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Monte-Carlo Tree Search is a general search algorithm thes$ good results in games. Genetic Pro-
gramming evaluates and combines trees to discover expresisaamsaximize a given fitness function.
In this paper Monte-Carlo Tree Search is used to generategsipns that are evaluated in the same
way as in Genetic Programming. Monte-Carlo Tree Search isftvemed in order to search expression
trees rather than lists of moves. We compare Nested MonteGadrch to UCT (Upper Confidence
Bounds for Trees) for various problems. Monte-Carlo Tree@eachieves state of the art results on
multiple benchmark problems. The proposed approach is simpi®gram, does not suffer from ex-
pression growth, has a natural restart strategy to avoa Gytima and is extremely easy to parallelize.

Keywords Monte-Carlo Tree Search ; Expression Discovery ; Nestedt®i€arlo Search ; UCT.

1. Introduction

Recently Monte-Carlo Tree Search (MCTS) has been very safidein games such as
Go %9, General Game Playint'®16:17, Hex %!, and Puzzle$. We propose to adapt the
method to discover expressions that maximize a fitnessiumtt

Expression discovery is usually addressed with GenetigrBroming'2. In Genetic
Programming a set of random expressions is built, then thaf egpressions is evolved for
multiple generations. At each generation the expressims\aluated and sorted accord-
ing to their evaluation (i.e. their fitness or their scord)eThighest rated expressions (i.e.
individuals) of a generation are then bred to create the gemération. Breeding two ex-
pressions consists in exchanging two subtrees of the tweessions represented as trees.
The principle underlying Genetic Programming is that thietisees of the expressions are
building blocks that can be used to build new expressionstr8es that are useful in one
expression are often useful in other expressions and thesessful subtrees guide the
search toward the good expressions. In contrast, NestedeM@arlo Search favors ex-
pressions that have the same successful atoms at the sthe efack representing the
expression.

Genetic Programming can suffer from bloat (i.e. uncongbtrowth of the expressions
with increasing numbers of generations) and from overisfieation which leads to a lack
of diversity in the population and to suboptimal expressidRestart strategies are usually
used to overcome this undesired behavior.
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When using MCTS to generate expressions, the size of the ajedeexpressions as
well as the restarts of the algorithm are naturally handledur experiments the expression
generated with MCTS are usually more simple and provideescat least equivalent to
the scores of the expressions generated with Genetic Pnogireg for the same problems.
Moreover the algorithm is more simple and requires lessiutfian Genetic Programming.

The second section explains Nested Monte-Carlo Searchhifiesection details its
application to expression discovery, the fourth sectiotiroes the application of the UCT
algorithm to expression discovery, the fifth section dedth the application of Iterative
Deepening to expression discovery, the sixth section gixpsrimental results for different
problems.

2. Nested Monte-Carlo Search

The basic idea of Nested Monte-Carlo Search is to perfornngipal playout with a bias
on the selection of each move based on the results of a Mamte-Gee search.

10 10 20 20 30 10 0 30 4

Fig. 1. At each step of the principal playout shown here witioll line, an NMC of leveh performs a NMC
of level n — 1 (shown with wavy lines) for each available move and sele@sbist one. At level 0, a simple
pseudo-random playout is used.

Algorithm 1 Playing a playout with random sampling
sample position)
while not end of gamelo
position < play (position, random move)
end while
return scorey{osition)

The base level of the search plays random games (i.e. pgyailgorithm 1 shows that
random moves are played until the end of the game at this Mien the game is over the
score of the position that has been reached is sent back. adeelével is level zero, it is
called by level one and only by level one.

The algorithm for higher levels is algorithm 2. For examjgliegach move of a playout
of level 1 the algorithm chooses the move that gives the hestsvhen followed by a
random playout (a random playout is a search at level zemjleBly for a playout of level
n it chooses the move that gives the best score when followedddgyout of level, — 1.

