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Monte-Carlo Tree Search is a general search algorithm that gives good results in games. Genetic Pro-
gramming evaluates and combines trees to discover expressionsthat maximize a given fitness function.
In this paper Monte-Carlo Tree Search is used to generate expressions that are evaluated in the same
way as in Genetic Programming. Monte-Carlo Tree Search is transformed in order to search expression
trees rather than lists of moves. We compare Nested Monte-Carlo Search to UCT (Upper Confidence
Bounds for Trees) for various problems. Monte-Carlo Tree Search achieves state of the art results on
multiple benchmark problems. The proposed approach is simple toprogram, does not suffer from ex-
pression growth, has a natural restart strategy to avoid local optima and is extremely easy to parallelize.
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1. Introduction

Recently Monte-Carlo Tree Search (MCTS) has been very successful in games such as
Go 6,9, General Game Playing8,15,16,17, Hex 4,1, and Puzzles5. We propose to adapt the
method to discover expressions that maximize a fitness function 3.

Expression discovery is usually addressed with Genetic Programming12. In Genetic
Programming a set of random expressions is built, then the set of expressions is evolved for
multiple generations. At each generation the expressions are evaluated and sorted accord-
ing to their evaluation (i.e. their fitness or their score). The highest rated expressions (i.e.
individuals) of a generation are then bred to create the nextgeneration. Breeding two ex-
pressions consists in exchanging two subtrees of the two expressions represented as trees.
The principle underlying Genetic Programming is that the subtrees of the expressions are
building blocks that can be used to build new expressions. Subtrees that are useful in one
expression are often useful in other expressions and these successful subtrees guide the
search toward the good expressions. In contrast, Nested Monte-Carlo Search favors ex-
pressions that have the same successful atoms at the start ofthe stack representing the
expression.

Genetic Programming can suffer from bloat (i.e. uncontrolled growth of the expressions
with increasing numbers of generations) and from over-specialization which leads to a lack
of diversity in the population and to suboptimal expressions. Restart strategies are usually
used to overcome this undesired behavior.

1
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When using MCTS to generate expressions, the size of the generated expressions as
well as the restarts of the algorithm are naturally handled.In our experiments the expression
generated with MCTS are usually more simple and provide scores at least equivalent to
the scores of the expressions generated with Genetic Programming for the same problems.
Moreover the algorithm is more simple and requires less tuning than Genetic Programming.

The second section explains Nested Monte-Carlo Search, thethird section details its
application to expression discovery, the fourth section outlines the application of the UCT
algorithm to expression discovery, the fifth section deals with the application of Iterative
Deepening to expression discovery, the sixth section givesexperimental results for different
problems.

2. Nested Monte-Carlo Search

The basic idea of Nested Monte-Carlo Search is to perform a principal playout with a bias
on the selection of each move based on the results of a Monte-Carlo tree search5.
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Fig. 1. At each step of the principal playout shown here with abold line, an NMC of leveln performs a NMC
of level n − 1 (shown with wavy lines) for each available move and selects the best one. At level 0, a simple
pseudo-random playout is used.

Algorithm 1 Playing a playout with random sampling
sample (position)
while not end of gamedo

position← play (position, random move)
end while
return score (position)

The base level of the search plays random games (i.e. playouts), algorithm 1 shows that
random moves are played until the end of the game at this level. When the game is over the
score of the position that has been reached is sent back. The base level is level zero, it is
called by level one and only by level one.

The algorithm for higher levels is algorithm 2. For example,at each move of a playout
of level 1 the algorithm chooses the move that gives the best score when followed by a
random playout (a random playout is a search at level zero). Similarly for a playout of level
n it chooses the move that gives the best score when followed bya playout of leveln− 1.
A search at leveln calls a search at leveln− 1 to direct its search.
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Algorithm 2 Nested Monte-Carlo search
nested (position, level)
best playout← {}
while not end of gamedo

if level = 1 then
move← argmaxm (sample (play (position, m)))

else
move← argmaxm (nested (play (position, m), level − 1))

end if
if score of playout aftermove > score of the best playoutthen

best playout← playout after move
end if
position← play (position, move of the best playout)

end while
return score (position)

For a tree of heighth and branching factora, the total number of playout steps of a
NMC of leveln will be tn(h, a) = a ×

∑

0<i<h tn−1(i, a) with t0(h, n) = h. So a NMC
of level 1 will performa × h2/2 playout steps. The complexity of a NMC of leveln is
O(anhn+1).

