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Abstract. In this paper, we consider adaptations of Monte Carlo Search
methods on binary decision trees where actions are simulated using
heuristics and where choices are made deterministically or stochastically.
We explain how these adaptations are fitted for combinatorial problems
such as element selection problems in order to compete with other ap-
proximate resolution methods such as metaheuristics. We present re-
sults on a theoretical problem (Set Covering) and on an applied problem
(Pulse Repetition Frequency Selection) with different simulation heuris-
tics. We then discuss the usefulness of these new methods based on
the characteristics of the problems and on the quality of the simulation
heuristics used to construct the decision tree.
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After a general presentation of the selection problems, we detail the two
problems considered. We then introduce Binarized Monte Carlo Search, based
on Monte Carlo Search on particular decision trees. Adaptations of two different
methods are developed. Finally, we present the experimental results obtained
with the new methods on our selection problems and discuss their interests.

1 Selection Problems

Selection problems arise as problems in which a subset of elements must be se-
lected from a given set, usually under given constraints, in order to optimize a
given objective function.

Due to the size of the initial set of candidates and the large number of pos-
sible combinations among them, these problems often manifest as combinatorial
optimization problems. Exact solution methods are therefore not always suitable
for these problems. Approximate solution methods can be an efficient alternative.

A greedy algorithm can quickly and iteratively produce an approximate so-
lution to a selection problem. Its basic idea is to make a locally optimal choice
at each step, without considering the consequences of this choice on future steps,
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with the hope of finding a globally optimal solution. As long as the solution is not
complete, the algorithm assigns a greedy score to all valid candidates based on a
computationally inexpensive function. The validity of those candidates depends
on constraints preventing specific combinations of candidates in some selection
problems. The candidate with the highest score is then added to the solution and
removed from the set of available candidates if a solution cannot be formed by
the same candidate more than once. Greedy algorithms are easy to implement
but can provide less than optimal solutions on certain instances.

Another alternative is to use other heuristics, metaheuristics or tree search
procedures. Combinations of these different resolution methods are also increas-
ingly being considered, this is the case in this paper.

1.1 Set Cover Problem

The Set Cover Problem (SCP) is a classic optimization problem in which the
goal is to select, from a collection of subsets whose union equals the universe, the
smallest number of subsets such that their union is also equal to the universe.
This problem is known to be NP-hard [13], meaning that there is no known
efficient algorithm to solve it optimally in polynomial time.

One variant of this problem is the Weighted Set Cover Problem, in which
every set is assigned a positive weight, indicating its cost, and the objective is
to identify a set cover which minimizes the sum of the costs of the chosen sets.

Formulation. The problem can be formally defined as follows:

minimize
∑
j∈J

cjxj (1)

under the constraints
∑
j∈J

aijxj ≥ 1,∀i ∈ I (2)

where xj =

{
1 if subset j is selected

0 otherwise

and aij =

{
1 if item i is covered by subset j

0 otherwise

Simply put, the candidates j are binary column vectors, and the set to cover
is initially a zero vector formed of as many items/rows/cells as each candidate
column vector.
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Chvatal’s Greedy Procedure. The classic greedy algorithm follows the ideas
of Chvatal’s algorithm [9], where the next candidate is selected based on its
effective cost. This is the score function used to determine which candidate to
add incrementally.

With Ij representing the set of still uncovered rows that column j covers and
Ji representing the set of candidates which cover row i, the candidate is chosen
at each step from the following formula:

argmin
j∈J

cj
|Ij |

(3)

Surprisal-Based Greedy Heuristic. The previous procedure is simple and
intuitive but can be improved to assign a more relevant score to candidates
based on the characteristics of all others. The Surprisal-Based Greedy Heuristic
is derived from Information Theory and can yield better results when applied to
the SCP than the Chvatal’s procedure [1]. Using the same notation, the candidate
is chosen according to:

argmin
j∈J

cj
|Ij |

∏
i∈Ij

|Ji| − 1

|Ji|
(4)

Thus, a candidate column is always chosen if it is the only one covering a
given row, since one of the terms in the product is zero. However, if alternative
candidates exist for all the rows covered by a candidate column, the score of this
column will be higher and tend toward the Chvatal’s greedy score.