A search at leveh calls a search at level — 1 to direct its search.
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Algorithm 2 Nested Monte-Carlo search
nested fosition, level)
best playout— {}
while not end of gamelo
if level = 1then
move < argmay, (sample (playfosition, m)))
else
move < argmay, (nested (playgosition, m), level — 1))
end if
if score of playout aftemove > score of the best playottien
best playout— playout after move
end if
position < play (position, move of the best playout)
end while
return scoregosition)

For a tree of height. and branching facto, the total number of playout steps of a
NMC of leveln will be t,,(h,a) = a x >, tn—1(i,a) With to(h,n) = h. So a NMC
of level 1 will performa x h?/2 playout steps. The complexity of a NMC of levelis
O(a™h™t1),

It is important to memorize the best playout of a given leval & play its moves if no
better playout has been found at the lower level. This meratian is necessary for Nested
Monte-Carlo search to work at level greater than dri¢has also been shown that Nested
Monte-Carlo search works well when the repartition of thares is a binomial distribution,
which is often the case in single player games.

When a search at the highest level is finished and there is &ffieahother search is
performed at the highest level, and so on until the thinkinmgetis elapsed.

Nested Monte-Carlo search has been successful in esiaglisbrld records in single
player games such as Morpion Solitafr& or SameGameé. It provides a good balance
between exploration and exploitation and it automaticatigpts its search behavior to the
problem at hand without parameters tuning.

3. Nested Monte-Carlo Expression Discovery

Expressions are generated with sampling at level zero atidnested searches at higher
levels. The first subsection explains the sampling algoritithe second subsection ex-
plains the nested search algorithm.

3.1. Random sampling

Expressions can be seen as trees. An atom is a node of a tieyenifidl atom is a node that
has no children, usually terminal atoms are the variablestla® constants of a problem.
For example +, -, *, / are non terminal atoms since they haweectwldren, whereas 1, 2, 3,
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x are terminal atoms.

In random sampling the tree is represented as a stack. Seyvgasists in randomly
filling the stack, stopping when the expression is completethere are no more leaves to
complete in the corresponding tree). A maximum number oksad used to prevent too
large expressions. When the minimal number of potential aauéhe final tree is greater
than this threshold, only terminal atoms are added to theeitrerder to have less than the
maximum number of nodes.

The algorithm used for sampling is given in algorithm 3. Theez variable is the
index of the top of the stack, theumber Leaves variable is the number of leaves of
the current tree that have not yet been assigned. When cabimgpling with an empty
stack, thenumber Leaves variable is equal to one (i.e. there is one unassigned I€a#.
mazximumN odes variable is the maximum number of atoms allowed for a gerdrak-
pression. In Nested Monte-Carlo expression discoverygettsea stack of atoms for each
level of the search. This is represented with an array okstegince sampling is a search
at level zero, this istack[0] which is filled with sampling.

Algorithm 3 Random sampling
sample {ndez, number Leaves, mazimumN odes)
while number Leaves > 0 do
if index + number Leaves > maxzimumN odes then
randomly choose a terminal atam
else
randomly choose an atom
end if
stack[0][index] < a
index < index + 1
number Leaves < number Leaves + nbChildreng) - 1
end while
return scoretack[0])

Figure 2 gives an example of a partially assigned tree andeotorresponding stack.
In this example, théndex variable is equal to three and thewmber Leaves variable is
equal to two.

3.2. Nested search

The nested search maintains a stack for each level of sesrehgiven level; and at each
step, all the possible atoms are tried and followed by a Idexgl search. The atom that
results in the best expression is then chosen and the plagmtinues until the tree is
completed (i.e. there are no more leaves to develop in teg tre

For example, if a leveh search has reached the stack of figure 2, and the three @ossibl
atoms are +, - and 4. The next atom to choose at the top of tble istéhe right child of -
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Fig. 2. A partial tree and the corresponding stack.

Fig. 3. The partial trees that are explored with a nestedchesdter the tree of figure 2.

in the tree of figure 2. There are three possible atoms to pheabp of the stack, so the
nested search tries them and starts a level1 search for each tree of figure 3. If one of
these three searches gives a better result than the besssiqur found at level, then the
best expression (i.e. the stack of the best tree) is updaftat.having tried the three level
n — 1 searches, the next atom of the best expression is pushee stattk of leveh and
the leveln search continues for the next atoms.

Intuitively, it means that if the beginning of a stack givesd results, the algorithm
will guide the exploration towards expressions that haeestime beginning of the stack.