It is important to memorize the best playout of a given level and to play its moves if no
better playout has been found at the lower level. This memorization is necessary for Nested
Monte-Carlo search to work at level greater than one5. It has also been shown that Nested
Monte-Carlo search works well when the repartition of the scores is a binomial distribution,
which is often the case in single player games.

When a search at the highest level is finished and there is time left, another search is
performed at the highest level, and so on until the thinking time is elapsed.

Nested Monte-Carlo search has been successful in establishing world records in single
player games such as Morpion Solitaire5,18 or SameGame5. It provides a good balance
between exploration and exploitation and it automaticallyadapts its search behavior to the
problem at hand without parameters tuning.

3. Nested Monte-Carlo Expression Discovery

Expressions are generated with sampling at level zero and with nested searches at higher
levels. The first subsection explains the sampling algorithm. The second subsection ex-
plains the nested search algorithm.

3.1. Random sampling

Expressions can be seen as trees. An atom is a node of a tree. A terminal atom is a node that
has no children, usually terminal atoms are the variables and the constants of a problem.
For example +, -, *, / are non terminal atoms since they have two children, whereas 1, 2, 3,
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x are terminal atoms.
In random sampling the tree is represented as a stack. Sampling consists in randomly

filling the stack, stopping when the expression is complete (i.e. there are no more leaves to
complete in the corresponding tree). A maximum number of nodes is used to prevent too
large expressions. When the minimal number of potential nodes in the final tree is greater
than this threshold, only terminal atoms are added to the tree in order to have less than the
maximum number of nodes.

The algorithm used for sampling is given in algorithm 3. Theindex variable is the
index of the top of the stack, thenumberLeaves variable is the number of leaves of
the current tree that have not yet been assigned. When callingsampling with an empty
stack, thenumberLeaves variable is equal to one (i.e. there is one unassigned leaf).The
maximumNodes variable is the maximum number of atoms allowed for a generated ex-
pression. In Nested Monte-Carlo expression discovery, there is a stack of atoms for each
level of the search. This is represented with an array of stacks. Since sampling is a search
at level zero, this isstack[0] which is filled with sampling.

Algorithm 3 Random sampling
sample (index, numberLeaves, maximumNodes)
while numberLeaves > 0 do

if index + numberLeaves ≥maximumNodes then
randomly choose a terminal atoma

else
randomly choose an atoma

end if
stack[0][index]← a

index← index+ 1

numberLeaves← numberLeaves + nbChildren(a) - 1
end while
return score (stack[0])

Figure 2 gives an example of a partially assigned tree and of the corresponding stack.
In this example, theindex variable is equal to three and thenumberLeaves variable is
equal to two.

3.2. Nested search

The nested search maintains a stack for each level of search.At a given level; and at each
step, all the possible atoms are tried and followed by a lowerlevel search. The atom that
results in the best expression is then chosen and the playoutcontinues until the tree is
completed (i.e. there are no more leaves to develop in the tree).

For example, if a leveln search has reached the stack of figure 2, and the three possible
atoms are +, - and 4. The next atom to choose at the top of the stack is the right child of -
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Fig. 2. A partial tree and the corresponding stack.
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Fig. 3. The partial trees that are explored with a nested search after the tree of figure 2.

in the tree of figure 2. There are three possible atoms to put atthe top of the stack, so the
nested search tries them and starts a leveln − 1 search for each tree of figure 3. If one of
these three searches gives a better result than the best expression found at leveln, then the
best expression (i.e. the stack of the best tree) is updated.After having tried the three level
n − 1 searches, the next atom of the best expression is pushed on the stack of leveln and
the leveln search continues for the next atoms.

Intuitively, it means that if the beginning of a stack gives good results, the algorithm
will guide the exploration towards expressions that have the same beginning of the stack.

The parameters of algorithm 4 are theindex in the stack of levellevel (stack[level]),
the number of unaffected leaves of the current stack (numberLeaves) and the maximum
number of atoms of the current stack (maximumNodes). Initially the algorithm is called
with index zero,numberLeaves equals to one,maximumNodes depending on the prob-
lem and usually ranging from ten to one hundred, andlevel being the level of the highest
level search.

Then the best stack of the level is set to empty and the search starts and continues while
there are leaves to fill (i.e.numberLeaves > 0).

