Published in Refledion 99 LNCS N° 1616

M etapr ogramming domain specific metaprograms

Tristan Cazenave

Laboratoire d'Intelli gence Artificiell e,
Département Informatique, Université Paris 8,
2 rue delaLiberté,
93526Saint Denis, France.
cazenave@ai .univ-paris8.fr

Abstract. When a metaprogram automaticdly credes rules, some aeded
rules are uselessbecaise they can never apply. Some metarules, that we cdl
imposshility metarules, are used to remove useless rules. Some of these
metarules are general and apply to any generated program. Some ae domain
spedfic metarules. In this paper, we show how dynamic metaprogramming
can be used to creae domain spedfic impasshility metarules. Applying
metaprogramming to impassbility metaprogramming avoids writing spedfic
metaprogram for eadn damain metaprogramming is applied to. Our meta-
metaprograms have been used to write metaprograms that write search rules
for different games and danning danains. They write programs that write
seledive and efficient seach programs.

1 Introduction

Knowledge dou the movesto try enables to seled a small number of moves from a
possbly large set of possble moves. It is very important in complex games and
planning damains where seach trees have alarge branching fador. Knowing the
moves to try dragticdly cuts the seach trees. Metaprogramming can be used to
automaticdly creae the knowledge a&ou interesting and forced moves, only given
the rules abou the dired effedas of the moves [4],[5]. Imposshility metaprograms
enable to remove uselessrules from the set of unfolded rules. These metaprograms
can themselves be written by metametaprograms. From a more general point of
view, metaknowledge itself can be very useful for a wide range of applicaions [23],
and ore of its fascinating charaderistic is that it can be gplied to itself to improve
itself. We try to experimentally evaluate the benefits one can get from this gpedal
property.

The secondsedion describes metaprogramming and espedally metaprogramming
in games. The third sedion urcovers how metametaprograms can be used to write
imposshility metaprograms. The fourth sedion gves experimental results.

Published in Refledion 99 LNCS N° 1616

2 Metaprogramming in games and planning domains

Our metaprograms write programs that enable to safely cut search trees, therefore
enabling large speedups of search programs. In ou applicaionsto games, metarules
are used to creae theorems that tell the interesting moves to try to achieve atadicd
goal (at OR nodes). They are dso used to crede rules that find the complete set of
forced moves that prevent the opporent to achieve atadicd goal (at AND nodes).
Metaprogramming in logic has arealy attraded some interest [11],[2],[9]. More
spedficdly, spedalizaion o logic program by fold/unfold transformations can be
traced bad to [2€], it has been well defined and related to Partial Evaluation in
[15], and successully applied to dfferent domains[9]. The parallel between Partial
Evaluation and Explanation-Based Leaning [21],[18],[6],[13],[24] is now well-
known [28],[7]. As Pitrat [23] paints it, the aility for programs to reason onthe
rules of a game so as to extrad useful knowledge to play is a problem esential for
the future of Al. It is a step toward the redizaion d efficient general problem
solvers.

In ou system, two kinds of metarules are particularly important : impossbility
metarules and monovaluation metarules. Other metarules sich as metarules remov-
ing wseless condtions or ordering metarules are used to speed-up the generated
programs.

Imposshbility metarules find which rules can never be gplied becaise of some
properties of the game, or becaise of more general impossbiliti es. An example of a
metarule éou a general imposshility isthe following ore:

impossible(ListAtoms):-
member(N=\=N1,ListAtoms), var(N), var(N1),N==N1.

This metarule tells that if a rule aeaed by the system contains the condtion
'N=\=N1' and the metavariables N and N1 contain the same variable, then the
condtion can never be fulfill ed. So the rule can never apply because it contains a
statement impossble to verify. These metarule is particularly simple, but thisis the
kind o general knowledge ametasystem must have to be ale to reason abou rules
and to creae rules given the definition o a game.

Some of the impaosshility metarules are more domain spedfic. For example the
followingruleis gedfic to the game of Go :

impossible(ListAtoms):-
member(color_string(B,C), ListAtoms), C==empty.

It tell sthat the lor of a string can never be the wlor 'empty’ .