The parameters of algorithm 4 are thelex in the stack of levelevel (stack[level]),
the number of unaffected leaves of the current stacki{ber Leaves) and the maximum
number of atoms of the current stackdximumN odes). Initially the algorithm is called
with index zero,number Leaves equals to onenpazimumN odes depending on the prob-
lem and usually ranging from ten to one hundred, &nd! being the level of the highest
level search.

Then the best stack of the level is set to empty and the setath and continues while
there are leaves to fill (i.e.cumber Leaves > 0).

In the loop that fills the stack, the first thing to do is to triy@dssible atoms on the top
of the stack so as to evaluate the stacks that start with ezadiljbe atom and to choose the
best one. After an atom is tried, the number of elements ofthek is updatedifder «
index + 1) as well as the number of leaves. Then the current stack ieddp the lower
level to start a search at the lower level starting at theerrstack. If the level is one,
the stack is completed randomly using thenple function, it the level is greater than one
then the stack is completed with a search at the lower levekn¥he search at the lower
level has completed the stack, if the score of the complatatk s better than the score
of the best stack of the current level, the best stack is epd#t the end of the for loop,
when all possible atoms have been tried, the atom of the kpstgsion of the current level
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Algorithm 4 Nested search
nested {ndex, number Leaves, maximumN odes, level)
best expression- {}
while number Leaves > 0 do
for a in all possible atomdo
if index + number Leaves < maximumN odes or nbChildren ¢) = 0then
stack[level][index] + a
index < index + 1
number Leaves < number Leaves + nbChildreng) - 1
for i <— 0 to indexdo
stack[level — 1][i] + stack[level][i]
end for
if level = 1 then
score = sample {ndex, number Leaves, marimumN odes)
else
score = nested {ndex, number Leaves, mazimumN odes, level - 1)
end if
if score > score of best expressidinen
best expression- stack|level — 1]
end if
index < index — 1
number Leaves < number Leaves - nbChildreng) + 1
end if
end for
stack[level][index] < best expression [index]
number Leaves + number Leaves + nbChildrengtack[level][index]) - 1
index < index + 1
end while
return score{tack|level])

is pushed onto the stack. At the end of the main while loop wherstack represents a
complete tree, the stack is evaluated and its score is sekt ba

4. UCT Expression Discovery

UCT % and its enhancemerfi$ are the current best algorithms for games such as Go, Hex
and General Game Playing. The principle guiding UCT is to e the playouts in a
tree and to guide the search according to the informatiora@tm the nodes of this tree.
The information used is the mean of all the playouts that alebthe node and the number

of playouts. These numbers are used to descend the treeneith@B formula. UCT ad-
dresses the exploration/exploitation tradeoff. Exphgjtthe available information consists

in choosing the node that has the greatest mean. Exploringjsts in trying nodes that
have a lower mean but that can get better if they are triech Bade is evaluated according
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to the UCB formula and the policy consists in descending értbde that maximize this
formula. If u is the mean of the playouts below the nodkild the number of playouts
of the node andarent the number of playouts of the parent node, the UCB formula is:
u+ Constant x 4/ %.

The constant has to be optimized for each application donsairall constants favor
exploitation while greater constants favor explorationGo or General Game Playing for
example, for playout results being 0 or 1, a constant of OaBlapted.

Algorithm 5 gives the UCT algorithm applied to expressioscdivery. The principle
is to memorize all the playouts in a tree. Each playout cpoeds to a stack of atoms
representing an expression. All possible atoms are tried aha node before growing the
tree below the node. When a node has all possible childretetsiechild is selected using
the UCB formula. A particularity of UCT applied to expressidiscovery is that some part
of the tree may soon become completely explored. The algoritetects the fully explored
parts so as not to explore them again.

5. Depth-first Iterative Deepening Expression Discovery

Iterative Deepening is a popular method used in combinatitin search algorithms such
asaf or A* 1 1t consists in performing a depth-first search limited byumber. For
af the limiting number is the depth of the search, for A* it is twst of the path (thg
function). When applying Iterative Deepening to Expressi@tovery it appears natural
to limit the search with the number of atoms of the expressitwe algorithm starts trying
all the valid expressions containing exactly one atom, thervalid expression containing
exactly two atoms, and so on.