1.2 Pulse Repetition Frequency Selection Problem

A major topic in radar engineering is target detection. Pulse Doppler radars can
determine the range and radial velocity of a target. They use multiples series
of pulses, called bursts, to achieve detection, each requiring the selection of its
Pulse Repetition Frequency (PRF, representing the number of pulses transmit-
ted by the radar each second).

The periodicity of pulse Doppler radars cause several problems:

– range blind zones: the radar cannot receive a pulse when another is emitted.
– range ambiguities: the radar use detection delays to determine the target

range, but has no way to identify the original pulse, and thus only determine
range within a modulo.

A burst with a given PRF is characterized by blind zones and ambiguities
on the range axis. Sending a waveform made of an ordered sequence of several
bursts associated with different PRFs can solve the aforementioned problems:

– blind zones of different bursts can compensate each other if they do not
overlap.



4 Matthieu Ardon, Yann Briheche, and Tristan Cazenave

– different bursts measure range with different modulos. According to the Chi-
nese Remainder Theorem, if the Pulse Repetition Intervals (PRIs, the inverse
of PRFs) have a high enough lowest common multiple, then detection of the
same target between both bursts will overlap on a unique range below the
maximum radar detection range, yielding the actual range of the target.
Ambiguity removal, also called decodability, thus requires the prohibition of
some PRFs combinations [12].

In this paper, we will consider that all bursts have a constant and identical
duration regardless of the PRF of each burst. This means that the number of
pulses in each burst is different and deduced from its PRF and that constant
duration.

Methods for resolving this problem from the literature have been tested with
evolutionary algorithms [12] for the selection of PRFs for bursts with constant
numbers of pulses, as well as with metaheuristics such as simulated annealing
[2] for the selection of PRFs for bursts with constant emission durations.

We use an M of N scheme: we select a set of N bursts and target detection
is achieve if M bursts can detect a given target. In this paper, all the tests have
been performed with the same scheme. We use a recursive approach to compute
the overall probability when adding a new burst [4]:

P (m,n) := pn · P (m− 1, n− 1) + (1− pn) · P (m,n− 1) (5)

with pn the detection probability of the n-th burst, P (m,n) the overall detection
probability of m among n bursts, with the following initial conditions:

P (0, 0) = 1 and ∀m,n ≥ 1, P (m, 0) = P (−1, n) = 0 (6)

2 Binarized Monte Carlo Search

In the field of operations research, tree search methods can explore the search
space systematically in a deterministic or stochastic manner. Different traversal
strategies can be considered, exhaustive or not, depending on the complexity
and the restrictions of the problem. The Limited Discrepancy Search [11] (LDS)
lends itself well to problems with a clear heuristic on the possible actions that
can occur. Indeed, it finds a solution deterministically by following a heuristic
while allowing a limited number of deviations from this heuristic to encourage
the exploration of alternative choices. Monte Carlo Tree Search uses random
sampling for part of its exploration and statistical analysis which allows it to
deepen the research in the most promising parts of the tree. Originally developed
for game-playing programs, especially those with vast search spaces like Go [10],
Monte Carlo Tree Search has since found applications in various fields such as
optimization.
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2.1 Nested Monte Carlo Search

Recursive approaches on Monte Carlo Search methods seems promising, espe-
cially for single-player problems [8], whose objectives can be similar to selection
problems. The addition of nested search procedures allows in some cases the
intensification of the search in parts of the decision tree (Nested Monte Carlo
Search), and in other cases prevent a premature convergence caused by a learning
that slows down the exploration too quickly (Nested Rollout Policy Adaptation).

Nested Monte Carlo Search. The Nested Monte Carlo Search (NMCS) is
a method that performs recursive improvements of playouts using nested levels
[5]. At level zero, the playouts are random. At higher levels, they are guided by
results obtained at lower levels.

