
Applying Anytime Heuristic Search to Cost-Optimal

HTN Planning

Alexandre Menif3, Christophe Guettier1, Éric Jacopin2, and Tristan Cazenave3

1 Safran Electronics & Defense, 100 Avenue de Paris, 91300 Massy Cedex, France
2 MACCLIA, CREC Saint Cyr, Écoles de Coëtquidan, F-56381 GUER Cedex, France

3 LAMSADE, Université Paris-Dauphine, 75016, Paris, France

Abstract. This paper presents a framework for cost-optimal HTN planning. The

framework includes an optimal algorithm combining a branch-and-bound with a

heuristic search, which can also be used as a near-optimal algorithm given a time

limit. It also includes different heuristics based on weighted cost estimations and

different decomposition strategies. The different elements from this framework

are empirically evaluated on three planning domains, one of which is modeling a

First-Person Shooter game.
The empirical results establish the superiority on some domains of a decomposi-

tion strategy that prioritizes the most abstract tasks. They also highlight that the

best heuristic formulation for the three domains is computed from linear combi-

nations of optimistic and pessimistic cost estimations.

1 Introduction

We study cost-optimal planning in the context of Hierarchical Task Network (HTN)

planning [6]. An HTN is a specification of a planning problem based on the encod-

ing of compound tasks and decomposition methods. A legal solution is a plan made of

applicable actions that satisfies the constraints enforced by the HTN structure. In cost-

optimal HTN planning, we are interested in those solution plans with minimum action

costs. We aim at applying HTN planning for the animation of virtual agents in sim-

ulated environments, and these agents could express more consistent behaviors when

optimizing their plans.

Several works have already investigated the issue of cost-optimal search for HTN

planning. SHOP2 [13], a state-based HTN planner, includes a branch-and-bound mech-

anism to improve the quality of the best solution found so far. This approach provides

an anytime mechanism for optimizing plans, which is a valuable feature for computer

game agents [9]. However, the search space is still explored in depth-first, and guidance

relies solely on the ordering of the decomposition methods in the domain description.

Other extensions of SHOP2 [3, 17] have tackled the problem of finding a more pre-

ferred plan. The planner implements a best-first search, but the preference criterion is

not based on the action costs. Another approach related to HTN planning, Angelic Hier-

archical Planning (AHP), is also subject to cost-optimal planning [10]. A search proce-

dure called AHA* (Angelic Hierarchical A*) is implemented as an A*-based algorithm

and uses user-defined estimations of the cost of high-level actions. Optimistic estima-

tions provide an admissible heuristic to guide the search, while pessimistic estimations

are used as a tie breaking rule or to prune dominated high level plans.

The approach described in this article follows the idea of defining cost estimations

for compound tasks introduced by AHP. The first contribution is a framework that in-

cludes these estimations into a more general form of HTN planning, and proposes new

types of non-admissible weighted heuristics [15] based on these estimations. The sec-

ond contribution is the description of a best-first search algorithm adapted to HTN plan-

ning, which combines a branch-and-bound with a best-first search algorithm guided by

non admissible heuristics. The third contribution is an empirical study of optimal search

with different weighted heuristics and task decomposition strategies, and the evaluation

of their performances on different planning domains.

This article is organized as follows. Section 2 presents a general formalism for HTN

planning with action costs. Section 3 provides the implementation of the search algo-

rithm, and introduces the definitions and properties of the cost based heuristics and

task decomposition strategies. Section 4 presents the different planning domains used

in our experiments the results obtained on these domains for different cost heuristics

and selection strategies for task decomposition, as well as a discussions on those re-

sults. Finally, Section 5 concludes on the application of heuristics based on weighted

cost estimations for cost-optimal HTN planning.

2 General HTN Formalism

This section presents a basic and general formalism for HTN planning with action costs.

This formalism is designed to be general enough to cover most HTN formalisms, in-

cluding SHOP-like planners (referred to as “Simple Task Network Planning” in [7])

or the more general HTN framework developed with UMCP [5]. For this purpose, it

is strongly inspired by the formalism proposed by [1]. This formalism abstracts away

the description of states as well as the nature of logical constraints carried by task net-

works and decomposition methods, and focuses on the network decomposition process

common to all HTN systems.

2.1 HTN Domain

For the sake of generality, a task network is simply considered here as a directed acyclic

graph, with nodes labeled with task symbols:

Definition 1 (Task network). A task network ν over a set of tasks T is a pair (N,≺)
such that:

– N is a set of nodes, and each node n ∈ N is associated with a task tn ∈ T .

– ≺ is a partial order on the nodes of N .

An HTN planning domain includes a state transition system for actions (also called

primitive tasks), a set of compound tasks and decomposition methods, as well as a

state-independent cost function for actions:

Definition 2 (Domain). An HTN planning domain is a tuple D = (S,A,C,M, T , C)
such that:

– S is a set of states.

– A is a set of actions.

– C is a set of compound tasks such that A ∩ C = ∅.

– M is a set of decomposition methods. A decomposition method is a triple m =
(cm, Nm,≺m) such that cm ∈ C and (Nm,≺m) forms a task network.

– T ∈ S ·A → S is a state transition function.

– C ∈ A → R
+ is a cost function.

When a task network does not contain compound tasks, it is said to be primitive.

Considering a primitive task network ν = (N,≺), it is possible to linearize this task

network into a sequence of actions (a plan) a1...a|N |, such that the linear order is con-

sistent with ≺. Then, a primitive task network is said to be executable on some state if

it can be linearized into a plan executable in this state:

Definition 3 (Executability). A primitive task network ν = (N,≺) is said to be exe-

cutable if and only if there exists a linearization a1...a|N | of ν such that:

∀i ∈ J1, |N |K, ai is applicable to si−1 and si = T (si−1, ai).

A task network that contains at least one node associated to a compound task can be

refined into a new task network. To obtain this new task network, a compound task is

selected and replaced by the task network defined by a relevant decomposition method:

Definition 4 (Decomposition). Let ν1 = (N1,≺1) be a task network with a node n ∈
N1 such that tn ∈ C, and let m = (cm, Nm,≺m) be a decomposition method such that

cm = tn. The decomposition of node n in ν1, according to method m, produces a task

network ν2 = (N2,≺2) such that:

N2 = (N1 \ {n}) ∪Nm

≺2 = (≺1 \{(n1, n2) ∈≺1| n1 = n ∨ n2 = n})∪ ≺m ∪

{(n1, n2) | n1 ≺1 n, n2 ∈ Nm}∪

{(n1, n2) | n ≺1 n2, n1 ∈ Nm}

Finally, we consider the primitive cost of a task network. This cost is the value that

an optimal solution has to minimize. For a given task network, it is defined as the sum

of its action costs:

Definition 5 (Primitive cost). Let ν = (N,≺) be a task network. The primitive cost of

ν, denoted g(ν), is defined as:

g(ν) =
∑

n∈N :tn∈A

C(tn)

2.2 HTN Problem and Solution

The definition of an HTN problem includes an HTN domain, a state representing the

initial configuration of the world, and a network of tasks to be achieved:

Definition 6 (Problem). An HTN planning problem is a triple P = (D, s0, ν0) such

that:

– D is an HTN planning domain.