The application of Iterative Deepening to expression disopis detailed in algorithm
6.

6. Experimental Results

We have experimented Nested Monte-Carlo expression disgdor different problems.
For each problem and each level of the nested search we havkeeaalgorithm one hun-
dred times. We have evaluated the results of the algorittoosrding to the number of
expressions that have been evaluated. At each power of twioawe recorded the best
score. The algorithms were stopped aft€} expression evaluations. The resulting figures
have an x-axis with a logarithmic scale that counts the nurobexpression evaluations
(i.e. the number of calls to the score function), rangingrfrbto2!°. The y-axis gives the
average best score obtained among one hundred runs.

In this section we comment the results for the different fawois: Kepler's Third Law,
the Santa-Fe ant trail, Prime generating polynomials,t&iaigebra, the Parity problem,
the N-prisoners puzzle, the MAX problem and the target nurpbablem.
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Algorithm 5 UCT search

UCT (node, index, number Leaves, maximumN odes)
while all the possible atoms followingode have not been triedo
if index+number Leaves+numbero fchildreno fatom < maximumN odes then
stack[index] + atom
index < index + 1
number Leaves < number Leaves + nbChildrengtom) - 1
score < sample {ndex, number Leaves, maximumN odes)
n < new node
n.atom < atom
n.sumScores < score
n.nbVisits < 1
if number Leaves = 0 then
n.explored < true
end if
addn to the children ofiode
node.atom < next Atom(node.atom)
node.sumsScores < node.sumScores + score
node.nbVisits < node.nbVisits + 1
if all children are explored and all the possible atoms hava tresdthen
node.explored < true
end if
returnscore
end if
node.atom < next Atom(node.atom)
end while
bestScore « —oo
for all children ofnode do
UCB < child.mean + Constant x
if notchild.explored then
if UC'B > bestScore then
bestScore + UCB
bestChild < child
end if
end if
end for
stack[index] «+ bestChild.atom
index < index + 1
number Leaves <— number Leaves + nbChildrengestChild.atom) - 1
score < UCT (bestChild, index, number Leaves, mazimumN odes)
node.sumsScores < node.sumScores + score
node.nbVisits < node.nbVisits + 1
if all children are explorethen
node.explored < true
end if
returnscore

log(node.nbVisits)
child.nbVisits
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Algorithm 6 Depth-first search
dfs (maximumNodes, nbN odes, number Leaves)
if index + number Leaves > maximumN odes then
return
end if
if number Leaves = 0 then
if nbNodes = maximumN odes then
evaluate the expression in the stack
return
end if
end if
for a in all possible atomso
stack[nbNodes] + a
nbNodes < nbNodes + 1
number Leaves < number Leaves + nbChildreng) - 1
dfs (maximumNodes, nbNodes, number Leaves)
number Leaves < number Leaves - nbChildreng) + 1
nbNodes < nbNodes — 1
end for

6.1. Kepler's Third Law and the Santa-Fe ant trail

Rediscovering Kepler’s Third Law was one of the early amlan of Genetic Program-
ming !2. The score of an expression is computed from the differestgeen the observed
data and the result of applying the expression. Using rargtonpling Kepler’s Third Law,
i.e. the expression * (d, sqrt d ), is rediscovered extrerfesdy, a nested search is useless
for this problem.

The Santa-Fe ant trail is also an early Genetic Programmioigigm '2-4, It consists
in finding an automata that finds all of the 89 food cells disttéd non-uniformly on a
map within a given number of steps. The score of an automaie isumber of food cells
it has visited after the fixed number of steps. The comporafraa automata are TurnLeft,
TurnRight, Move, IfFoodAhead, Prog2 (that executes the following commands) and
Prog3 (that executes the three following commands).

On this problem random sampling finds an optimal solutioresslthan 20,000 sam-
ples on average. A level one nested search improves a litttaredom sampling since the
average score is higher than a level zero search (see figurewlgver, on average, it finds
the optimal solution in the same number of evaluations. Sesded search is of limited
usefulness for this problem since a random search rapitigsthe problem.

6.2. Prime generating polynomials

Cartesian Genetic Programming has been applied to thegmobt finding polynomials
that generate prime numbets The goal of the problem is to find a polynomial that gen-
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Fig. 4. Average best score with time for Nested Monte-Carlar&8eapplied to the Sante-Fe ant trail problem.

erates as many different primes in a row as possible.