In the loop that fills the stack, the first thing to do is to try all possible atoms on the top
of the stack so as to evaluate the stacks that start with each possible atom and to choose the
best one. After an atom is tried, the number of elements of thestack is updated (index ←
index + 1) as well as the number of leaves. Then the current stack is copied to the lower
level to start a search at the lower level starting at the current stack. If the level is one,
the stack is completed randomly using thesample function, it the level is greater than one
then the stack is completed with a search at the lower level. When the search at the lower
level has completed the stack, if the score of the completed stack is better than the score
of the best stack of the current level, the best stack is updated. At the end of the for loop,
when all possible atoms have been tried, the atom of the best expression of the current level
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Algorithm 4 Nested search
nested (index, numberLeaves, maximumNodes, level)
best expression← {}
while numberLeaves > 0 do

for a in all possible atomsdo
if index + numberLeaves < maximumNodes or nbChildren (a) = 0 then

stack[level][index]← a

index← index+ 1

numberLeaves← numberLeaves + nbChildren(a) - 1
for i← 0 to indexdo
stack[level − 1][i]← stack[level][i]

end for
if level = 1 then
score = sample (index, numberLeaves, maximumNodes)

else
score = nested (index, numberLeaves, maximumNodes, level - 1)

end if
if score > score of best expressionthen

best expression← stack[level − 1]

end if
index← index− 1

numberLeaves← numberLeaves - nbChildren(a) + 1
end if

end for
stack[level][index]← best expression [index]
numberLeaves← numberLeaves + nbChildren(stack[level][index]) - 1
index← index+ 1

end while
return score (stack[level])

is pushed onto the stack. At the end of the main while loop whenthe stack represents a
complete tree, the stack is evaluated and its score is sent back.

4. UCT Expression Discovery

UCT 10 and its enhancements6,9 are the current best algorithms for games such as Go, Hex
and General Game Playing. The principle guiding UCT is to memorize the playouts in a
tree and to guide the search according to the information stored in the nodes of this tree.
The information used is the mean of all the playouts that are below the node and the number
of playouts. These numbers are used to descend the tree with the UCB formula. UCT ad-
dresses the exploration/exploitation tradeoff. Exploiting the available information consists
in choosing the node that has the greatest mean. Exploring consists in trying nodes that
have a lower mean but that can get better if they are tried. Each node is evaluated according
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to the UCB formula and the policy consists in descending in the node that maximize this
formula. If µ is the mean of the playouts below the node,child the number of playouts
of the node andparent the number of playouts of the parent node, the UCB formula is:

µ+ Constant×
√

log(parent)
child

.
The constant has to be optimized for each application domain. Small constants favor

exploitation while greater constants favor exploration. In Go or General Game Playing for
example, for playout results being 0 or 1, a constant of 0.3 isadapted.

Algorithm 5 gives the UCT algorithm applied to expression discovery. The principle
is to memorize all the playouts in a tree. Each playout corresponds to a stack of atoms
representing an expression. All possible atoms are tried once at a node before growing the
tree below the node. When a node has all possible children, thebest child is selected using
the UCB formula. A particularity of UCT applied to expression discovery is that some part
of the tree may soon become completely explored. The algorithm detects the fully explored
parts so as not to explore them again.

5. Depth-first Iterative Deepening Expression Discovery

Iterative Deepening is a popular method used in combinationwith search algorithms such
asαβ or A* 11. It consists in performing a depth-first search limited by a number. For
αβ the limiting number is the depth of the search, for A* it is thecost of the path (thef
function). When applying Iterative Deepening to Expressiondiscovery it appears natural
to limit the search with the number of atoms of the expression. The algorithm starts trying
all the valid expressions containing exactly one atom, thenthe valid expression containing
exactly two atoms, and so on.

The application of Iterative Deepening to expression discovery is detailed in algorithm
6.

6. Experimental Results

We have experimented Nested Monte-Carlo expression discovery for different problems.
For each problem and each level of the nested search we have run the algorithm one hun-
dred times. We have evaluated the results of the algorithms according to the number of
expressions that have been evaluated. At each power of two wehave recorded the best
score. The algorithms were stopped after219 expression evaluations. The resulting figures
have an x-axis with a logarithmic scale that counts the number of expression evaluations
(i.e. the number of calls to the score function), ranging from 1 to219. The y-axis gives the
average best score obtained among one hundred runs.

