
Dmu16 4593 (32.04%) 4462 (18.95%) 4656.7 (24.15%) 4696 (25.19%) 4713.5 (25.66%) 4773(27.24%) 4801.6(28.00%) 3751
Dmu17 5379 (41.03%) 4747 (24.46%) 4751.0 (24.57%) 4710 (23.49%) 4736.9 (24.20%) 4907(28.65%) 4930.0(29.26%) 3814
Dmu18 5100 (32.67%) 4639 (20.68%) 4651.8 (21.01%) 4546 (18.26%) 4564.4 (18.74%) 4804(24.97%) 4834.9(25.77%) 3844*
Dmu19 4889 (29.75%) 4659 (23.65%) 4668.5 (23.90%) 4651 (23.43%) 4678.5 (24.16%) 4780(26.85%) 4792.8(27.19%) 3768
Dmu20 4859 (30.97%) 4442 (19.73%) 4489.7 (21.02%) 4388 (18.27%) 4441.5 (19.72%) 4554(22.75%) 4628.2(24.75%) 3710
Dmu56 7328 (48.31%) 6784 (37.30%) 6784.0 (37.30%) 6861 (38.86%) 6861.7 (38.87%) 6924(40.13%) 6998.7(41.65%) 4941
Dmu57 6704 (44.02%) 6421 (37.94%) 6435.0 (38.24%) 6428 (38.09%) 6509.0 (39.83%) 6625(42.32%) 6638.0(42.60%) 4655
Dmu58 6721 (42.76%) 6322 (34.28%) 6353.7 (34.96%) 6398 (35.90%) 6427.9 (36.53%) 6564(39.42%) 6584.0(39.85%) 4708
Dmu59 7109 (53.74%) 6388 (38.15%) 6420.2 (38.85%) 6486 (40.27%) 6492.4 (40.41%) 6398(38.37%) 6579.3(42.29%) 4624
Dmu60 6632 (39.47%) 6400 (34.60%) 6471.4 (36.10%) 6459 (35.84%) 6465.4 (35.97%) 6631(39.45%) 6665.5(40.18%) 4755

40x15
Dmu21 5317 (21.42%) 5034 (14.91%) 5069.7 (15.75%) 5072 (15.82%) 5077.8 (15.95%) 5162(17.85%) 5235.3(19.53%) 4380*
Dmu22 5534 (17.12%) 5293 (12.03%) 5360.3 (13.45%) 5316 (12.51%) 5331.9 (12.85%) 5432(14.96%) 5475.5(15.88%) 4725*
Dmu23 5620 (20.41%) 5171 (10.78%) 5195.8 (11.30%) 5178 (10.92%) 5179.4 (10.94%) 5291(13.35%) 5303.3(13.61%) 4668*
Dmu24 5753 (23.77%) 5138 (10.54%) 5138.0 (10.54%) 5224 (12.41%) 5236.5 (12.68%) 5324(14.54%) 5353.5(15.18%) 4648*
Dmu25 4775 (14.66%) 4659 (11.89%) 4662.2 (11.97%) 4618 (10.90%) 4618.0 (10.90%) 4755(14.19%) 4756.4(14.23%) 4164*
Dmu61 8203 (58.62%) 7634 (47.58%) 7685.5 (48.54%) 7818 (51.14%) 7829.2 (51.37%) 7802(50.85%) 7829.1(51.37%) 5172
Dmu62 8091 (53.66%) 7528 (42.96%) 7561.4 (43.59%) 7810 (48.32%) 7810.0 (48.32%) 7768(47.54%) 7799.9(48.15%) 5265
Dmu63 8031 (50.76%) 7543 (41.66%) 7597.2 (42.69%) 7610 (42.92%) 7621.2 (43.15%) 7636(43.37%) 7744.8(45.41%) 5326
Dmu64 7738 (47.39%) 7628 (45.20%) 7670.0 (46.10%) 7757 (47.66%) 7773.5 (47.97%) 7717(46.99%) 7797.6(48.53%) 5250
Dmu65 7577 (46.07%) 7345 (41.58%) 7370.5 (42.00%) 7648 (47.40%) 7648.0 (47.40%) 7583(46.11%) 7584.0(46.13%) 5190