– s0 ∈ S is the initial state.

– ν0 is the initial task network.

The nature of an HTN solution differs from that of classical planning. In HTN plan-

ning, a solution is not any plan reaching a goal state, but is a primitive task network that

fits into the specification described by the set of decomposition methods:

Definition 7 (Solution to an HTN problem). A primitive task network ν is a solution

to an HTN planning problem P if and only if it is executable in s0 and can be obtained

from a finite succession of refinements from ν0. A solution ν∗ is said to be optimal if

and only if:

g(ν∗) = min{g(ν) | ν is a solution of P}

3 Search

This section describes the search mechanism of our HTN framework. It introduces the

algorithm, discusses its properties, and finally focuses on the two features available to

control the search: cost-based heuristics, and task decomposition strategies.

3.1 Algorithm

The search procedure is described in Algorithm 1. The implementation is inspired by

Anytime A* [8]. In this algorithm, the optimal solution is not expected to be the first so-

lution returned. A non-admissible heuristic guides the search, and a branch-and-bound

step uses the cost of the best solution found so far as an upper bound to prune the search

space.

Algorithm 1 uses three elements to control the search: an admissible heuristic h1

to prune task networks, a non-admissible heuristic h2 to guide the search, and a de-

composition strategy. The decomposition strategy chooses the task to decompose when

refining a task network (in the step at line 15 of the algorithm description).

Because of the existence of recursive tasks, some task networks can be infinitely ex-

panded, and thus termination cannot be guaranteed for any HTN domains. The search

space of Algorithm 1 corresponds with the decomposition problem space defined by [1].

For this space, they have proved that the search space is finite if and only if the initial

task networks is “≤1−stratifiable” (we refer the reader to [1] for more insight on this

property). With a finite search space, proof of termination for Algorithm 1 is straight-

forward, as the Closed set prevents the search from looping on the same task network.

However, the “≤1−stratifiable” property is quite restrictive, and none of our planning

Algorithm 1 Anytime Optimal HTN Algorithm

Input: A planning problem P = (D, s0, ν0)
Output: Best solution found.

1: f1(ν0)← g(ν0) + h1(ν0)
2: f2(ν0)← g(ν0) + h2(ν0)
3: Open← {ν0}
4: Closed← ∅
5: solution, cost← ∅,+∞
6: while Open 6= ∅ and not interrupted do

7: ν ← select ν in Open with lowest f2(ν)
8: Open← Open \ {ν}
9: Closed← Closed ∪ {ν}

10: if ν is primitive then

11: if ν is executable on s0 then

12: solution, cost← ν, g(ν)
13: end if

14: else

15: n← select a node associated to a compound task in ν

16: for all m ∈M such that cm = tn do

17: ν′ ← the decomposition of ν by m in n

18: f1(ν
′)← g(ν′) + h1(ν

′)
19: f2(ν

′)← g(ν′) + h2(ν
′)

20: if f1(ν
′) < cost and ν′ 6∈ Closed then

21: Open← Open ∪ {ν′}
22: end if

23: end for

24: end if

25: end while

26: return solution

domains could satisfy it. In this situation, our implementation of this algorithm does not

include the Closed set, as it requires an extra memory usage without guaranteeing ter-

mination anyway. How we eventually deal with recursive tasks to ensure the algorithm

termination is explained later in this article. The proof for completeness and correctness

is also straightforward : the branch-and-bound only prunes task networks when at least

one solution has been found, and the algorithm only returns primitive and executable

task networks obtained from a succession of refinements from the initial task network,

which is exactly the definition of a solution. When Algorithm 1 runs, it returns a suc-

cession of solutions with improving costs, and if it is not interrupted, eventually returns

an optimal solution. The proof for this last statement can be found in [8].

3.2 Heuristics

So far we can only compute the primitive cost of a task network. In order to obtain

an accurate evaluation of a task network, it is also necessary to estimate the cost of

the non-primitive tasks. To proceed, one can simply assign some costs on compound

tasks. In the general case, these costs cannot be exact: indeed, compound tasks can

eventually be decomposed in different action sequences, and each sequence can have

a different total cost. A possible estimation can underestimate the final cost of any

primitive decomposition obtained from a compound task. Following AHP, we refer to

this estimation as an optimistic cost.

Definition 8 (Optimistic cost). A cost assignment function Copt : C → R
+ is opti-

mistic if and only if for all t ∈ C and for each task network ν such that ν is a primitive

decomposition of t:

Copt(t) ≤ g(ν)

We also extend this optimistic cost to primitive tasks, where it is simply equal to the

primitive cost : ∀a ∈ A, Copt(a) = C(a).
For a task network ν = (N,≺) and with an optimistic cost assignment function, the

sum of all compound task costs in ν underestimates the primitive cost of any primitive

refinement of ν. Therefore, the admissible heuristic h1 can be computed according to

this optimistic cost function:

h1(ν) =
∑

n∈N :tn∈C

Copt(tn)

The second heuristic h2 could also be computed in this way (this is actually the

heuristic used by AHA*). However, using an admissible heuristic to guide the search is

counterproductive in the context of Algorithm 1: in this case, the first solution returned

by the algorithm is optimal, the branch-and-bound mechanism is not used to reduce the

search space, and we make no advantage of the anytime feature.

A usual way to make this heuristic not admissible is to apply a weight ω > 1 on h1:

h2 = ω · h1. However, this simple weight has a drawback in HTN planning: as long as

expanded task networks do not contain primitive tasks, their primitive cost is equal to 0

and the weight does not modify the expansion order. To resolve this issue, we can rather

use a dynamic weight [16]. A dynamic weight is a decreasing function that converges to

1 when the depth of the search increases. To achieve a similar effect in HTN planning,

one can assign a different weight ωc to each compound task c, with higher weights at

the top of the task hierarchy than at lower levels. Therefore, we can now define h2 as:

h2(ν) =
∑

n∈N :tn∈C

ωtn · Copt(tn)

A cost assignment function can also be pessimistic. As such, it always overestimates

the final cost of a compound task:

Definition 9 (Pessimistic cost). A cost assignment function Cpes : C → R
+ is pes-

simistic if and only if for all t ∈ C and for all task networks ν such that ν is a primitive

decomposition of t:

Cpes(t) ≥ g(ν)

Again, we extend this pessimistic cost to primitive tasks, where it is equal to the

primitive cost : ∀a ∈ A, Cpes(a) = C(a). We will explain how to deal with potential

infinite pessimistic costs latter in this paper.