Nested Rollout Policy Adaptation. The Nested Rollout Policy Adaptation
(NRPA) is a method that learns a policy which presents itself as a weight vector
influencing the probabilities of choosing each candidate [14]. NRPA has set new
world records in Morpion Solitaire and Crosswords Puzzles. The nested levels
are now associated to the best sequence found at this level. During the learning
(called the adaptation) of the policy, the weights of candidates present in the best
sequence are incremented, and the others are reduced. The learning rate α is an
hyperparameter controlling the update rate of these weights. The probability to
choose a child node child created from a parent node parent with the selection
of a given action action is:

pchild =
epolicy(childaction)∑

brother∈{children(parent)}
epolicy(brotheraction)

(7)

Calls to lower nested levels are limited to a given number of iterations. Nested
Rollout Policy Adaptation with Limited Repetitions [7] (NRPALR) ends the
playouts of a level when the best performance remains the same for a given
number of times. After a lower level call, the best sequence is returned to the
upper level and the upper level policy is updated then passed again to a lower
level call. Calls at level 0 use stochastic playouts.

Generalized Nested Rollout Policy Adaptation [6] (GNRPA) is another way
to integrate a heuristic or problem feature to guide the search in the tree. In this
method, computation of probabilities for choosing a node accounts for features
of the chosen node state. However this requires computing for each node its state
and features.

NRPA, GNRPA or GNRPALR perform a search that is partially random
and partially directed. They allow the integration of multiple heuristics during
initialization phase, and during search phase. In the search phase, they guide
exploration at a chosen speed (learning rate) with regular updates of the prob-
abilities of choosing children node (adaptation of the initial policy).
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2.2 Adapted Representations of Decision Trees

Decision trees can be well-suited representations for solving selection problems
with the following assumptions. A node represents a solution formed by the set
of candidates used in the sequence leading to that node. A branch represents the
choice of a specific candidate from the available set of candidates. Each candi-
date is an action mapping the state of the parent node to the state of the child
node, through the branch connecting both. The root of the tree is the neutral
state. Regardless of the chosen representation, the tree is pruned at the end of
every sequence when no candidate can comply with the problem constraints:
for the SCP the tree is pruned when the state of a node is entirely covered,
and for the PRF Selection Problem when either the desired number of bursts is
reached or when there is no remaining burst which can comply with decodability.

Classic exhaustive tree search methods and some less parameterizable Monte
Carlo Search methods do not always require the computation of the state of each
simulated node to traverse the tree and retain the best sequences. Sometimes,
only evaluating the leaves is sufficient. However, in the case of constrained prob-
lems, states must be computed each time. For example, to solve the Set Cover
Problem (SCP), it is necessary to check at each state whether the covering
condition has been satisfied, in order to stop the search, return the result corre-
sponding to the traversed sequence, and prune the tree.

Thus, reducing the number of explored states tends to reduce the overall
computational complexity. A tree with a high branching factor requires the com-
putation of many states at each step. Long sequences will also increase the num-
ber of computed states. While the length of the sequences cannot be reduced,
we can try to use more efficient representations for solving selection problems.
These representations should have a low branching factor and should not intro-
duce biases that favor certain candidates over others based solely on their initial
ordering or on an arbitrary position in the tree.

Binary Decision Trees. All branches leading to a parent node’s children cor-
respond to a specific action and its associated candidate. The parent node has
two children: a first node where the candidate is rejected (with the same state
as the parent node) and a second where the candidate is added to the solution
(the state is thus the parent node state with the addition of the candidate).

Simulation Heuristics. The simulation of the next nodes takes into account
the construction of the current sequence, and greatly impact the quality of re-
search in binary trees.

Nodes can be simulated according to a heuristic which will determine an inter-
esting action to choose among all available actions. Random simulations/moves
can quickly produce solutions. Greedy simulations are likely to yield better so-
lutions.
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In a binary decision tree, a traversal ignoring each action would be possible
to favor the exploration of actions that are locally less interesting, but may be
globally interesting. Simulations can also be based on domain-specific rule-based
heuristics in order to intensify the quality of returned candidates. Some heuristics
can perform better than another depending on the problem.

In the simulation function, the heuristic assigns a score to each possible
action, in the same ways as the previously cited greedy score. The chosen action
is the one with the best score. If multiple actions achieve the same best score,
one can selected either through a predefined order or either randomly. As we
will see, the latter can introduce a stochastic aspect to a deterministic method.

The binary tree can be constructed with an initial ordering of the actions.
However, this will significantly decrease the effectiveness of the heuristic and
thus the quality of the search. Despite the need for greater computing resources,
we therefore favored a call to the heuristic each time a node is traversed for the
first time.