In this section we comment the results for the different problems: Kepler’s Third Law,
the Santa-Fe ant trail, Prime generating polynomials, Finite algebra, the Parity problem,
the N-prisoners puzzle, the MAX problem and the target number problem.
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Algorithm 5 UCT search
UCT (node, index, numberLeaves, maximumNodes)
while all the possible atoms followingnode have not been trieddo

if index+numberLeaves+numberofchildrenofatom ≤ maximumNodes then
stack[index]← atom

index← index+ 1

numberLeaves← numberLeaves + nbChildren(atom) - 1
score← sample (index, numberLeaves, maximumNodes)
n← new node
n.atom← atom

n.sumScores← score

n.nbV isits← 1
if numberLeaves = 0 then
n.explored← true

end if
addn to the children ofnode
node.atom← nextAtom(node.atom)

node.sumScores← node.sumScores+ score

node.nbV isits← node.nbV isits+ 1

if all children are explored and all the possible atoms have been triedthen
node.explored← true

end if
returnscore

end if
node.atom← nextAtom(node.atom)

end while
bestScore←−∞

for all children ofnode do
UCB← child.mean+ Constant×

√

log(node.nbV isits)
child.nbV isits

if not child.explored then
if UCB > bestScore then
bestScore← UCB

bestChild← child

end if
end if

end for
stack[index]← bestChild.atom

index← index+ 1

numberLeaves← numberLeaves + nbChildren(bestChild.atom) - 1
score← UCT (bestChild, index, numberLeaves,maximumNodes)

node.sumScores← node.sumScores+ score

node.nbV isits← node.nbV isits+ 1

if all children are exploredthen
node.explored← true

end if
returnscore
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Algorithm 6 Depth-first search
dfs (maximumNodes, nbNodes, numberLeaves)
if index + numberLeaves > maximumNodes then

return
end if
if numberLeaves = 0 then

if nbNodes = maximumNodes then
evaluate the expression in the stack
return

end if
end if
for a in all possible atomsdo
stack[nbNodes]← a

nbNodes← nbNodes+ 1

numberLeaves← numberLeaves + nbChildren(a) - 1
dfs (maximumNodes, nbNodes, numberLeaves)
numberLeaves← numberLeaves - nbChildren(a) + 1
nbNodes← nbNodes− 1

end for

6.1. Kepler’s Third Law and the Santa-Fe ant trail

Rediscovering Kepler’s Third Law was one of the early application of Genetic Program-
ming 12. The score of an expression is computed from the difference between the observed
data and the result of applying the expression. Using randomsampling Kepler’s Third Law,
i.e. the expression * ( d , sqrt d ), is rediscovered extremelyfast, a nested search is useless
for this problem.

The Santa-Fe ant trail is also an early Genetic Programming problem12,14. It consists
in finding an automata that finds all of the 89 food cells distributed non-uniformly on a
map within a given number of steps. The score of an automata isthe number of food cells
it has visited after the fixed number of steps. The componentsof an automata are TurnLeft,
TurnRight, Move, IfFoodAhead, Prog2 (that executes the twofollowing commands) and
Prog3 (that executes the three following commands).

On this problem random sampling finds an optimal solution in less than 20,000 sam-
ples on average. A level one nested search improves a little on random sampling since the
average score is higher than a level zero search (see figure 4), however, on average, it finds
the optimal solution in the same number of evaluations. So a nested search is of limited
usefulness for this problem since a random search rapidly solves the problem.

6.2. Prime generating polynomials

Cartesian Genetic Programming has been applied to the problem of finding polynomials
that generate prime numbers20. The goal of the problem is to find a polynomial that gen-
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Fig. 4. Average best score with time for Nested Monte-Carlo Search applied to the Sante-Fe ant trail problem.

erates as many different primes in a row as possible.
In our experiments all the prime numbers lower than 100 were given as constants as

well as the numbers between 1 and 10, the four basic operations: +, -, *, / were also used
as well as the variable x. The score of an expression was the number of different primes it
generates in a row for integer values of x starting at zero andincreasing by one at each step.

A level two nested search found + ( * ( - ( + ( 4 , 13 ) , * ( 1 , x ) ) , - ( 4, x ) ) , 83 )
which generates 51 primes in a row and 40 different primes. Itis better than the polynomial
found in20 (x2 − 3x+ 43) that generates 43 primes in a row and 40 different primes. Itis
also better than the well known Euler polynomial (x2−x+41) that generates 40 primes in
a row, all different. Note that the Euler polynomial as well as other polynomials that give
forty different primes were also found by level two nested searches.