A heuristic computed from a pessimistic cost function could not be admissible, but

could still be used to guide the search. With such a heuristic, the search would be more

“depth-first-like”. Actually the search will exactly be a depth-first search, if for every

compound task, its pessimistic cost strictly overestimates the cost of all its refinements.

Definition 10 (strictly pessimistic monotonic cost). A cost assignment function Cpes :
C → R

+ is strictly pessimistic and monotonic if and only if for all c ∈ C and for all

m ∈ M such that cm = c:

Cpes(c) >
∑

n∈Nm

Cpes(tn)

Proposition 1. Let Cpes be a strictly pessimistic and monotonic cost assignment func-

tion. If for all task networks ν, h2(ν) =
∑

n∈N :tn∈C

Cpes(tn), then Algorithm 1 performs

a depth-first search.

Proof. Let ν be the task network with the lowest f2 value in the Open list. Any refine-

ment of ν has a strictly lower f2 value than ν, so it also has a strictly lower value than

any other task network in the Open list. Therefore the next selected task network from

the Open list is a refinement of ν.

This last observation motivates a new definition for h2 as a weighted sum of an

optimistic cost and a strictly pessimistic and monotonic cost with a family of weights

(λc) such that ∀c ∈ C, λc ∈ [0, 1]. The idea is to set a cursor between a pure admissible

search (λ = 1), and a pure depth-first search (λ = 0):

h2(ν) =
∑

n∈N :tn∈C

(1− λtn) · Copt(tn) + λtn · Cpes(tn)

At this point, the reader might be interested in knowing how we obtain the opti-

mistic and strictly pessimistic costs required to formulate the different heuristics we

have introduced. The general idea behind the procedure we use is presented by algo-

rithm 2. For all compound tasks, the sum of the optimistic and pessimistic costs are

first computed for every associated decomposition method. Then, the optimistic cost is

set to be the minimum optimistic sum, while the pessimistic estimation is set according

to the maximum pessimistic sum. This procedure ensures that both optimistic and pes-

simistic costs are monotonic. To ensure that the pessimistic cost is strictly monotonic,

a negligible value ǫ (for instance ǫ = 0.001) is added to the maximal pessimistic sum.

This step is repeated until a fix point is reached. This simple procedure helps to capture

the general idea about how these costs are computed, but it has at least two flaws that

do not make it appropriate for a direct use.

First, this procedure runs on the whole set of tasks. This is a problem because in a

planning domain description, actions and compound tasks are specified through param-

eterized schemas. These schemas can be instantiated by substituting their parameters

with all the constants associated with each object from the domain of discourse. As this

collection of objects is specified specifically for each problem instance, every instance

generates a different set of instantiated tasks, and the procedure should be executed be-

fore every search. When planning is used for the animation of a character in a real-time

simulated environment, this procedure would consume a share of the limited amount of

time available for planning. In fact, we would rather use a procedure based on a static

analysis of a lifted planning domain and save the results in order to reuse it at every

planning request. This can be made possible with a few adjustments when action costs

are specified in the planning domains with ground numerical values. In this case, ground

tasks in algorithm 2 can simply be replaced by their lifted versions, and this algorithm

will return ground numerical cost estimations for every task schema.

The second flaw is more serious. Algorithm 2 theoretically works for computing

optimistic costs, as their values can only decrease and are bounded by 0. This prop-

erty guarantees the occurrence of a fixed point for optimistic costs after a finite number

of iterations. However, convergence cannot occur for pessimistic costs if the planning

domain contains recursive tasks that introduce solutions of arbitrary size, because pes-

simistic estimations are unbounded and could increase to infinity. However, these very

long (and costly) plans can be rejected as, at some point, they have no chance to be in-

volved in any feasible optimal solution. A pessimistic estimation that does not overesti-

mate these decompositions would still preserve the effect of strictly monotonic estima-

tions (ensuring depth-first exploration of the search space), as it would still overestimate

the evaluation of these refinements that potentially lead to feasible solutions with rea-

sonable costs. Therefore, this issue can simply be solved by providing algorithm 2 with

reasonable upper bounds for all tasks with pessimistic costs tending to infinity. Another

solution, which is the one we have implemented, adds an additional integer parameter

to recursive tasks. This parameter is set to 0 at the first occurrence of the task, and is

incremented at each recursive call, until reaching a recursion threshold beyond which

the task cannot be decomposed anymore (again, this threshold is set at a reasonable

value to maintain completeness and optimality). Both solutions implement the same

logic in different ways, however the second one has an additional advantage : it also

limits the amount of recursive decompositions at planning time, ensuring termination

for algorithm 1.

Algorithm 2 Algorithm for computing cost estimations

Input: A planning domain D with a finite set of tasks A ∪ C and a constant ǫ.

Output: A pair of optimistic and pessimistic (Copt, Cpes).
1: for all t ∈ A ∪ C do

2: Copt(t), Cpes(t)← (C(t), C(t)) if t ∈ A else (0,∞)
3: end for

4: while a fixed point has not been reached do

5: for all c ∈ C do

6: Copt(c)← min{
∑

n∈Nm

Copt(tn) | m ∈M : cm = c}

7: Cpes(c)← max{
∑

n∈Nm

Cpes(tn) | m ∈M : cm = c}+ ǫ

8: end for

9: end while

10: return (Copt, Cpes)

3.3 Decomposition Strategies

Search control in algorithm 1 is not restricted to the evaluation functions f1 and f2.

Indeed, search efficiency is also influenced by the policy used to select the task to de-

compose in a task network (at line 15 in the algorithm). We refer to this kind of policy

as a decompostion strategy, because it dictates the decomposition of tasks during the

planning process.