In our experiments all the prime numbers lower than 100 werengas constants as
well as the numbers between 1 and 10, the four basic opesation, *, / were also used
as well as the variable x. The score of an expression was tbeuof different primes it
generates in a row for integer values of x starting at zerdrmeréasing by one at each step.

A level two nested search found + (*(-(+(4,13),*(1,x)),-(#)),83)
which generates 51 primes in a row and 40 different primes bétter than the polynomial
found in2° (22 — 3x + 43) that generates 43 primes in a row and 40 different primas. It
also better than the well known Euler polynomiat (- = + 41) that generates 40 primes in
a row, all different. Note that the Euler polynomial as wedlather polynomials that give
forty different primes were also found by level two nestearshes.

The best score averaged over one hundred runs is given ire figtor levels zero to
three of Nested Monte-Carlo Search. The y-axis is the aeesagre obtained and the x-
axis is the number of call to the score function. We can oleskewel one slightly improves
on level zero, level two greatly improves on levels zero anel, @nd level three is slightly
worse than level two.

Figure 6 gives the average score for UCT and figure 7 gives itdoative Deepening.
We can see that UCT peaks at 15 and that Iterative Deepenaig [@¢ 5 when Nested
Monte-Carlo search peaks at 35. We can conclude Nested Mearte Search is better for
this problem.

6.3. Finite algebra

The Finite Algebra problems consist in finding terms thais§asome equalities®. We
did some tests on thé, primal algebra fromt®. The A, algebra has a single operator and
three elements, the operator table is given in table 1.

A discriminator term for an algebra is a tetnsuch that:(z,y, z) = z if z # y, and
t(x,x,2z) = z. Itis known that if an algebra has a discriminator term thies variety
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Fig. 5. Average best score for Nested Monte-Carlo searclego the prime generation problem.
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Fig. 6. Average best score with time for UCT applied to the priyaperation problem.

generated by the algebra has a decidable first order tRéory

Recently, a recursive method was provided to constructidigzator terms for a primal
algebra'®, however the resulting terms are usually very long (i.e.taimis millions of
operations). We are interested in generating shorter terms

An expression is only composed of the binary operator * artti@three variables x, y
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Fig. 7. Average best score with time for Iterative Deepenjngliad to the prime generation problem.

and z.

For each possible combination of x, y and z, the expressievalkiated and the result is
compared to the desired result. There are twenty severijssimbinations (each variable
can take three values), so the score of a expression is beteee and twenty seven. A
score of twenty seven corresponds to a discriminator term.

For algebrad,, a nested level three search quickly found (after 8,704¢d@Biations)
a discriminator term containing 31 operations'(iran optimized GP found a 51 operations
term after 238,000,000 evaluations). The 31 operatior@idimator term is:

O xX) O (y L T (% x) ) x) L x) s z) L f (R (2 LX),
x)).y))) 2 (((z, (" (z, " (y, " (*(*(*(z,y),x),z),x))), z)).*(X,
(z,7(y.x)))), *(*(x,y),*(*(*(z.,y).2).x))))

26 T T T

24 -

level 4 —+—
level 3

level 2 —*—
level 1 ——
level 0 4

mean best score

1 10 100 1000 10000 100000 le+08

Number of evaluations

Fig. 8. Average best score with time for Nested Monte-Carévceapplied to the algebra discriminator prob-
lem.
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Fig. 9. Average best score with time for UCT applied to the latgeliscriminator problem.
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Fig. 10. Average best score with time for Iterative Deepemipplied to the algebra discriminator problem.

The average best score for different levels of nested seaechyiven in figure 8. For
this problem the behavior of nested search is unusual. A émesearch does not improve
on random sampling, a level two search starts worse tharoraisdmpling but gets better
after ten thousand evaluations. A level three search #tgets worse but eventually gets
better than the previous levels. A level four search behsiveitarly to a level three search.