The other important metarules in our metaprogramming system are the mono-
valuation metarules. They apply when two variables in the same rules always dare
the same value. Monowaluation metarules unify such variables. They enable to sim-
plify the rules and to deted more impossble rules. An example of a monovaluation
metaruleis:

Published in Refledion 99 LNCS N° 1616

monovaluation(ListAtoms):-
member(color_string(B,C), ListAtoms),
member(color_string(B1,C1), ListAtoms),
B==B1,C\==C1,C=C1.

It tell sthat a string can orly have one lor. So if the system finds two condtions
' color_string' in a rule such that the variables contained in the metavariables
'B'and'B1' are euals, and if the correspondng color variables corntained in the
metavariables 'C' and 'C1' are nat the same, it unifies C and C1 because they
always contain the same value.

Impossble and monowaluation metarules are vital rules of our metaprogramming
system. They enable to reduce significantly the number of rules creaed by the
system, eliminating many uselessrules. For example, we tested the unfolding d six
rules with and withou these metarules. Withou the metarules, the system creaed
166 391 568ules by regressng the 6 rules on oy one move. Using kasic mono-
valuation and impaossble metarules $ows that only 106 rules where valid and df-
ferent from ead ather.

The experiments described here use the goal of taking enemy stones to creae
rules for the game of Go. The game of Go is known to be the most difficult game to
program [27],[1],[25]. Experiments in solving problems for the hardest game benefit
to ather games, and to ather planning damains, espedally if these experiments use
general and widely applicable methods as it is the cae for our metaprogramming
methodks.

3 Programsthat write programsthat write programs

Works on writing programs that write programs that write programs often refer to
the third Futamura projedion. Their goal is to speed up pograms that write pro-
grams using self-application o Partial Evaluation. Self-applicable partial evaluators
such as Goédel [11] usually use agroundrepresentation to enable self-applicaion (a
groundrepresentation consists in representing variables in the programs by numbers,
a paralel can be made with the numbering technique used by the mathematician
Kurt Godel to prove his famous theorem [10]). Our chaice is rather to use genera
nonground metaprograms that find damain spedfic metaknowledge to write the
programs that write programs. On the cntrary of fold/unfold/generalization and
other program transformation techniques [20], our system only uses unfolding, and
simple metaprograms can be written to dedde when to stop urfolding: typicdly
when generated rules have more condtion than a pre-defined threshald.

Domain spedfic metarulesin games and danning damains can be divided in df-
ferent categories. We will focus on the 'board topdogy metarules category in this
sedion. Other caegories that are often used are 'move metarules or 'objed
metarules for example.

Published in Refledion 99 LNCS N° 1616

The esential property of a game board is that it never changes whatever the
moves are. The set of fads describing the board is aways the same. Moreover it isa
complete set: nofads can be alded o removed.

In this paper, we will use afixed gid to gve examples of metaprogram genera-
tion. Grids are used in panning damains, for example for a roba to plan a path
throughabuilding, andin games sich as Go o Go-Moku.

L2

A

19
Fig. 1. A roba at point A has to choose apath onthe grid to goto pant B

The grid task consists in finding a path of length four between pdnt A and pant
B in the figure 1. Thistask is easier to understand than the game of Go which is our
principal applicaion. A Go baard isaso agrid, and al the mecdhanisms described in
this paper also apply to the rules generated by ou metaprogram for the game of Go.

3.1 Metaprogramming impossibility metar ules

Thefigure 2 gvesall the pointsthat are & distance threeof paint A. After ead new
instanciation d a variable containing a point, the rule verifies that the instanciated
point is different from any previously instanciated ore.

A1

Y 1
Fig. 2. All the paints at a distancethreeof point A are marked.

The rule that find all these pointsis generated as foll ows:

distance(X,W,3):-

connected (X,Y),connected(Y,Z),connected(Z,W).
Thisrule is generated urfolding the goal 'distance(X,W,3)' defined below:
distance(X,X,0).

distance(X,W,N1):-
N is N1-1,distance(X,Z,N),connected(Z,W).

Published in Refledion 99 LNCS N° 1616

On agrid, al the paintsthat are & a distancetwo of X are not at a distancethree
Moreover, when urfolding definitions in more cwmplex domains, it often happens
that two variables are unified, there is only ore variable left after unfolding. Un-
folding can lead to generate rules smilar to this one:

distance(X,X,3):-
connected(X,Y),connected(Y,Z),connected(Z,X).