The best score averaged over one hundred runs is given in figure 5 for levels zero to
three of Nested Monte-Carlo Search. The y-axis is the average score obtained and the x-
axis is the number of call to the score function. We can observe level one slightly improves
on level zero, level two greatly improves on levels zero and one, and level three is slightly
worse than level two.

Figure 6 gives the average score for UCT and figure 7 gives it for Iterative Deepening.
We can see that UCT peaks at 15 and that Iterative Deepening peaks at 5 when Nested
Monte-Carlo search peaks at 35. We can conclude Nested Monte-Carlo Search is better for
this problem.

6.3. Finite algebra

The Finite Algebra problems consist in finding terms that satisfy some equalities19. We
did some tests on theA2 primal algebra from19. TheA2 algebra has a single operator and
three elements, the operator table is given in table 1.

A discriminator term for an algebra is a termt such thatt(x, y, z) = x if x 6= y, and
t(x, x, z) = z. It is known that if an algebra has a discriminator term then the variety
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Fig. 5. Average best score for Nested Monte-Carlo search applied to the prime generation problem.
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Fig. 6. Average best score with time for UCT applied to the primegeneration problem.
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generated by the algebra has a decidable first order theory21.
Recently, a recursive method was provided to construct discriminator terms for a primal

algebra19, however the resulting terms are usually very long (i.e. contains millions of
operations). We are interested in generating shorter terms.

An expression is only composed of the binary operator * and ofthe three variables x, y
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Fig. 7. Average best score with time for Iterative Deepening applied to the prime generation problem.

and z.
For each possible combination of x, y and z, the expression isevaluated and the result is

compared to the desired result. There are twenty seven possible combinations (each variable
can take three values), so the score of a expression is between zero and twenty seven. A
score of twenty seven corresponds to a discriminator term.

For algebraA2, a nested level three search quickly found (after 8,704,083evaluations)
a discriminator term containing 31 operations (in19 an optimized GP found a 51 operations
term after 238,000,000 evaluations). The 31 operations discriminator term is:

* ( * ( * ( x , x ) , * ( x , * ( * ( * ( * ( * ( * ( y , * ( x , x ) ) , x ) , x ) , z ) , * ( * ( z , x ) ,
x ) ) , y ) ) ) , * ( * ( * ( z , * ( * ( z , * ( y , * ( * ( * ( * ( z , y ) , x ) , z ) , x ) ) ) , z ) ) , * ( x ,
* ( z , * ( y , x ) ) ) ) , * ( * ( x , y ) , * ( * ( * ( z , y ) , z ) , x ) ) ) )

Fig. 8. Average best score with time for Nested Monte-Carlo search applied to the algebra discriminator prob-
lem.
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Fig. 10. Average best score with time for Iterative Deepeningapplied to the algebra discriminator problem.

The average best score for different levels of nested searchare given in figure 8. For
this problem the behavior of nested search is unusual. A level one search does not improve
on random sampling, a level two search starts worse than random sampling but gets better
after ten thousand evaluations. A level three search startseven worse but eventually gets
better than the previous levels. A level four search behavessimilarly to a level three search.

Figure 9 gives the average score for UCT with different constants. Figure 10 gives it
for Iterative Deepening. We can observe that these two algorithms have difficulties getting
better than a score of 21 which is the score of a very simple expression. For this problem
too Nested Monte-Carlo search gets better results.
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6.4. The Parity problem

The parity problem12 takes as input a specified number of bits. It consists in finding an
expression that returns true if the number of bits that equals to one is even. This problem is
easy for Genetic Programming if the xor function can be used,it is difficult otherwise.

The score of an expression is computed after all the possiblecombinations of the inputs.
When there are six bits, there are26 = 64 different possible inputs. The parity of each input
is matched to the result of the expression for this input. Thescore of an expression is the
number of times it gives the correct answer for the parity.

Given the functions and, or, nor, nand, xor and the inputs b1 to b6, a nested search of
level one finds a solution to the parity of six booleans in 155,158 evaluations: xor ( not b5
, xor ( xor ( b1 , xor ( b4 , xor ( b3 , b2 ) ) ) , b6 ) )

When only the functions and, or, nor, nand are used, the problem is much more difficult
to solve. Figure 11 gives the average best scores found by nested searches of different
levels. We can observe that a level one search improves much on random sampling, that a
level two search improves slightly on a level one search, butthat a level three search gives
the same results as a level two search.