Figure 9 gives the average score for UCT with different camist Figure 10 gives it
for Iterative Deepening. We can observe that these two ithgos have difficulties getting
better than a score of 21 which is the score of a very simpleesspn. For this problem
too Nested Monte-Carlo search gets better results.
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6.4. The Parity problem

The parity problem'? takes as input a specified number of bits. It consists in fopdin
expression that returns true if the number of bits that eeabne is even. This problem is
easy for Genetic Programming if the xor function can be usésldifficult otherwise.

The score of an expression is computed after all the possilnidinations of the inputs.
When there are six bits, there &&= 64 different possible inputs. The parity of each input
is matched to the result of the expression for this input. 3¢eee of an expression is the
number of times it gives the correct answer for the parity.

Given the functions and, or, nor, nand, xor and the inputsolii6t a nested search of
level one finds a solution to the parity of six booleans in 158,evaluations: xor ( not b5
, Xor (xor (b1, xor (b4, xor(b3,b2))),b6))

When only the functions and, or, nor, nand are used, the proislenuch more difficult
to solve. Figure 11 gives the average best scores found ligchesarches of different
levels. We can observe that a level one search improves mudmnoom sampling, that a
level two search improves slightly on a level one searchthatta level three search gives
the same results as a level two search.

a0 T T T

39+

38+ / g

37 + / i
> A

36

level 3 ——
level 2

35 level 1 —%—

mean best score

34

33

32

21 1 I 1 1 I
1 10 100 1000 10000 100000 le+08

Number of evaluations

Fig. 11. Average best score with time for Nested Monte-Caglych applied to the parity six problem.

An example of an expression that scores forty found by a lv@hested search is:

and (nor (and (b2, b3), nor (nand (and (or (b2, b3), nand ( 65),)b and (
nand (b4, or (and (b3, nor(b4,b2)),bl)),or(b5,b6))),andr((b4,b5), b4
))).or(bl,b4))

Figure 12 gives the average score with the number of calledcstore function for
the UCT algorithm. Figure 13 gives it for the Iterative Deeipg algorithm. UCT is here
almost equivalent to random sampling and Iterative Deeygisiworse and does not have
time to improve on a trivial expression.
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Fig. 12. Average best score with time for UCT applied to thetpaix problem.

324

323 r ]

322 1 b

321 ¢ b

32 B

best score

319 r ]

3Ly lterative deepening —+— )

317 ¢ b

316 L L L L L
1 10 100 1000 10000 100000 1e+06

Number of evaluations

Fig. 13. Average best score with time for Iterative Deepeipplied to the parity six problem.

6.5. The N-prisoners puzze

The N-prisoners puzzle was made popular by Ebert in his PBBighand is attributed to
Walter Wesley Winters (1905-1973). In this problem N prisenare assigned with either
a0oral. Aprisoner can see the number assigned to the othen@rs but cannot see his
own number. Each prisoner is asked independently to guéssigf 0 or 1 or to pass. The
prisoners can formulate a strategy before beginning theegaththe prisoners are free if
at least one guesses correctly and none guess incorregsgible strategy is for example
that one of the prisoners says 1 and the others pass, thisgstiaas fifty percent chances
of winning.

Genetic Programming has been applied to the N-prisonegtif there are2® — 1
prisoners, using a Hamming code enables to win the game athapility 2;;1 2, We
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evolved expressions for values of N different fr@h — 1. The static components of an
expression are the integers from 0 to 10, the operations/i+*,-the comparators-, <,

= and the functions %, sqrt, log, exp, pow, and, or, xor, nbe Variables are the bits of
the other playersb{ to by_1), me which is the number of the prisoner that is to choose,
0’s which is the number of 0 among the other prisoners Hadvhich is the number of 1
among the other prisoners.

For the six-prisoners puzzle an example of a strategy foynddsted Monte-Carlo
Searchis: - (log O's,/(xor (% (b2, me),bl), 2)). It savesphisoners 45 times out
of the 64 different possible configurations.

The average score of the best expressions found by NestetéN@mlo search is given
in figure 14. A level one search improves on a level zero sebantisearching at higher
levels does not help for the six-prisoners problem.

Figure 15 gives the average score for UCT. It is worse thanddédonte-Carlo Search.
Figure 16 gives the scores for Iterative Deepening. Fopttablem Iterative Deepening has
results comparable to Nested Monte-Carlo Search.