This rule has been corredly generated by a mrred metaprogram on a mrred
domain theory, but it is arule that will never be gplied, becaise no pant on a grid
isat adistancethreeof itself.

We can deted that this rule caana be fired because we have accasto the com-
plete set of fads representing the topdogy o the board in this domain. In the gener-
ated rules, we only seled the condtions that are related to the topdogy o the board
(the mnreded predicates and the test that are dore on the variables representing
intersedions of the grid). Then we fire this %t of condtions on the mmplete set of
fads. If the set of condtions never matches, we ae cnfident that the system has
generated an impossble set of condtions. In order to find the minimal set of impos-
sible ondtions, the system tries to remove the ndtions one by ore until ead
removed condtion leads to a possble set of condtions. We now have aminimal set
of conditions representing a subset of the initial rule that is impossble to match. In
our simple example of the distancethreegodl, it is compaosed of the three @ndtions
of therule.

Once this aubset is creaed, it is used to generate anew impasshility metarule.
Imposshbility metarules match generated rules to find subsets of impossble ond-
tions. If an imposshility metarule succeals, the generated rule is removed. The
impossbility metarule generated in our exampleis:

impossible(ListAtoms):-

member(connected(X,Y) , ListAtoms),
var(X), var(Y),X\==Y,
member(connected(A,Z), ListAtoms),
A==Y,var(A), var(2),A\==Z,
member(connected(B,C), ListAtoms),

B==Z,var(B), var(C),B\==C,C==X.

The generation d impossbility metarules is useful in aimost all the planning do-
mains we have studied. Here is ancther example of its usefulness for the game of
Abalonre.

Published in Refledion 99 LNCS N° 1616

Fig. 3. An abalone board at the beginning d the game

The figure 3 represents an Abalone board, on this board, ead pasition has $x
neighbas instead o four for the grid bcard. Each neighba is asociated to ore of
the six directions represented by numbers ranging from 1 to 6.

1 2

5 4
Fig. 4. The diredions a stone can be moved to are marked, ranging from one to six.
In the rules of the game and therefore in the rules generated by ou metaprogram,

the mnreded predicaes contain a dot for the diredion. Here is an example of an
impossible set of condtionsin the game of Abalone :

connected(X,Y,Direction),connected(Y, X,Direction),
The mrrespondng imposshility metarule for the game of Abaloreis:

impossible(ListAtoms):-
member(connected(X,Y,D), ListAtoms),
member(connected(A,B,C), ListAtoms),
A==Y,B==X,C==D.

It is aso generated using ou metametaprogram that generate impossbility
metarules.

3.2 Metaprogramming simplifying metar ules
The system sometimes generates me rules that contain useless condtions. We

give below a rule that finds a path of length four to gofrom one paint of a grid to
ancther one withou going twice throughthe same point. After ead new instancia-

Published in Refledion 99 LNCS N° 1616

tion d a variable in the condtions, the rule verifies that the instanciated pdnt is
different from any previoudly instanciated ore.

After eadh condtion in the rule, we give the number of times the cndtion has
been verified when matching the rule once on a set of fads.

distance(X,D,4):-

connected(X,Y), 4

X=\=Y, 4

connected(Y,Z), 16
Z=\=X, 12
Z=\=Y, 12
connected(Z,W), 48

W=\=X, 48

W=\=Y, 36
W=\=27, 36
connected(W,D). 144

However, in some caes, it is uselessto verify that some poaints are different due
to the topdogy d the grid. For example, two conneded pdnts are dways different.
We car use ametarule that tells to remove the condtion 'X=\=Y"' if the condtion
'‘co nnected(X,Y)' isalso present in the rule:

useless(X=\=Y,ListAtoms):-
member(connected(X,Y),ListAtoms),
member(A=\=B,ListAtoms),A==X,B==Y.

Ancther metarule, given below, removes the condtion'’X=\=Y' when thereisa
path of length three between the two pdnts contained in X and Y, thisis a onse-
quence of the figure 2 that shows al the points that are & a three step path from
point A: A isnat at athreestep path of itself.

useless(X=\=Z,ListAtoms):-
member(connected(X,Y),ListAtoms),
var(X), var(Y),X\==Y,

member(connected(Y,2), ListAtoms),
var(Y), var(2),Y\==Z,
member(connected(Z,A), ListAtoms),

var(Z), var(A),Z\==Y,A==X.