A popular decomposition strategy consists in selecting a task that is not constrained

to be ordered after any other non-primitive tasks. This is the strategy implemented in

all planners derived from SHOP. In this case, the tasks are decomposed in the order of

their execution and a linear plan prefix made of primitive tasks can be obtained to com-

pute all intermediate states. Therefore, expressive preconditions encoded in actions and

methods can be efficiently evaluated on these states. This decomposition strategy has

been very successful in the application of HTN planning to real-world applications [11,

14], and it would be interesting to evaluate its performance with a heuristic search al-

gorithm. In the remainder of this paper, this strategy will be referred to as first (because

it selects one of the “first” non primitive tasks).

But first may not be the most appropriate strategy to obtain task networks with

accurate cost estimations. Indeed, the most abstract tasks will not be decomposed until

all the previous tasks have reached the primitive level. Because these tasks are likely to

be the ones with the least accurate cost estimations, the overall evaluation function may

not be accurate enough to guide the search efficiently. Therefore, we also consider a

decomposition strategy that prioritizes the decomposition of tasks located at the highest

levels in the task hierarchy. The intuition behind this strategy is to minimize the amount

of planning steps required to achieve an accurate cost estimation. To implement this

strategy, we assign a “level” to every task according to the following rule: if a task t1
belongs to any successive decompositions of a task t2, then the level assigned to t1
cannot be greater than the one assigned to t2. This decomposition strategy is referred

here as highest (because it selects one of the tasks with the “highest” level).

4 Empirical evaluation

In this section, we present an empirical study of the algorithm performance according

to different heuristics and decomposition strategies. We first provide a brief description

of our implemented HTN planning system. Then, we introduce the three planning do-

mains used in the experiments, as well as the different planning profiles forming the

benchmark. Eventually, we present and discuss the results.

4.1 Planning System

So far, we have introduced our ideas on a general HTN formalism. Our intention was to

demonstrate that these ideas can be applied to many different HTN frameworks : non-

linear HTN planners (such as UMCP [5], NONLIN [18], SIPE [20] or O-PLAN [4]...),

planners following the simple, totally ordered, scheme of SHOP, or planners from the

AHP framework. But we have to commit to one particular system in order to implement

and evaluate the different heuristics and decomposition strategies described above. Our

system has been initially designed as an implementation of the algorithm of SHOP [12],

using Python as a programming language. As a result, decomposition methods are de-

scribed with preconditions formulas that must be evaluated on states, and use totally

ordered sequences of subtasks. Moreover, the choice of the decomposition strategy was

originally restricted to first, as it is for SHOP and its derivatives. To remove this limi-

tation, we have extended compound tasks with a state transition semantic based on ab-

stract effects, comparable to the optimistic effect descriptions of the AHP framework.

However, the description of this semantic is out of the scope of this paper.

4.2 Planning Domains

To guide the search efficiently, an HTN domain must contain some tasks that can accu-

rately estimate the final cost of their decompositions, and be reachable at an early level.

Hence, it is possible to compute accurate heuristics at an early stage of the search,

when only a reasonable amount of task networks have been expanded. These “abstract

actions” are a common feature of all domains used in the experiment.

The first one is Robotbox [2]. In this domain, a (virtual) robot moves boxes in a

house-like environment made of rooms connected by doors. Doors can be open, closed

or locked. The robot can open unlocked doors and move boxes through them. Two

different move actions are available: “CarryThruDoor” and “PullThruDoor”.

The first action requires that the box has been previously loaded by the robot, while

the second one requires that it has been attached to the robot. These two actions can be

aggregated under a compound task “MoveThruDoor”. Using this “abstract action”,

one can obtain a good estimation of the cost of the final plan without having yet to

commit to one or the other actual move action. Table 1 provides a list of all the tasks we

have modeled for this domain, along with their level in the task hierarchy and the values

of their cost estimations. The task “AchieveAt” is recorded for each instantiation

of its depth parameter, with a range varying from 0 (first call) to 5 (maximal depth).

Therefore, this recursive task can introduce at most 5 steps for navigating on the graph

of rooms. 6 being the maximum number of rooms in our generated examples, an optimal

plan cannot contain a sequence of more than 5 move actions to navigate between two

rooms. Hence, a value of 5 for the depth limit is sufficient to ensure completeness and

optimality.

Instances for this domain are randomly generated with 6 rooms, an average of 3

doors per rooms, a probability of 0.66 for a door to be unlocked and a probability of

0.5 for an unlocked door to be open. Only the number of boxes to move is left as a

parameter to characterize instances of different sizes.

The next planning domain is an HTN extension of the PDDL Logistics domain,

where packages are transported by trucks and airplanes between locations in differ-

ent cities. Locations in cities are linked according to connected graphs of roads, and

airports are linked together by a connected graph of airways. Actions are assigned dif-

ferent costs, with a major cost for air travel. The task hierarchy reflects the hierarchical

structure of the domain, and contains “abstract actions” for flying, loading and un-

loading packages at the city level. These tasks provide accurate cost estimations at a

level that still ignore traveling inside cities. Again, a list of all tasks with their level

Task Level Cops Cpes λt

CarryThruDoor(b, d, r1, r2) 0 1 1 1

PullThruDoor(b, d, r1, r2) 0 1 1 1

LoadBox(b) 0 1 1 1

AttachBox(b) 0 1 1 1

OpenDoor(d) 0 1 1 1

AchieveLoaded(b) 1 0 1.001 1

AchieveAttached(b) 1 0 1.001 1

MoveThruDoor(b, d, r1, r2) 2 1 2.002 1

AchieveOpen(d) 3 0 1.001 1

AchieveAt(b, r, 5) 4 0 0.001 0.5

AchieveAt(b, r, 4) 4 0 3.005 0.5

AchieveAt(b, r, 3) 4 0 6.007 0.5

AchieveAt(b, r, 2) 4 0 9.010 0.5

AchieveAt(b, r, 1) 4 0 12.013 0.5

AchieveAt(b, r, 0) 4 0 15.016 0.5

Table 1. A list of all tasks modeled for Robotbox, along with their associated level, optimistic

and pessimistic costs, and value for the distributed linear weighted heuristic.

and cost estimations is available in Table 2. For this domain, two recursive tasks have

been modeled : “AchieveTruckAt”, which encode the navigation of trucks inside

a city, and “AchieveAirplaneAtCity”, which encode the navigation of airplanes

on the graph of airways. The sizes of these two types of graphs are bounded by 5 in the

generated examples, hence both maximal depths are set to 4.

For this domain, instances are randomly generated with 5 cities, 5 locations per city

(with one location being an airport), 7 trucks (with at least 1 per city) and 2 planes.

The average degree of the roads and airways graphs is 1.5 and the instance size is

parameterized by the number of packages to be delivered.