45 T T T

40

35

30

25

20

mean best score

15

10

ol — L 1 1 L
1 10 100 1000 10000 100000 le+08

Number of evaluations

Fig. 14. Average best score with time for Nested Monte-Caglych applied to the six-prisoners problem.

6.6. The MAX problem

The MAX problem!? consists in finding an expression that results in the maxirpassi-
ble number given some limit on the size of the expressiof? the limit was on the depth
of the corresponding tree and the available atoms were +g0ah In our experiments we
fixed a limit on the number of atoms of the generated exprassiot on the depth of the
tree.

Figure 17 gives the average best score for levels of Nestedévidarlo search ranging
from zero to three. In these experiments the maximum numibatoms of an expression
is set to forty one and the available atoms are +, * and 0.5.

We see that a level one search improves on a level zero seadcthat a level two
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Fig. 15. Average best score with time for UCT applied to thepsigoners problem.
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Fig. 16. Average best score with time for Iterative Deepemipplied to the six-prisoners problem.

search is even better. The level three search is equivaléhéetevel two search.
Figure 18 and 19 give the scores for UCT and Iterative Deegefiihey are worse than

Nested Monte-Carlo search.
The maximum score found at level one, two and three but naval zero is 46.875

and one of the corresponding expression is:
*(+(+(+(+(05,05),05),05),05),*(*(+(05,+(+(0,5+(0.5,05
)),05)),+(+(+(05,05),+(05,05)),05)),+(+(05(+(0.5,+(05,

05)),05)),05)))

6.7. Thetarget number problem

The target number problem consists in finding an expressiaincontains a set of prede-
fined numbers and the atoms +, -, *, /. Each number has to bengresce and only once
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Fig. 17. Average best score with time for Nested Monte-Caglych applied to the MAX problem.
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Fig. 18. Average best score with time for UCT applied to the Mpgrgblem.

and the score of an expression is a large number (i.e. 100Qsttiie absolute value of the
difference to a target number. If one number is missing csgmemore than once the score
of the expression is the number of numbers present only once.

We tested the expression problem with the set of numbergladithe numbers from
1to 10, and the target number being 737.

The behavior of nested search is given in figure 20. A levelsmaech improves much
on a level zero search, a level two search is still a large dgment, level three and level
four searches are close to level two. An expression solviagtoblem with a score of one
thousand was found with nested search: + (+ (10, 7),*(*(*&X4,2)),*(6,-(
8,3))).-(9.5)))

Figure 21 gives the average score for UCT. It is equivaleratolom sampling. Figure
22 gives it for Iterative Deepening. It is worse than rand@amgling.
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Fig. 19. Average best score with time for Iterative Deepemipplied to the MAX problem.
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Fig. 20. Average best score with time for Nested Monte-Cagych applied to the target number problem.

7. Conclusion

Nested Monte-Carlo search improves much on random seardliffioult expression dis-
covery problems. It is competitive with state of the art GenBrogramming since it pro-
duces shorter expressions that have equal or better scitetess evaluations for some
problems such as the finite algebra problem or the prime géngrpolynomial problem.
Moreover it is a simple and easy to program algorithm thap&eegood balance between
exploration of new expressions and exploitation of alrefand ones. It has a natural
restart strategy that ensures diversification and it avolioist. It is also very easy to paral-
lelize it massively, simply running the same algorithm imgdiel on many computers with
a different random seed.

Nested Monte-Carlo search gives better results than UCThatdterative Deepening
search for all the test domains examined. A reason for tHis\der is that Nested Monte-
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Fig. 21. Average best score with time for UCT applied to thgeanumber problem.
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Fig. 22. Average best score with time for Iterative Deeperipglied to the target number problem.

Carlo search optimizes an expression at all steps of itglibgilwhile UCT and Iterative
Deepening only optimize the beginning of an expression.

Concerning future works, it would certainly improve nesse@rches to memorize the
results of previous attempts in order to direct its seardn.@xample using a tree of pre-
viously evaluated expressions would at least make the lsdaster because it would not
evaluate again a previously encountered expression, var&oowing the results of pre-
vious attempts contained in the tree could help the algordivect its search. It would also
be interesting to understand the properties of a problemntiz&es nested Monte-Carlo
Search relevant for it.
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