The initial rule makes 361 instanciations and tests. After firing the metarule of
deletion onthe initial rule, we obtain the rule below that only makes 261 instancia-
tions or tests with the same results.

distance(X,D,4):-

connected(X,Y), 4
connected(Y,Z2), 16
Z=\=X, 12

connected(Z,W), 48

Published in Refledion 99 LNCS N° 1616

W=\=Y, 36
connected(W,D). 144

The simplifying metarules described here can also be generated using a complete
set of fads representing the board topdogy.
For example, if our system analyzes arule containing the cndtions:

connected(X,Y), X=\=Y,

in this order. It observes that the mndtion 'X=\=Y' is aways fulfilled. So it
tries to remove dl the condtions of the rule one by ore, provided the condtion
'X=\=Y"' isaways fulfilled when matching the set of remaining condtions. At the
end d this process the final set of condtions only contains the two above cond-
tions, andthe condtion'X=\=Y"' isawaysfulfilled for all the momplete set of fads
in the working memory. As the set of fad representing the topdogy o the board is
complete, it can generate anew simplifying metarule that will apply to all the gen-
erated rules of thisdomain. This $mplifying metarule is the one given abowve.

This methodworks in al planning damains where a omplete set of fads can be
isolated, such as the topdogy d the board, for games where the topdogy canna be
changed bythe moves.

3.3 Metaprogramming ordering metar ules

Related Work

P. Laird [14] uses gatistics on some runs of a program to reorder and to urfold
clauses of this program. T. Ishida[12] also dyramicdly uses ssme simple heuristics
to find a good adering d condtions for a production system. Our approach is
somewhat diff erent, it takes examples of working memories to creae metarules that
will be used to reorder the dauses. What we do, is automaticaly creaing a metap-
rogram that is used to reorder the dauses, and nd dynamicdly reordering condtions
of the rules. One alvantage is that we can creae this metaprogram independently.
Moreover, once the metaprogram is creaed, running it to reorder leaned rules is
faster than dyremicdly optimizing the learned rules. This feaure is important for
systemsthat use alarge number of generated rules. The aeaion d the metaprogram
isalso fast.

We rely on the asaumption that domain-dependent information can enhance
problem solving [16]. This asaumption is given experimental evidence on constraint
satisfadion problems by S. Minton [17]. On the contrary of Minton, we do nd spe-
cialize heuristics on spedfic problems instances, we rather creae metaprograms
acording to spedfic distributions of working memories.

Reor dering conditions
Reordering condtionsis very important for the performance of generated rules. The
two following rules are smple examples that show the importance of a good ader

Published in Refledion 99 LNCS N° 1616

of condtions. The two rules give the same results but do nd have the same dficagy
when X isknown and Y unknown:

sisterinlaw(X,Y):-brother(X,X1),married(X1,Y),woman(Y).
sisterinlaw(X,Y):-woman(Y),brother(X,X1),married(X1,Y).

Reordering based orly on the number of free variables in a condtion daes not
work for the example aove. In the mngraint literature, constraints are reordered
acording to two heuristics concerning the variables to hind [17] : the range of val-
ues of the variables and the number of other variablesit is linked to. These heuris-
tics dynamicdly chocse the order of constraints. But to doso, they have to keep the
number of posshble bindings for eat variable, and to lose time when dyramicdly
choasing the variable. It isjustified in the domain of constraints lving kecause the
range of value of a variable, affeds a lot efficiency, and can change alot from one
problem to ancther. It is nat justified in some other domains where the range of
value avariable can take is more stable. We have chosen to order condtions, and
thus variables, staticdly by reordering orce for all and nd dynamicdly at eadh
match becaise it saves more time in the domains in which we have tested ou ap-
proach.

Reordering oimally the condtionsin a given rule is an NP-complete problem.
To reorder condtions in ou generated rules, we use asimple and efficient algo-
rithm. It is based onthe estimated number of following noaes the firing o a cond-
tion will crede in the semi-unification tree Here ae two metarules used to reorder
condtions of generated rules in the game of Go:

branching(ListAtoms,ListBindVariables,
connected(X,Y),3.76):-
member(connected(X,Y), ListAtoms),
member_term(X,ListBindVariables),
non_member_term(Y,ListBindVariables).

branching(ListAtoms,ListBindVariables,
elementstring(X,Y),94.8):-
member(elementstring(X,Y), ListAtoms),
non_member_term(X,ListBindVariables),
non_member_term(Y,ListBindVariables).