The last planning domain is derived from SimpleFPS [19]. It is intended to represent

FPS-like (First Person Shooter) video game mechanics, and has been selected for its

relevance to our application domain. In SimpleFPS, a game level is represented as a

set of areas connected by waypoints. Each area contains different points of interest

(medikits, weapons, coverpoints, control boxes to turn off or on the lights in areas...).

The purpose of planning is to find an appropriate behavior for an NPC (Not Playable

Character) who must potentially heal himself and attack a player. Different actions are

available for attacking the player, and these actions are assigned costs reflecting their

safety level: attacking the player in the dark with a gun equipped with night vision, and

from a coverpoint, costs less than using a gun without cover, which again costs less than

attacking the player with a knife in close combat. In this domain, “abstract actions” are

high level versions of the base actions that solely rely on the occurrence of a type of

point of interests in a given room or in the NPC inventory, and postpone the choice of

the exact item at a lower level. Once more, a summary of all the tasks with their levels

and cost estimations is available in Table 3, with “Navigate” being the only recursive

task.

Task Level Cops Cpes ωt λt

Load(c, p, l, c) 0 1 1 1 1

Unload(c, p, l, c) 0 1 1 1 1

Drive(t, l1, l2, c) 0 2 2 1 1

Fly(a, l1, l2, c1, c2) 0 10 10 1 1

AchieveTruckAt(t, l, c, 4) 1 0 0.001 1 0.5

AchieveTruckAt(t, l, c, 3) 1 0 2.002 1 0.5

AchieveTruckAt(t, l, c, 2) 1 0 4.003 1 0.5

AchieveTruckAt(t, l, c, 1) 1 0 6.004 1 0.5

AchieveTruckAt(t, l, c, 0) 1 0 8.005 1 0.5

Pickup(t, p, l, c) 2 0 9.006 12 1

Deliver(t, p, l, c) 2 1 9.006 12 1

AchieveInCityAt(p, c, l) 3 0 18.013 1 1

LoadAtCity(a, p, c) 4 1 19.014 24 1

UnloadAtCity(a, p, c) 4 1 1.001 2 1

FlyToCity(a, c1, c2) 4 10 10.001 1.5 1

AchieveAirplaneAtCity(a, c, 4) 5 0 0.001 1 0.3

AchieveAirplaneAtCity(a, c, 3) 5 0 10.003 1 0.3

AchieveAirplaneAtCity(a, c, 2) 5 0 20.005 1 0.3

AchieveAirplaneAtCity(a, c, 1) 5 0 30.007 1 0.3

AchieveAirplaneAtCity(a, c, 0) 5 0 40.009 1 0.3

PickupAtCity(a, p, c) 6 1 59.024 80 0.3

DeliverToCity(a, p, c) 6 1 41.011 80 0.3

AchieveAtCity(p, c) 7 0 100.036 1 0.3

AchieveAt(p, l) 8 0 118.050 1 0.3

Table 2. A list of all tasks modeled for Logistics, along with their associated level, optimistic and

pessimistic costs, and value for the distributed weighted heuristics.

In SimpleFPS, instances are generated with a graph of 5 areas and an average degree

of 1.5, and the instance size is parameterized by the number of points of interest.

4.3 Benchmark

For every domain, the algorithm is evaluated with an “admissible” heuristic, modeled

with a unique weight ω = 1, as well as a linear heuristic with a single weight λ = 1 to

emulate a depth-first search (according to proposition 1). Different values for heuristics

with a single weight ω have also been evaluated, and each domain is associated with one

distributed weighted heuristic (ωc), and one distributed linear weighted heuristic (λc).
A detailed presentation of every distributed heuristic is available in Table 1, Table 2 and

Table 3 for each domain. All these heuristics have been human-tailored. We have exper-

imented different sets of values and have eventually reported the samples with the best

performance. In addition, each heuristic has been evaluated twice : once with the de-

composition strategy first, which prioritizes the decomposition of the “first” compound

tasks, and a second time with the strategy highest, which prioritizes the decomposition

of the tasks with the highest levels. We refer to the combination of a heuristic and a

decomposition strategy as a “planning profile”.

We have decided not to include external algorithms in our benchmark, despite the

existence of cost-optimal HTN planners such as SHOP2 and AHA*. However, some

planning profiles still enable to position these algorithms.

In fact, SHOP2 explores the search space in depth-first, uses the decomposition

strategy first, and a branch-and-bound step based on the primitive cost of a task net-

work. Therefore, the planning profile that combines a uniform linear weight equal to

1 (emulating a depth-first search), and the decomposition strategy first, theoretically

explores the same space than SHOP2, but benefits from a more accurate bound for

the branch-and-bound procedure. As a consequence, this profile provides an optimistic

estimation of SHOP2’s performance.

Adding an algorithm from the AHP framework would have required to model an ad-

ditional amount of domain knowledge : indeed our high-level semantic for compound

tasks is not as precise as AHP optimistic effects. AHP descriptions allow to model

disjunctive effects for compound tasks, while our high level semantic simply abstracts

these disjunctive effects and only entails effects supported by all decompositions. More-

over, they do not cover the pessimistic part of AHP high-level descriptions either. The

optimistic and pessimistic costs considered here are also simpler than the one that can

be modeled for AHP. We have restricted our scope to state-independent estimations,

which are more practical for automatic generation, while AHP allows the user to model

high-level cost depending on the current state. However it would be straightforward

to extend an AHP algorithm such as AHA* with a branch-and-bound step and use

one of the non-admissible heuristics presented in this work. Considering the additional

amount of user knowledge expected by the AHP framework, an AHP planner would

be expected to dominate our algorithm when using the same heuristic. Therefore, the

admissible heuristic, while not benefiting from the branch-and-bound mechanism, has

been included in the benchmark in order to position the new heuristics in comparison

with the one used by AHA*.