Fig. 11. Average best score with time for Nested Monte-Carlo search applied to the parity six problem.

An example of an expression that scores forty found by a leveltwo nested search is:
and ( nor ( and ( b2 , b3 ) , nor ( nand ( and ( or ( b2 , b3 ) , nand ( b5 , b6 ) ) , and (

nand ( b4 , or ( and ( b3 , nor ( b4 , b2 ) ) , b1 ) ) , or ( b5 , b6 ) ) ) , and (nor ( b4 , b5 ) , b4
) ) ) , or ( b1 , b4 ) )

Figure 12 gives the average score with the number of calls to the score function for
the UCT algorithm. Figure 13 gives it for the Iterative Deepening algorithm. UCT is here
almost equivalent to random sampling and Iterative Deepening is worse and does not have
time to improve on a trivial expression.
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Fig. 12. Average best score with time for UCT applied to the parity six problem.
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Fig. 13. Average best score with time for Iterative Deepeningapplied to the parity six problem.

6.5. The N-prisoners puzzle

The N-prisoners puzzle was made popular by Ebert in his PhD thesis7 and is attributed to
Walter Wesley Winters (1905-1973). In this problem N prisoners are assigned with either
a 0 or a 1. A prisoner can see the number assigned to the other prisoners but cannot see his
own number. Each prisoner is asked independently to guess ifhe is 0 or 1 or to pass. The
prisoners can formulate a strategy before beginning the game. All the prisoners are free if
at least one guesses correctly and none guess incorrectly. Apossible strategy is for example
that one of the prisoners says 1 and the others pass, this strategy has fifty percent chances
of winning.

Genetic Programming has been applied to the N-prisoners puzzle 2. If there are2k − 1

prisoners, using a Hamming code enables to win the game with probability 2k−1
2k

2. We
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evolved expressions for values of N different from2k − 1. The static components of an
expression are the integers from 0 to 10, the operations +, -,/, *, the comparators>, <,
= and the functions %, sqrt, log, exp, pow, and, or, xor, not. The variables are the bits of
the other players (b1 to bN−1), me which is the number of the prisoner that is to choose,
0′s which is the number of 0 among the other prisoners and1′s which is the number of 1
among the other prisoners.

For the six-prisoners puzzle an example of a strategy found by Nested Monte-Carlo
Search is: - ( log O’s , / ( xor ( % ( b2 , me ) , b1 ) , 2 ) ). It saves theprisoners 45 times out
of the 64 different possible configurations.

The average score of the best expressions found by Nested Monte-Carlo search is given
in figure 14. A level one search improves on a level zero searchbut searching at higher
levels does not help for the six-prisoners problem.

Figure 15 gives the average score for UCT. It is worse than Nested Monte-Carlo Search.
Figure 16 gives the scores for Iterative Deepening. For thisproblem Iterative Deepening has
results comparable to Nested Monte-Carlo Search.

Fig. 14. Average best score with time for Nested Monte-Carlo search applied to the six-prisoners problem.

6.6. The MAX problem

The MAX problem13 consists in finding an expression that results in the maximumpossi-
ble number given some limit on the size of the expression. In13 the limit was on the depth
of the corresponding tree and the available atoms were +, * and 0.5. In our experiments we
fixed a limit on the number of atoms of the generated expression, not on the depth of the
tree.

Figure 17 gives the average best score for levels of Nested Monte-Carlo search ranging
from zero to three. In these experiments the maximum number of atoms of an expression
is set to forty one and the available atoms are +, * and 0.5.

We see that a level one search improves on a level zero search and that a level two
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Fig. 15. Average best score with time for UCT applied to the six-prisoners problem.

Fig. 16. Average best score with time for Iterative Deepeningapplied to the six-prisoners problem.

search is even better. The level three search is equivalent to the level two search.
Figure 18 and 19 give the scores for UCT and Iterative Deepening. They are worse than

Nested Monte-Carlo search.
The maximum score found at level one, two and three but not at level zero is 46.875

and one of the corresponding expression is:
* ( + ( + ( + ( + ( 0.5 , 0.5 ) , 0.5 ) , 0.5 ) , 0.5 ) , * ( * ( + ( 0.5 , + ( + ( 0.5, + ( 0.5 , 0.5