A metarule evaluates the branching fador of a condtion based onthe etimated
mean number of fads matching the cndtion in the working memory. Metarules are
fired ead time the system has to gve abranching estimation for all the condtions
left to be ordered. When reordering arule containing N condtions, the metarule will
be fired N times: the first time to choose the mndtionto pu at first in the rule, and
at time number T to choose the cndtionto put in the T" place In the first reorder-
ing metarule éowe, the variable X is already present in some of the condtions pre-
ceding the condtion to be chosen. The variable Y is nat present in the precaling
condtions. The ocndtion 'connected(X,Y)' is therefore estimated to have a
branching fador of 3.76 (this is the mean number of neighba intersedions of an

Published in Refledion 99 LNCS N° 1616

intersedion ona 19*19 gid, this number can vary from 2 to 4), this is the mean
number of bindings of Y.

The branching facors of all the cndtions to reorder are mwmpared and the @n-
dition with the lowest branching fador is chosen. The dgorithm is very efficient, it
orders rules better than humans do and it runs fast even for rules containing more
than 200condtions.

Generating ordering metarules

For eadh predicae in the domain theory that has an arity lessor equal than three
Each variable of the predicae freeor nat, leading to 2’=8 passhiliti es for the three
variables. So, for eah predicae, we aeae between 1and 8 metarules.

For predicates of arity greaer than threg we only creae the metarules that corre-
sponds to the bindings of all but one of the variables of the predicate.

All the metarules are tested onsome working memories. This enables to conclude
on the priority to gve to the metarule. The priority is the mean number of bindings
the condtion will creae. The lower the priority, the sooner the cndtion is to be
matched. When all the variables of a mndtion are instanciated, it is atest and it has
a priority between zero and ore, whereas predicaes containing free variables have,
most of the time, a priority greaer than ore.

4 Resaults

This dion gves the results and the analysis of some experiments in generating
metaprograms. We used a Pentium 133 with SWI-Prolog for testing.

4.1 Metaprogramming impossibility metarules

In the figure 5, the horizontal axis represents the number of rules unfolded by ou
metaprogram on ore move. This experiment was redized using the game of Go
domain theory associated to the subgaal of taking stones of the opporent. There ae
six unfolded rules, it means that six rules concluding ona won subgaal of taking
stones where randamly chosen ou of the total number of such rules creaed by ou
system. Each of these six rules has been urfolded using the rules of the game of Go,
withou the aits of impaosshility and monowaluation metarules. All of the six rules
to urfold, match Go baards where the friend color can take the opporent string in
lessthan two moves, whatever the opporent plays. The goal of the unfolding was to
find all the rules that find a move that lead to match ore of the six rules concluding
onawon state. The verticd axis of the figure 5 represents the aumulated number of
rules that have been creaed for ead o the six rules. We did na match the imposs-
ble and monovaluation metarules on the resulting rules because it would have been
to time mnsuming.

Published in Refledion 99 LNCS N° 1616

180000000
160000000 A

#of 140000000 /

:ﬁi;!“”g 120000000 ///
100000000
80000000 f
60000000 /
40000000 /
20000000 /

0;;/‘/.‘

1 2 3 4 5 6

of unfolded rules

Fig. 5. Number of rules generated when urfolding six simple rules withou imposshility and
monoval uation metarules.

Instead of unfolding al the rules one move éead and then destroying wseless
rules, we matched the monowaluation and impasshility metarules after eadr un-
folding step (an urfolding step is the replacanent of a predicae by ore of its defini-
tions). Each urfolding step is considered as a noce in the unfolding tree

120

100
of 80
resulting
rules 60
40

20

—

——

/|/

1 2 3 4 5 6
of unfolded rules

0

Fig. 6. Number of rules generated when urfolding six simple rules with imposshility and
monoval uation metarules

This resulted in a very significant improvement of the spedalizaion program, it
was much faster and completely unfolding the six rules only gave 106 resulting rules
concluding onwinning moves to take stones 3 moves in advance. The results are
shown in the figure 6, and can be mmpared with the results of the figure 5. It is
important to seethat among all the resulting rules of the figure 5, only the 106 re-
sulting rules of the figure 6 are valid and dfferent from ead ather.