Task Level Cops Cpes ωt λt

MoveToPoint(pt, a) 0 1 1 1 1

MoveBetweenPoints(pt1, pt2, a) 0 1 1 1 1

Move(a1, a2, w) 0 0.5 0.5 1 1

TakeCover(cp, a) 0 1 1 1 1

Uncover 0 1 1 1 1

MakeAccessible(a1, a2, w, t) 0 1 1 1 1

GetItem(i, a) 0 2 2 1 1

Reload(g, am) 0 3 3 1 1

TurnLightOn(a, cb) 0 2 2 1 1

TurnLightOff(a, cb) 0 2 2 1 1

UseMedikit(m) 0 5 5 1 1

AttackMelee(k, p, a) 0 15 15 1 1

AttackRanged(g, p, a) 0 10 10 1 1

AttackRangedCovered(g, p, a) 0 7 7 1 1

SneakKill(g, p, a) 0 5 5 1 1

SneakKillCovered(g, p, a) 0 2 2 1 1

AchieveCloseTo(pt, a) 1 0 1.001 1 1

TakeCover(a) 2 1 2.002 5 1

TurnLightOn(a) 2 2 3.002 5 1

TurnLightOff(a) 2 2 3.002 5 1

UseMedikit 2 5 5.001 5 1

ReloadGun 2 3 3.001 5 1

ReloadNvGun 2 3 3.001 5 1

MakeAccessible(a1, a2, w) 2 1 1.001 5 1

AttackMelee(p, a) 2 15 16.002 5 1

AttackRanged(p, a) 2 10 10.001 5 1

AttackRangedCovered(p, a) 2 7 7.001 5 1

SneakKill(p, a) 2 5 5.001 5 1

SneakKillCovered(p, a) 2 2 2.001 5 1

GetMedikit(a) 2 2 3.002 5 1

GetAmmo(a) 2 2 3.002 5 1

GetKnife(a) 2 2 3.002 5 1

GetGun(a) 2 2 3.002 5 1

GetTool(a) 2 2 3.002 5 1

GetNvGun(a) 2 2 3.002 5 1

GetLoadedGun(a) 2 2 3.002 5 1

GetLoadedNvGun(a) 2 2 3.002 5 1

AchieveUncovered 3 0 1.001 1 1

AchieveCovered(a) 3 0 2.003 1 1

AchieveLighted(a) 4 0 4.004 1 1

AchieveDark(a) 4 0 4.004 1 1

Navigate(a1, a2, 3) 5 0.5 1.502 10 0.2

Navigate(a1, a2, 2) 5 0.5 3.004 10 0.2

Navigate(a1, a2, 1) 5 0.5 4.506 10 0.2

Navigate(a1, a2, 0) 5 0.5 6.008 10 0.2

AchieveAt(a) 6 0 7.01 1 0.2

AchieveHoldingMedikit 7 0 14.017 1 0.2

AchieveHoldingKnife 7 0 14.017 1 0.2

AchieveHoldingAmmo 7 0 14.017 1 0.2

AchieveHoldingGun 7 0 14.017 1 0.2

AchieveHoldingNvGun 7 0 14.017 1 0.2

AchieveHoldingLoadedGun 7 0 31.036 1 0.2

AchieveHoldingLoadedNvGun 7 0 31.036 1 0.2

AchieveFullHealth 8 0 19.019 1 0.2

AchieveWounded(p) 8 0 41.034 1 0.2

Table 3. A list of all tasks modeled for SimpleFPS, along with their associated level, optimistic

and pessimistic costs, and value for the distributed weighted heuristics.

4.4 Results

The results are presented in Table 4. For every instance type, a collection of 100 ran-

dom solvable problems is generated. For each of these collections, we have recorded

the amount of instances solved, as well as data from two time points in the search with

a time-out of 180 seconds. The first time point corresponds to the time when the first

solution is found. Knowing the solution quality at this point is a valuable information,

especially for real-time applications, which need a near-optimal solution with a short

run-time. The second time point corresponds with the best solution found within the

time-out. For both time points, the results provide the amount of task networks ex-

panded, the elapsed CPU time and the cost of the best solution found so far. Every plan-

ning profile is described with its decomposition strategy followed by its corresponding

heuristic.

As expected, the weighted heuristics with single value (ω = 5 for example), does

not perform well here : they fail to solve the integrity of several collections. Despite

the high value of some of these weights, their effect on search is limited. Indeed they

cannot be applied on tasks with 0 optimistic cost (for example, this is the case for 4

types of compound tasks over 5 in Robotbox). Moreover, as long as the task network

is only made of compound tasks, they do not alter search compared to an admissible

heuristic. As a result, the first solution returned with these heuristics is already close

to the optimal one, and they barely benefit from the branch and bound. The distributed

version of these weights (ωc) have been designed to solve the last issue. With these

heuristics, tasks at the lowest levels of the hierarchy are associated with lower weights.

Therefore, every decomposition of a task reduces the overestimation and guides the

search toward deeper task networks. We can see that they often perform better than the

single value one.

The planning profiles using the depth-first search (λ = 1) always manage to solve

every problem instance. They return a first solution with a minimum amount of search,

but at the expense of plan quality. In addition, they require a significant amount of search

to improve this quality. Planning profiles using distributed linear weight heuristics (λc)

return a first solution with an amount of search comparable to depth-first search. How-

ever, they achieve much better plan quality in general, and they are also fast at improv-

ing this plan quality. Combined with the decomposition strategy highest, this heuristic

dominates all the other profiles in term of search time, while achieving the best plan

quality.

As for the decomposition strategies, highest outperforms first in most situations,

especially in Robotbox and Logistics. In these domains, graph navigation plays the ma-

jor role (whatever it is a graph of rooms, or a graph of city). The navigation relies on

recursive tasks with very inaccurate estimations. The strategy highest focuses on the

decomposition of these recursive tasks, and quickly produces plans made of abstract

actions with accurate cost estimations. On the opposite side, the strategy first maintains

these recursive tasks in the task networks until all their predecessors have been refined

to the primitive levels, and does not benefit from good cost evaluations. In the case of

SimpleFPS, the cost of navigation is less significant, and there does not appear to be a

clear advantage between both decomposition strategies.

Every heuristic evaluated here has been configured and selected manually. We have

done our best to identify good combinations of weights in order to reach a satisfying

compromise between getting a first solution in a short time and improving plan quality

as fast as possible. Therefore, we have no guaranty that these are the best configurations

to achieve this goal. For instance, there could still be a set of weights for a distributed

heuristic (ωc) that could compete against the selected linear heuristic (λc). However,

finding an efficient linear heuristic turned out to be a simpler task compared to weighted

heuristics. Indeed, the combination between optimistic and strictly pessimistic costs that

characterize the heuristic (λc) provides a convenient tool to reason about depth-first or

admissible exploration of the search space on a task-by-task basis. We consider this

feature as an additional advantage on behalf of linear weighted heuristics.

5 Conclusions and future work

In this article, we have applied a general HTN framework to the context of anytime

search where we aim at improving solution quality over time. We have presented and

evaluated different weighted heuristics based on optimistic and pessimistic cost estima-

tions computed at the level of compound tasks. We have empirically demonstrated that

for three planning domains, a heuristic consisting of a linear combination of the opti-

mistic and pessimistic estimations is able to return a first solution in a very short time,

and also provides the best rate for improving plan quality. The experiments also reveal

that an additional speed-up can generally be obtained with a decomposition strategy

that assigns priorities to more abstract tasks.