) ) , 0.5 ) ) , + ( + ( + ( 0.5 , 0.5 ) , + ( 0.5 , 0.5 ) ) , 0.5 ) ) , + ( + ( 0.5 , +( + ( 0.5 , + ( 0.5 ,
0.5 ) ) , 0.5 ) ) , 0.5 ) ) )

6.7. The target number problem

The target number problem consists in finding an expression that contains a set of prede-
fined numbers and the atoms +, -, *, /. Each number has to be present once and only once
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Fig. 17. Average best score with time for Nested Monte-Carlo search applied to the MAX problem.
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Fig. 18. Average best score with time for UCT applied to the MAXproblem.

and the score of an expression is a large number (i.e. 1000) minus the absolute value of the
difference to a target number. If one number is missing or present more than once the score
of the expression is the number of numbers present only once.

We tested the expression problem with the set of numbers being all the numbers from
1 to 10, and the target number being 737.

The behavior of nested search is given in figure 20. A level onesearch improves much
on a level zero search, a level two search is still a large improvement, level three and level
four searches are close to level two. An expression solving the problem with a score of one
thousand was found with nested search: + ( + ( 10 , 7 ) , * ( * ( * ( 1 ,+ ( 4 , 2 ) ) , * ( 6 , - (
8 , 3 ) ) ) , - ( 9 , 5 ) ) )

Figure 21 gives the average score for UCT. It is equivalent torandom sampling. Figure
22 gives it for Iterative Deepening. It is worse than random sampling.
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Fig. 19. Average best score with time for Iterative Deepeningapplied to the MAX problem.

Fig. 20. Average best score with time for Nested Monte-Carlo search applied to the target number problem.

7. Conclusion

Nested Monte-Carlo search improves much on random search for difficult expression dis-
covery problems. It is competitive with state of the art Genetic Programming since it pro-
duces shorter expressions that have equal or better scores with less evaluations for some
problems such as the finite algebra problem or the prime generating polynomial problem.
Moreover it is a simple and easy to program algorithm that keeps a good balance between
exploration of new expressions and exploitation of alreadyfound ones. It has a natural
restart strategy that ensures diversification and it avoidsbloat. It is also very easy to paral-
lelize it massively, simply running the same algorithm in parallel on many computers with
a different random seed.

Nested Monte-Carlo search gives better results than UCT andthat Iterative Deepening
search for all the test domains examined. A reason for this behavior is that Nested Monte-
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Fig. 21. Average best score with time for UCT applied to the target number problem.
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Fig. 22. Average best score with time for Iterative Deepeningapplied to the target number problem.

Carlo search optimizes an expression at all steps of its building while UCT and Iterative
Deepening only optimize the beginning of an expression.

Concerning future works, it would certainly improve nestedsearches to memorize the
results of previous attempts in order to direct its search. For example using a tree of pre-
viously evaluated expressions would at least make the search faster because it would not
evaluate again a previously encountered expression, moreover knowing the results of pre-
vious attempts contained in the tree could help the algorithm direct its search. It would also
be interesting to understand the properties of a problem that makes nested Monte-Carlo
Search relevant for it.



February 7, 2013 18:54 WSPC/INSTRUCTION FILE MCExpression

Monte-Carlo Expression Discovery21

References

1. Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Monte carlo tree search in hex.
IEEE Trans. Comput. Intellig. and AI in Games, 2(4):251–258, 2010.

2. Edmund Burke, Steven Gustafson, and Graham Kendall. A puzzle to challenge genetic program-
ming. InGenetic Programming, Volume 2278 of LNCS, pages 136–147. Springer, 2002.

3. T. Cazenave. Nested Monte-Carlo expression discovery. InECAI, pages 1057–1058, Lisbon,
2010.

4. T. Cazenave and Abdallah Saffidine. Utilisation de la recherche arborescente Monte-Carlo au
Hex.Revue d’Intelligence Artificielle, 23(2-3):183–202, 2009.

5. Tristan Cazenave. Nested Monte-Carlo search. InIJCAI, pages 456–461, 2009.
6. R. Coulom. Efficient selectivity and back-up operators in monte-carlo tree search. InComputers

and Games 2006, Volume 4630 of LNCS, pages 72–83, Torino, Italy, 2006. Springer.
7. T. Ebert. Applications of recursive operators to randomness and complexity. Phd thesis, Univer-

sity of California at Santa Barbara, 1998.
8. Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general game playing. In

AAAI, pages 259–264, 2008.
9. Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 computer go. In AAAI,

pages 1537–1540, 2008.
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