This experiment also streses the importance of the impossbility metarules.
Withou them, unfolding a goal on a domain theory is not pradicdly feasible.
Therefore impossbility metarules are necessary for such programs, and automati-
cdly generating them is a step further in the automatisation d planning programs
development.

Published in Refledion 99 LNCS N° 1616

4.2 M etaprogramming ordering metar ules

When no metarule mncludes on the priority of the wndtions left to be ordered,
simple reordering heuristics are used. For example, the condtion containing the less
variablesis chosen.

Following are two equivalent rules. The first one is ordered withou metarules,
and the second ore is ordered using the leaned metarules:

threattoconnect(C,B,B1,1):-
colorintersection(l1,empty), 55
connected(l,11), 208
connected(11,12), 796
I=\=12, 588
liberty(12,B1), 306
colorblock(B1,C), 140
liberty(1,B), 84
colorblock(B,C), 36
color(C). 36
2249

threattoconnect(C,B,B1,1):- 1
color(C), 2
colorblock(B,C), 14
liberty(1,B), 68
connected(l,11), 240
colorintersection(l1,empty), 96
connected(l1,12), 350
I=\=12, 254
liberty(12,B1), 84
colorblock(B1,C). 36

1145

Each condtionisfoll owed by the number of time it has been accessed during the
matching d the rule. In this example, when choasing the first condtion, a dassc
order gives' colorintersection(l,empty)' in the first rule. In the second
rule, the two foll owing metarules where matched among dhers to assgn friorities
to condtions:

branching(ListAtoms,ListBindVariables,
colorintersection(l,C),240.8):-
member(colorintersection(l,C), ListAtoms),
C==empty,
non_member_term(I|,ListBindVariables).

branching(ListAtoms,ListBindVariables,color(C),2):-
member(color(C), ListAtoms),
non_member_term(C,ListBindVariables).

Published in Refledion 99 LNCS N° 1616

Therefore, the cndtion'color(C)' has been chosen becaise it has the lowest
branching fador.

The two rules given in the example ae simple rules. Speedups are more impor-
tant with rules containing more condtions.

Match time (seg

10 20 30 40 50 60 70 80 N\ mber of
metarules

Fig. 7. The match time of generated rules deaeases when more ordering metarules are gen-
erated and wsed.

The figure 7 gves the evolution o the matching time of a set of generated rules
with the number of metarules generated. The erolution is computed ona test set of
50 poblems. Problemsin the test set are different from the problems used to gener-
ate the metarules.

5 Conclusion

Metaprogramming games and gdanning damains is considered as an interesting
challenge for Al [19],[23]. Moreover it has advantages over traditional approades:
metaprograms automaticadly creae the rules that otherwise take alot of time to
creae, and the results of the search trees developed using the generated programs
are more reliable than the results of the seach trees developed using traditional
heuristic and hand-coded rules.

The Go program that uses the rules resulting d the metaprogramming has good
resultsin international competitions (6 out of 40in 1997FOST cup [8], 6 ou of 17
in 1998world computer Go championship). The metaprogramming methods pre-
sented here can be gplied in many games and in ather domains than games. They
have been applied to ather games like Abalone and Go-Moku, and to planning
problems [3]. Using metaprogramming this way is particularly suited to automati-
cdly creae mmplex, efficient and reliable programs in danains that are complex
enoughto require alot of knowledge to cut seach trees.

However metaprogramming large programs can be itself time consuming. We
have proposed and evaluated methods to apply metaprogramming to itself so as to

Published in Refledion 99 LNCS N° 1616

make it more dficient. These methods gave successul results. Moreover they tend
to gve even better results when generated programs beame more complex.