2.3 Dynamic Binarized Nested Monte Carlo Search (DBNMCS)

We adapted NMCS to perform the search partly on the binary decision tree,
as presented above, and partly through an iterative heuristic used to complete
solutions, see Algorithm 5.

The search occurs in two steps, each based on a heuristic which finds the best
action to consider in the rest of the current sequence, see Algorithm 4. In our
experiments, we used the same heuristic for both steps, but different heuristics
could be used for each step.

In the first step, we search through a nested level on a binary tree (starting
from the root), where each node, both simulated by the first heuristic, represents
a choice to add a candidate to the solution or not. For each child node of a given
parent node, the second step will perform a deterministic playout by completing
the solution using the second step heuristic. We select the node with the best
solution among the two children. The first step starts again from that node.

Recursively, the two steps are chained. Once we reach a zero nested level, we
perform two deterministic playouts. We store the node with the best solution
among the two as a starting point for an in-depth search (binary search then
playout), to try to find a better solution from that starting point.

Since each of the 2 branches is always traversed in the first step, and solutions
are obtained using in the second step using an deterministic heuristic, there is
no randomness in the algorithm, which is therefore completely deterministic.
Furthermore, after reaching the zero nested level, the playout are performed
until a leaf and then, the first step on a binary tree takes over from the node
corresponding to the best playout. The tree is therefore dynamic.

To summarize, the Dynamic Binarized NMCS involves a two-step process. In
the first step, a heuristic-based search is performed on the binary tree, exploring
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different sequences and forming partial solutions. In the second step, in the form
of local searches, playouts are conducted at the lowest nesting levels of the tree to
complete these partial solutions. The performances of the resulting solutions are
compared. The process repeats recursively until a leaf node is reached, potentially
refining the solution by considering variations of the initial choices. The entire
process is deterministic and dynamic. Ultimately, DBNMCS allows for a non-
exhaustive search of the decision tree guided by the most interesting choices to
focus on the parts of the tree that appear most promising. It does not need a lot
of hyperparameter tuning or precise information about the problem to initially
guide the search with complex heuristic.

2.4 Binarized Nested Rollout Policy Adaptation (BNRPA)

Another interesting possibility for exploring binary decision trees with heuristic-
based simulations are NRPA methods.

Unlike NMCS methods, playouts here always start at the root node, see
Algorithm 2. Each node in the binary tree representing whether a candidate is
added to the solution or not. We also use heuristic-based simulations to select
the available action with the best score, see Algorithm 4.

A policy vector is initialized before the start of the search, as is done in classic
NRPA. However, since the representation is now a binary tree where half of the
branches represent the choice to ignore a candidate, the encoding of the policy
needs to be modified. Thus, each candidate is now linked to a binary policy.
One component represents the choice to select it and the other represents the
choice not to select it. Before the start of the search, if the policy is initialized
uniformly, its values no longer depend on the number of candidates: for each
candidate, it’s set to 1/2 for the component representing the choice to select it
and similarly for the one representing the choice not to select it.

Like in classic NRPA, we copy the policy from higher levels to lower levels,
and we adapt the policy by updating its values after each playout. This improves
the probabilities of the choices which might be proposed again in subsequent
playouts on the same nesting level. In a binary tree, the best solution found so
far is made of choices of some actions and refusal of other actions. Depending on
the choice or refusal of each action in the best found solution among all playouts
of a given nested level, we will increment its associated policy for selection or its
associated policy for refusal and decrement by the same factor the policy that
was not incremented, see Algorithm 3. The learning rate α controls the speed
and intensity of the update of the policy.

Note that at the end of any nesting level, the policy is not kept, and does not
become the initial policy of the higher level. Otherwise, it would prevent explo-
ration due to adaptation occurring in the same way to favor the same choices.
Instead, only the best solution is returned to the higher nested level, and the
policy of the higher level is adapted based on the best solution found in the lower
level.
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The number of calls to the lower nested level per level is set in our first im-
plementation of Binarized NRPA (BNRPA). Another approach is to implement
a stop criteria on this level based on the number of times the exact best perfor-
mance is returned, hinting that further improvement is unlikely. This is done in
BNRPA with Limited Repetitions (BNRPALR), see Algorithm 1.