The heuristics and decomposition strategies achieving the best performance can

directly be applied in the case of nonlinear HTN planning, where the flexible search

operations support any decomposition strategy. This is also the case for a progression

based planner with a state transition semantic for compound tasks, such as AHP or

our extension of SHOP based on abstract effects. In addition, a SHOP-based planner

without any particular extension, could still benefit of this heuristic search framework

to improve solution quality, but in a limited scope, as the decomposition strategy would

be restricted to first.

Considering that all weighted heuristics must be configured manually, a future ex-

tension for this work would consist in developing a system to derive them automati-

cally. We believe that the relevance of a given heuristic is bound to the properties of

the problem instances the planner is intended to solve. Therefore, a promising direction

for future work could be to apply machine learning techniques to learn better weights

from previously solved problems with similar heuristics. However, we have not made

any step in this direction yet.

instance type planning profile % solved
first solution best solution

expanded CPU time (ms) cost # expanded CPU time (ms) cost

Robotbox 1 box

first ω = 1 100.0 37 0.073 1.80 37 0.073 1.80

highest ω = 1 100.0 25 0.084 1.80 25 0.084 1.80

first ω = 1.5 100.0 22 0.042 1.80 22 0.042 1.80

highest ω = 1.5 100.0 12 0.035 1.80 12 0.035 1.80

first ω = 5 100.0 22 0.041 1.80 22 0.041 1.80

highest ω = 5 100.0 8 0.024 1.80 8 0.024 1.80

first λ = 1 100.0 16 0.034 2.70 41 0.073 1.80

highest λ = 1 100.0 10 0.031 2.70 50 0.118 1.80

first (λc) 100.0 16 0.033 2.28 32 0.061 1.80

highest (λc) 100.0 6 0.020 1.80 6 0.020 1.80

Robotbox 2 boxes

first ω = 1 100.0 386 1.095 3.99 386 1.095 3.99

highest ω = 1 100.0 268 1.002 3.99 268 1.002 3.99

first ω = 1.5 100.0 289 0.768 3.99 289 0.768 3.99

highest ω = 1.5 100.0 74 0.271 3.99 74 0.271 3.99

first ω = 5 100.0 275 0.787 3.99 275 0.787 3.99

highest ω = 5 100.0 36 0.170 4.00 38 0.178 3.99

first λ = 1 100.0 40 0.115 6.25 224 0.602 3.99

highest λ = 1 100.0 23 0.101 6.25 2829 8.030 3.99

first (λc) 100.0 44 0.132 5.01 120 0.322 3.99

highest (λc) 100.0 15 0.054 4.03 18 0.065 3.99

Robotbox 3 boxes

first ω = 1 100.0 1340 4.988 5.09 1340 4.988 5.09

highest ω = 1 93.0 1904 8.522 4.65 1904 8.522 4.65

first ω = 1.5 100.0 931 3.895 5.09 931 3.895 5.09

highest ω = 1.5 100.0 198 0.996 5.09 198 0.996 5.09

first ω = 5 100.0 869 3.677 5.09 869 3.677 5.09

highest ω = 5 100.0 65 0.445 5.09 65 0.445 5.09

first λ = 1 100.0 39 0.149 7.57 629 2.233 5.09

highest λ = 1 100.0 27 0.120 7.57 3641 11.712 6.00

first (λc) 100.0 39 0.150 6.23 237 0.862 5.09

highest (λc) 100.0 16 0.082 5.09 16 0.082 5.09

Logistics 1 package

first ω = 1 100.0 220 1.913 35.14 220 1.913 35.14

highest ω = 1 100.0 127 1.202 35.14 127 1.202 35.14

first ω = 4 100.0 171 1.183 35.16 172 1.184 35.14

highest ω = 4 100.0 79 0.528 35.20 79 0.529 35.14

first ω = 10 100.0 130 0.881 35.42 131 0.886 35.14

highest ω = 10 100.0 65 0.431 35.66 75 0.482 35.14

first (ωc) 100.0 39 0.262 40.16 90 0.539 35.14

highest (ωc) 100.0 56 0.352 40.16 95 0.555 35.14

first λ = 1 100.0 41 0.271 56.76 183 0.963 35.14

highest λ = 1 100.0 38 0.257 56.76 173 0.941 35.14

first (λc) 100.0 63 0.622 35.52 67 0.647 35.14

highest (λc) 100.0 38 0.371 35.66 45 0.414 35.14

Logistics 2 packages

first ω = 1 93.0 2176 22.356 64.84 2176 22.356 64.84

highest ω = 1 99.0 1091 14.628 66.91 1091 14.628 66.91

first ω = 4 96.0 2709 23.531 65.75 2709 23.531 65.75

highest ω = 4 99.0 430 5.779 67.01 435 5.825 66.91

first ω = 10 96.0 2344 19.372 66.08 2347 19.385 65.75

highest ω = 10 100.0 305 4.347 68.32 393 5.085 67.24

first (ωc) 100.0 1324 8.709 73.36 1409 9.367 67.24

highest (ωc) 100.0 242 2.907 75.92 628 7.014 67.44

first λ = 1 100.0 81 0.744 105.88 2348 19.772 68.72

highest λ = 1 100.0 75 1.070 105.88 1568 17.909 67.44

first (λc) 100.0 554 4.728 67.62 558 4.761 67.24

highest (λc) 100.0 100 1.696 68.42 174 2.541 67.24

Logistics 3 packages

first ω = 1 38.0 4510 53.798 81.21 4510 53.798 81.21

highest ω = 1 58.0 3264 56.432 91.24 3264 56.432 91.24

first ω = 4 45.0 5679 45.040 89.38 5679 45.040 89.38

highest ω = 4 96.0 2954 40.944 111.54 3073 42.514 111.10

first ω = 10 48.0 6105 47.478 91.25 6108 47.487 90.75

highest ω = 10 98.0 1725 27.153 114.78 2747 37.647 112.71

first (ωc) 60.0 6206 40.227 103.33 6354 41.186 95.37

highest (ωc) 98.0 1224 15.613 128.65 3744 44.806 116.39

first λ = 1 100.0 132 1.255 172.80 9070 66.666 122.82

highest λ = 1 100.0 120 1.880 172.80 6839 76.012 127.64

first (λc) 84.0 2180 23.682 104.00 2195 23.782 103.50

highest (λc) 100.0 324 9.354 115.52 1133 21.551 113.02

SimpleFPS 20 poi

first ω = 1 99.0 341 36.411 20.77 341 36.411 20.77

highest ω = 1 81.0 609 46.653 19.25 609 46.653 19.25

first ω = 5 100.0 109 9.697 21.79 211 18.856 20.83

highest ω = 5 95.0 181 16.164 21.01 300 23.043 20.38