40x20
Dmu26 5946 (27.94%) 5646 (21.51%) 5662.9 (21.86%) 5583 (20.14%) 5592.2 (20.34%) 5769(24.14%) 5823.2(25.31%) 4647*
Dmu27 6418 (32.38%) 5874 (21.14%) 5902.2 (21.74%) 5849 (20.63%) 5851.7 (20.68%) 6014(24.05%) 6046.4(24.72%) 4848*
Dmu28 5986 (27.57%) 5610 (19.56%) 5622.8 (19.81%) 5604 (19.43%) 5609.8 (19.54%) 5831(24.28%) 5848.5(24.65%) 4692*
Dmu29 6051 (29.00%) 5776 (23.09%) 5776.0 (23.09%) 5685 (21.14%) 5685.0 (21.14%) 5928(26.37%) 5942.8(26.69%) 4691*
Dmu30 5988 (26.58%) 5584 (18.01%) 5676.0 (19.95%) 5718 (20.85%) 5718.0 (20.85%) 5791(22.38%) 5847.2(23.57%) 4732*
Dmu66 8475 (48.24%) 8069 (41.14%) 8106.8 (41.80%) 8099 (41.67%) 8129.0 (42.19%) 8224(43.85%) 8265.6(44.57%) 5717
Dmu67 8832 (51.94%) 8227 (41.53%) 8259.6 (42.09%) 8252 (41.96%) 8318.0 (43.09%) 8361(43.83%) 8377.3(44.11%) 5813
Dmu68 8693 (50.58%) 8198 (42.01%) 8259.6 (43.07%) 8364 (44.88%) 8432.7 (46.07%) 8348(44.60%) 8348.0(44.60%) 5773
Dmu69 8634 (51.23%) 8107 (42.00%) 8159.4 (42.92%) 8202 (43.67%) 8228.3 (44.13%) 8209(43.79%) 8240.7(44.34%) 5709
Dmu70 8735 (48.33%) 8341 (41.64%) 8375.2 (42.22%) 8230 (39.75%) 8244.0 (39.99%) 8416(42.91%) 8531.2(44.86%) 5889

50x15
Dmu31 7156 (26.88%) 6400 (13.48%) 6423.2 (13.89%) 6512 (15.48%) 6524.3 (15.70%) 6552(16.17%) 6603.6(17.09%) 5640*
Dmu32 6506 (9.76%) 6025 (1.65%) 6032.9 (1.78%) 6168 (4.06%) 6175.2 (4.18%) 6133(3.48%) 6137.6(3.55%) 5927*
Dmu33 6192 (8.08%) 6001 (4.75%) 6016.9 (4.97%) 5898 (2.96%) 5929.1 (3.51%) 6015(5.01%) 6117.5(6.80%) 5728*
Dmu34 6257 (16.18%) 5948 (10.47%) 5954.1 (10.57%) 5868 (8.95%) 5892.4 (9.41%) 6133(13.89%) 6169.5(14.57%) 5385*
Dmu35 6302 (11.83%) 6012 (6.70%) 6021.3 (6.85%) 6012 (6.70%) 6015.2 (6.74%) 6084(7.97%) 6129.8(8.78%) 5635*
Dmu71 9797 (57.24%) 9440 (51.47%) 9461.6 (51.81%) 9521 (52.78%) 9526.9 (52.88%) 9571(53.55%) 9585.6(53.79%) 6233
Dmu72 9926 (53.11%) 9681 (49.33%) 9681.0 (49.33%) 9650 (48.85%) 9670.9 (49.17%) 9688(49.44%) 9710.2(49.78%) 6483

Continued on next page

10

Table 2 continued from previous page
Instance L2D Ours-GS (min) Ours-GS (avg) Ours-RSGC (min) Ours-RSGC (avg) Samp (min) Samp (avg) UB
Dmu73 9933 (61.17%) 9298 (50.87%) 9365.8 (51.97%) 9545 (54.88%) 9545.0 (54.88%) 9447(53.29%) 9469.5(53.65%) 6163
Dmu74 9833 (58.09%) 9440 (51.77%) 9461.0 (52.11%) 9607 (54.45%) 9618.0 (54.63%) 9560(53.70%) 9581.0(54.04%) 6220
Dmu75 9892 (59.63%) 9287 (49.86%) 9300.9 (50.09%) 9299 (50.06%) 9307.0 (50.19%) 9397(51.64%) 9448.0(52.46%) 6197

50x20
Dmu36 7470 (32.89%) 6665 (18.57%) 6745.3 (20.00%) 6787 (20.74%) 6790.5 (20.81%) 6825(21.42%) 6840.6(21.70%) 5621*
Dmu37 7296 (24.70%) 6843 (16.95%) 6873.0 (17.47%) 6866 (17.35%) 6897.9 (17.89%) 6895(17.84%) 6927.4(18.40%) 5851*
Dmu38 7410 (29.70%) 6968 (21.97%) 7012.0 (22.74%) 7136 (24.91%) 7149.7 (25.15%) 7075(23.84%) 7079.8(23.92%) 5713*
Dmu39 6827 (18.79%) 6580 (14.49%) 6601.6 (14.87%) 6434 (11.95%) 6443.8 (12.12%) 6654(15.78%) 6706.7(16.70%) 5747*
Dmu40 7325 (31.34%) 6718 (20.46%) 6771.7 (21.42%) 6773 (21.45%) 6776.1 (21.50%) 6835(22.56%) 6841.6(22.68%) 5577*
Dmu76 9698 (42.35%) 9823 (44.18%) 9851.4 (44.60%) 9991 (46.65%) 9997.3 (46.74%) 9922(45.63%) 9963.5(46.24%) 6813
Dmu77 10693 (56.74%) 9930 (45.56%) 9940.8 (45.72%) 9948 (45.82%) 9974.4 (46.21%) 10070(47.61%) 10070.0(47.61%) 6822
Dmu78 9986 (47.50%) 9940 (46.82%) 10013.6 (47.91%) 9990 (47.56%) 10029.2 (48.14%) 10126(49.57%) 10151.5(49.95%) 6770
Dmu79 10936 (56.90%) 10303 (47.82%) 10310.6 (47.93%) 10181 (46.07%) 10181.0 (46.07%) 10457(50.03%) 10486.5(50.45%) 6970
Dmu80 9875 (47.70%) 9674 (44.69%) 9742.9 (45.73%) 9859 (47.46%) 9874.8 (47.69%) 9732(45.56%) 9803.5(46.3%) 6686