We can construct the tree statistically or dynamically. In the first case, the
root is always the same. The tree is built gradually as the playouts progress.
Playouts increasingly pass through existing branches and nodes as the probabil-
ities of traversing those branches increase. These branches become mandatory
paths at the top of the tree since all available paths have already been simulated.
In the second case, the root is reset with each new playout. The child nodes must
be simulated again at each depth until the playout stops at a leaf. Thereby, the
sequences are dynamic and can differ between playouts when multiple actions
obtain the same heuristic score, since we do not always choose the same action.
This dynamic construction can favor exploration and diversification. However,
reaching the repetition limit on the best performance can become harder, since
finding the same solution twice becomes unlikely and some problems will rarely
have the same performance for two different solutions.

Empirical evidences indicates that BNRPALR performs better than BNRPA
on static binary trees, and that BNRPALR performs better on static trees rather
than dynamic ones, for the same computation time. The variance observed on
different runs with BNRPALR is lower than the variance of BNRPA.

BNRPA with heuristic-based simulations uses a heuristic to choose the ac-
tions of the following nodes. Classic NRPA allows for the integration of another
heuristic or a prior in policy initialization. This is more difficult to do with BN-
RPA due to the binary policy. GNRPA also allows the integration of additional
information to guide the search by modifying the node choice probabilities based
on a weighted prior. With BGNRPA, it might be interesting to construct the
prior based on the average of a statistic across all remaining candidates to be
considered for the node that does not add a candidate. For the other node, it
would be the statistic specific to that candidate. Yet, with BGNRPA, actions
are not simulated in the same order in each sequence and biases then cannot be
precomputed. Nevertheless, this step is often the most time-consuming with GN-
RPA. However, this method still represents a promising approach for improving
BNRPA because it allows for the integration of additional information to guide
the search.

3 Experimental Results

We compare new Binarized Monte Carlo Search methods (DBNMCS and BN-
RPALR) with Limited Discrepancy Search (LDS) using the same simulations
heuristics and a discrepancy parameter set to 7 (SCP) or 8 (PRF Selection
Problem).
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3.1 Weighted Set Cover Problem

OR-library provides datasets of problem instances for benchmarking combina-
torial optimization, including the Weighted Set Cover Problem [3].

Each problem instance is characterized by the number of columns candidates
(or variables) |J |, the number of cells to cover (or constraints) |I|, and the den-
sity of the covered cells by the candidates. A weight has been assigned to each
candidate, and the objective is to minimize the sum of the weights of a subset
of chosen candidates.

We perform tests on OR-Library instance sets “4” to “NRH ”, with the
number of instances in each set indicated in Table 1 under the column |Set|.

We used DBNMCS and BNRPALR with both Chvatal’s Greedy Procedure
(CGP) and Suprisal-Based Greedy Heuristic (SBH) as simulation heuristics.
Each had 25 runs, under the same computation time limit. For BNRPALR, we
set the learning rate at 0.75, the nested level at 9 and the repetition limit at
5, with a uniform initial policy. For DBNMCS, we set the nested level at 4.
All the results are displayed and compared to the optimal or best known score
(BS) on Table 3. The stars indicates that at least one run has reached the best
performance (BS) with the corresponding method and simulation heuristic. The
GAP compares the average of the obtained performances from the 25 runs (AVG)
to the BS, such as:

GAP = 100× AV G−BS

BS
(8)

The smaller the average gap across a set of instances, the better the method.
Table 1 displays the average gap of each method over the sets of instances, and
the characteristics (number of variables and constraints, density) of each set.