first (ωc) 100.0 100 8.613 21.79 199 17.286 20.83

highest (ωc) 100.0 147 15.007 21.54 280 23.570 20.88

first λ = 1 100.0 37 2.466 33.38 353 23.685 20.82

highest λ = 1 100.0 37 3.194 33.38 780 45.606 21.27

first (λc) 100.0 76 6.938 21.52 107 9.229 20.79

highest (λc) 100.0 47 5.613 21.64 81 8.032 20.79

SimpleFPS 40 poi

first ω = 1 89.0 271 52.241 16.26 271 52.241 16.26

highest ω = 1 76.0 317 35.116 15.26 317 35.116 15.26

first ω = 5 100.0 117 17.876 17.86 153 23.205 17.14

highest ω = 5 97.0 152 25.660 17.27 177 28.346 16.76

first (ωc) 100.0 101 16.587 17.89 135 21.159 17.14

highest (ωc) 98.0 106 18.675 17.30 129 21.072 16.85

first λ = 1 100.0 32 4.583 30.07 328 41.460 17.26

highest λ = 1 100.0 31 5.042 30.07 451 42.546 18.66

first (λc) 100.0 59 11.572 17.94 95 16.258 17.00

highest (λc) 100.0 37 9.790 18.14 61 12.351 17.01

SimpleFPS 80 poi

first ω = 1 67.0 196 58.619 13.36 196 58.619 13.36

highest ω = 1 79.0 299 55.678 13.75 299 55.678 13.75

first ω = 5 96.0 106 35.962 15.12 127 42.881 14.61

highest ω = 5 93.0 93 28.410 14.96 142 34.462 14.22

first (ωc) 99.0 90 30.093 15.06 111 36.357 14.66

highest (ωc) 95.0 84 27.391 14.94 118 31.276 14.41

first λ = 1 100.0 25 8.678 26.53 226 57.941 16.17

highest λ = 1 100.0 23 7.504 26.53 360 56.027 16.21

first (λc) 97.0 40 20.472 15.04 61 24.706 14.51

highest (λc) 100.0 27 14.305 15.45 60 18.728 14.78

Table 4. Results obtained from solving different collections of problems in 3 HTN planning

domains with different heuristics and decomposition strategies. (ωc) and (λc) refer to distributed

weighting heuristics (a different weight is assigned to each compound task) and uniform weights

are described with their value.

References

1. Alford, R., Shivashankar, V., Kuter, U., Nau, D.S.: HTN Problem Spaces: Structure, Algo-

rithms, Termination. In: SOCS (2012)

2. Bacchus, F., Yang, Q.: Downward Refinement and the Efficiency of Hierarchical Problem

solving. Artificial Intelligence 71(1), 43–100 (1994)

3. Baier, S.S.J.A., McIlraith, S.A.: HTN Planning With Preferences. In: Proceedings of the

Twenty-First International Joint Conference on Artificial Intelligence. pp. 1790–1797 (2009)

4. Currie, K., Tate, A.: O-Plan: the Open Planning Architecture. Artif. Intell. 52(1), 49–86

(1991)

5. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A Sound and Complete Procedure for Hierarchi-

cal Task-Network Planning . In: AIPS. vol. 94, pp. 249–254 (1994)

6. Erol, K., Hendler, J.A., Nau, D.S.: Semantics for Hierarchical Task-network Planning. Tech.

rep., DTIC Document (1995)

7. Ghallab, M., Nau, D., Traverso, P.: Hierarchical Task Network Planning. In: Automated Plan-

ning: Theory & Practice, pp. 229–261. Morgan Kaufmann Publishers Inc. (2004)

8. Hansen, E.A., Zhou, R.: Anytime Heuristic Search. J. Artif. Intell. Res.(JAIR) 28, 267–297

(2007)

9. Hawes, N.: An Anytime Planning Agent for Computer Game Worlds. In: Proceedings of the

Workshop on Agents in Computer Games at The 3rd International Conference on Computers

and Games. pp. 1–14 (2002)

10. Marthi, B., Russell, S.J., Wolfe, J.A.: Angelic Hierarchical Planning: Optimal and Online

Algorithms. In: ICAPS. pp. 222–231 (2008)

11. Nau, D.S., Aha, D.W., Muoz-Avila, H.: Ordered Task Decomposition. In: AAAI Workshop

on Representational Issues for Real-World Planning Systems. AAAI Press (2000)

12. Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple Hierarchical Ordered Planner.

In: Proceedings of the 16th international joint conference on Artificial intelligence. vol. 2,

pp. 968–973. Morgan Kaufmann Publishers Inc. (1999)

13. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: An

HTN Planning System. J. Artif. Intell. Res.(JAIR) 20, 379–404 (2003)

14. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Muoz-Avila, H., Murdock, J.W., Wu, D., Yaman,

F.: Applications of SHOP and SHOP2. IEEE Intelligent Systems 20(2), 34–41 (2005)

15. Pohl, I.: Heuristic Search Viewed as Path Finding in a Graph. Artificial Intelligence 1(3),

193–204 (1970)

16. Pohl, I.: The Avoidance of (Relative) Catastrophe, Heuristic competence, Genuine Dynamic

Weighting and Computational Issues in Heuristic Problem Solving. In: Proceedings of the

3rd international joint conference on Artificial intelligence. pp. 12–17. Morgan Kaufmann

Publishers Inc. (1973)

17. Sohrabi, S., McIlraith, S.A.: On Planning With Preferences in HTN. In: Proc. of the 12th Intl

Workshop on Non-Monotonic Reasoning (NMR). pp. 241–248 (2008)

18. Tate, A.: Generating Project Networks. In: Proceedings of the 5th international joint confer-

ence on Artificial intelligence-Volume 2. pp. 888–893. Morgan Kaufmann Publishers Inc.

(1977)

19. Vassos, S., Papakonstantinou, M.: The SimpleFPS Planning Domain: A PDDL Benchmark

for Proactive NPCs. In: Intelligent Narrative Technologies (2011)

20. Wilkins, D.E.: Practical Planning - Extending the Classical AI Planning Paradigm . Morgan

Kaufmann series in representation and reasoning, Morgan Kaufmann (1988)