6 Conclusion

In this study, we present RSGC and GS, algorithms designed to optimize JSSP through
Policy network-guided search. By incorporating second greedy choices and policy net-
work sampling methods with decreasing probabilities RSGC offers a balance between
exploration and exploitation in the search space, thereby mitigating the risk of finding
solutions having larger makespan. Our systematic approach to adjusting the probability
of selecting alternative paths enables efficient exploration of the search tree, leading to
improved makespan. Through extensive experimentation, we establish optimal param-
eters for RSGC and GS, enhancing its performance across two benchmark datasets. We
also compare the minimum makespans and the average makespans using the two algo-
rithms. The experiments showed that the GS algorithm results were slightly better on
most instances, the reason perhaps being that it explored more. Overall, RSGC presents
a promising avenue for enhancing scheduling algorithms, showcasing the potential of
Policy networks in addressing complex optimization challenges.

References

1. J. Christopher Beck, T. K. Feng, and Jean-Paul Watson. Combining constraint programming
and local search for job-shop scheduling. INFORMS Journal on Computing, 23(1):1–14,
2010.

2. Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural com-
binatorial optimization with reinforcement learning, 2017.

3. Giovanni Bonetta, Davide Zago, Rossella Cancelliere, and Andrea Grosso. Job shop schedul-
ing via deep reinforcement learning: a sequence to sequence approach. Not Specified, Aug
2023.

4. Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, 2012.

5. Tristan Cazenave. Nested Monte-Carlo search. In Proceedings of the IJCAI International
Joint Conference on Artificial Intelligence, pages 456–461, 2009.

6. Ceren Cebi, Enes Atac, and Ozgur Koray Sahingoz. Job shop scheduling problem and solu-
tion algorithms: A review. In 2020 11th International Conference on Computing, Communi-
cation and Networking Technologies (ICCCNT), pages 1–7, 2020.

Randomized Greedy Sampling for JSSP 11

7. Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems.
European Journal of Operational Research, 109(1):137–141, 1998.

8. Rupert Ettrich, Marc Huber, and Günther Raidl. A Policy-Based Learning Beam Search for
Combinatorial Optimization, pages 130–145. Springer, 03 2023.

9. Kaizhou Gao, Zhiguang Cao, Le Zhang, Zhenghua Chen, Yuyan Han, and Quanke Pan.
A review on swarm intelligence and evolutionary algorithms for solving flexible job shop
scheduling problems. IEEE/CAA Journal of Automatica Sinica, 6(4):904, 2019.

10. Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

11. William D Harvey and Matthew L Ginsberg. Limited discrepancy search. In IJCAI, pages
607–615, 1995.

12. Chun-Cheng Lin, Der-Jiunn Deng, Yen-Ling Chih, and Hsin-Ting Chiu. Smart manufactur-
ing scheduling with edge computing using multiclass deep q network. IEEE Transactions on
Industrial Informatics, 15(7):4276–4284, 2019.

13. Eugeniusz Nowicki and Czeslaw Smutnicki. An advanced tabu search algorithm for the job
shop problem. Journal of Scheduling, 8(2):145–159, 2005.

14. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

15. Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

16. Erdong Yuan, Shuli Cheng, Liejun Wang, Shiji Song, and Fang Wu. Solving job shop
scheduling problems via deep reinforcement learning. Applied Soft Computing, 143:110436,
2023.

17. Mohamed Habib Zahmani, Baghdad Atmani, Abdelghani Bekrar, and Nassima Aissani.
Multiple priority dispatching rules for the job shop scheduling problem. In 3rd Interna-
tional Conference on Control, Engineering Information Technology (CEIT’2015), Tlemcen,
Algeria, 2015.

18. Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi Xu. Learning
to dispatch for job shop scheduling via deep reinforcement learning. In 34th Conference on
Neural Information Processing Systems (NeurIPS), 2020.