6 References

1. Allis, L. V.: Seachingfor Solutionsin Games an Artificial Intelligence Ph.D. diss, Vrije
Universitat Amsterdam, Maastricht 1994

2. Barklund J. : Metaprogramming in Logic. UPMAIL Technicd Report N° 80, Uppsala,
Sweden, 1994

3. Cazenave, T.: Systeme d’' Apprentissage par Auto-Observation. Applicaion au Jeu de Go.
Ph.D. diss, Université Paris 6, 1996

4. Cazenave T.: Metaprogramming Forced Moves. Procealings ECA198, Brigthon 1998

5. Cazenave T.: Controlled Partial Deduction d Dedarative Logic Programs. ACM Com-
puting Surveys, Spedal issue on Partial Evaluation, 1998

6. Degjong G. and Moorey, R.: Explanation Based Leaning : an aternative view. Macine
Leaning 1(2), 1986

7. Etzioni, O.: A structural theory of explanation-based leaning. Artificia Intelli gence 60
(1), pp. 93-139 1993

8. Fotland D. and Yoshikawa A.: The 3rd fost-cup world-open computer-go championship.
ICCA Journal 20 (4):276-278 1997.

9. Galagher J.: Spedalizaion d Logc Programs. Procealings of the ACM SIGPLAN
Sympasium on PEPM’'93, Ed. David Schmidt, ACM Press Copenhagen, Danemark,
1993

10. Godel K.: 'Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme I', Monatsh. Math. Phys. 38, 173-98, 1931

11 Hill P. M. and Lloyd J. W.: The Gédel Programming Language. MIT Press Cambridge,
Mass, 1994

12. Ishida T.: Optimizing Rules in Prodwction System Programs, AAA| 1988 pp 699704,
1988

13. Laird, J.; Rosenbloom, P. and Newell A. Chunkingin SOAR : An Anatomy of a General
Leaning Mechanism. Machine Leaning 1(1), 1986

14. Laird P.: Dynamic Optimization. ICML-92, pp. 263272, 1992

15. Lloyd J. W. and Shepherdson J. C.: Partial Evaluation in Logic Programming. J. Logic
Programming, 11:217-242, 1991

16. Minton S.: Is There Any Need for Domain-Dependent Control Information : A Reply.
AAAI-96, 199Q

17. S. Minton. Automaticaly Configuring Constraints Satisfadion Programs : A Case Study.
Constraints, Volume 1, Number 1, 1996

18. Mitchell, T. M.; Keller, R. M. and Kedar-Kabelli S. T.: Explanation-based Generali za-
tion: A unifying view. Machine Leaning 1(1), 1986

19. Pell B.: A Strategic Metagame Player for General ChessLike Games. Procealings of
AAA1'94, pp. 13781385 1994 ISBN 0-262611023.

20. Pettoross, A. and Proietti, M.: A Comparative Revisitation d Some Program Transfor-
mation Techniques. Partial Evaluation, International Seminar, Dagstuhl Castle, Germany
LNCS 111Q pp. 355385 Springer 1996

Published in Refledion 99 LNCS N° 1616

21 Pitrat J.: Redizaion d a Program Leaning to Find Combinations at Chess Computer
Oriented Leaning Processs, J. C. Simon editor. NATO Advanced Study Institutes Series.
Series E: Applied Science- N° 14. Noordhdf, Leyden, 1976

22. Pitrat, J.: Métaconraissance - Futur de I'l ntelli gence Artificielle. Hermes, Paris, 199Q

23. Pitrat, J.: Games: The Next Challenge. ICCA journal, vol. 21, No. 3, September 1998
pp.147-156, 1998

24. Ram, A. and Le&ke, D.: Goal-Driven Leaning. Cambridge, MA, MIT PresgBradford
Books, 1995

25. Seiman, B.; Brooks, R. A.; Dean, T.; Horvitz, E.; Mitchell, T. M.; Nilson, N. J.: Chal-
lenge Problems for Artificial Intelligence In Procealings AAA1-96, 13401345 1996

26. Tamaki H. and Sato T.: Unfold/Fold Transformations of Logic Programs. Proc. 2nd Intl.
Logic Programming Conf., Uppsala Univ., 1984

27. Van den Herik, H. J; Allis, L. V.; Herschberg, 1. S.: Which Games Will Survive ?Heu-
ristic Programming in Artificial Intelli gence 2, the Second Computer Olympiad (eds. D.
N. L. Levy andD. F. Bed), pp. 232243 Elli s Horwood ISBN 0-13-3826155. 1991

28. Van Harmelen F. and Bundy A.: Explanation based generalisation = partial evaluation.
Artificial Intelligence 36:401-412 1988

