From August 29 to August 31, the European Conference on Artificial Intelligence was held in Montpellier, France. In the two days preceding, 44 workshops were additionally proposed. On the first day (Monday, August 27) the Computer Games Workshop was held, co-chaired by Tristan Cazenave, Jean Méhat and Mark Winands at Montpellier University. This workshop turned out to be the most popular one. A total of 17 papers were submitted: 11 were accepted, 1 was withdrawn and 5 were rejected. Moreover, 33 participants registered for the event. We will briefly report on the accepted papers below.

In the first talk, Tristan Cazenave presented the paper *Beam Nested Rollout Policy Adaptation*, co-authored by Fabien Teytaud. In his talk he discussed the Nested Rollout Policy Adaptation algorithm, which is a search algorithm known to be efficient for combinatorial problems. However, one problem is that the algorithm can converge to a local optimum and get stuck in it. The researchers proposed a modification that limits this behaviour. Next, they performed experiments on the Traveling Salesman Problem With Time Windows and Morpion-Solitaire.

In the next talk, *A New Self-Acquired Knowledge Process for Monte Carlo Tree Search*, written by André Fabbri, Frédéric Armetta, Éric Duchêne and Salima Hassas, a new approach, called BHRF (Background History Reply Forest) was proposed to extract knowledge from the search tree in order to improve the quality of the playouts. The experimental results in Go were quite promising.

Subsequently, the paper *Detecting Cheating Activities in Online Duplicate Bridge Game Tournaments* written by Sylvain Lagrue and Karim Tabia, was presented. The presentation focused on online duplicate Bridge tournaments where the same deals are played by several players. The authors argued that anomaly-based approaches, which are widely used in several application domains such as computer security, are appropriate for detecting potential cheating activities. They provide preliminary experimental evaluations showed the effectiveness of the proposed approaches.

After the coffee break, Abdallah Saffidine presented joint research with Marc Lanctot, Joel Veness, and Chris Archibald. Their paper *Sparse Sampling for Adversarial Games* introduced Monte Carlo *-Minimax Search (MCMS), a Monte-Carlo search algorithm for finite, turned-based, stochastic, two-player, zero-sum games of perfect information. Through a combination of sparse sampling and classical pruning techniques, MCMS allows deep plans to be constructed. Unlike other popular tree search techniques, MCMS is suitable for densely stochastic games, i.e., games where one would never expect to sample the same state twice. The authors gave a basis for the theoretical properties of the algorithm and evaluate its performance in three games: Pig (Pig Out), EinStein Würfelt Nicht!, and Can’t Stop.

Pim Nijssen presented the paper *An Overview of Search Techniques in Multi-Player Games*. He tested together with Mark Winands the performance of the minimax-based search techniques max, paranoid search and Best-Reply Search. Furthermore, they investigated how the tree structure of each of the minimax-based techniques can be applied in MCTS. The test set consisted of four different multi-player games: Chinese Checkers, Focus, Rolit and Blokus. Based on the experimental results, they concluded that Best-Reply Search is generally the best minimax-based search technique. Monte-Carlo Tree Search performed best with the max tree structure.

Unfortunately, the authors of the paper *Heuristics and Fishing in Scrabble* could not attend the workshop. In the paper Alejandro González Romero, René Alquézar, Arturo Ramírez Flores and Francisco González Acuña discussed Computer Scrabble. They explained an alternative method which uses a heuristic function that involves probability calculations to evaluate moves. The paper presented improvements on this heuristic function and tackles the problem of finding the best move for every initial 7-letter rack.

---

1. Games and AI Group, Faculty of Humanities and Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Email: m.winands@maastrichtuniversity.nl.
2. LAMSADE, Université Paris-Dauphine, Paris, France. Email:cazenave@lamsade.dauphine.fr
Monte-Carlo Tree Search for the Simultaneous Move Game Tron,

Model Checking Games in GDL-II

A General Multi-Agent Modal Logic K Framework for Game Tree Search,

An Analysis of Voting Algorithm in Games,

A Bayesian Tactician