Table 1. Comparison of Binarized Monte Carlo Search methods with CGP heuristic
on the sets of instances of the SCP from OR-library

Set |Set| |I| |J| Density
GAP averages

DBNMCS BNRPALR

4 10
200

1000
2

4.36 0.87
5 10 2000 5.43 1.25
6 5 1000 5 4.04 1.18
A 5

300 3000
2 6.62 2.14

B 5 5 3.19 1.19
C 5

400 4000
2 8.56 5.31

D 5 5 3.45 1.39
E 5 50 500 20 0 0

NRE 5
500 5000

10 1.88 1.05
NRF 5 20 2.97 2.05
NRG 5

1000 10000
2 9.91 22.5

NRH 5 5 7.17 9.99
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(1) Score BNRPALR with CGP : 522.7
(2) Score BNRPALR with SBH : 522.24
(3) Score DBNMCS with CGP : 556.48
(4) Score DBNMCS with SBH : 542.0

Fig. 1. Evolution of the best performance found over time for instance scp43 from
OR-Library (BS = 516)

Figure 1 highlights the performances of DBNMCS and BNRPALR methods.
Each one was tested with the Chvatal’s Greedy Procedure and the Surprisal-
Based Heuristic as simulation heuristics, with a number of calls set at 3,000,000.
100 runs were performed for each configuration on the scp43 instance. It’s a mod-
erately sized and low-density instance which proved to be quite discriminative
in the various tests.

3.2 PRF Selection Problem

We performed tests on two different PRF Selection Problem instances, for which
we aim to maximize the detection probability at a given target range. We used
the same radar parameters (mean power, signal duration, carrier bandwidth...)
for both instances, and only changed the detection range, with the first prob-
lem (Instance 1 ) at low range (thus being easier to optimize) and the second
(Instance 2 ) at long range (thus being harder to optimize). These instances are
made up of 140 candidates and the search is stopped as soon as we have added
N candidates to our solution in accordance with the chosen M of N scheme.

We use both DBNMCS and BNRPALR with two different simulation heuris-
tics: one based on a simple greedy heuristic (GH) and the other on based an
initial random rating (RR). For BNRPALR, we set the learning rate at 0.75, the
nesting level at 9 and the repetition limit at 5, with a uniform initial policy. For
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DBNMCS, we set the nested level at 8 (more important than the SCP since the
sequences are made up of only 6 candidates and therefore much shorter).

Greedy Resolution. The greedy resolution of the SCP relies on additional
information unrelated to candidate costs (which is the optimization criterion)
such as the number of additional rows that could be covered by a candidate. We
can still use a basic greedy process even when such information is not available:
at each step, we compute the solutions with each possible candidate (in other
words, each PRF compatible with the PRFs already chosen in the solution),
and select the one which maximize our optimization criterion, the detection
probability.

On Instance 1, the basic iterative greedy resolution of the problem gives poor
results. On Instance 2, they are even worse.

Randomized Rating. Here, the problem lacks additional information that
can be used to compute specific priorities for each candidate (such as CGP or
SBH). But there are other ways to determine the interest of some candidates over
others. Before the optimization, we can assign an interest score to each candidate
based on the average performance of randomly sampled solutions that contained
that candidate. Those interest scores will help favor certain candidates over
others when they achieved the same score for a simulation-based heuristic. It
is particularly suitable here because the candidates are not extremely numerous
(140). The initial random scoring RR of each candidate c ∈ C was computed over
3,000 random simulations, by normalizing the sum of the scores they obtained
during the runs in which they were selected in the waveform, by this number of
runs, as:

RRc norm =

∑
score(r)

r∈{run|x∈run}

card({run|x∈run}) −min
c∈C

RRc

max
c∈C

RRc −min
c∈C

RRc
(9)

This prior can be combined with the score of the greedy simulation heuristic
to weight it according to the initial interest of the candidates (GH & RR).

The results are compared in Table 2 with those of Simulated Annealing
(SA), obtained using scipy.optimize.dual annealing, and the Limited Discrep-
ancy Search (LDS).

Table 2. PRF Selection Problem results

SA
LDS BNRPALR DBNMCS

GH RR GH & RR GH RR GH & RR GH RR GH & RR

Instance 1
AVG 0.913 0.961 0.943 0.960 0.966 0.944 0.959 0.964 0.887 0.955
MAX 0.965 0.972 0.969 0.969 0.972 0.969 0.971 0.972 0.950 0.969

Instance 2
AVG 0.579 0.569 0.592 0.604 0.585 0.588 0.605 0.586 0.576 0.594
MAX 0.608 0.602 0.614 0.614 0.602 0.614 0.614 0.607 0.608 0.614
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4 Discussion

Weighted Set Cover Problem. BNRPALR seems to be more efficient than
DBNMCS on most instances for the same calculation time, see Table 1.

A possible explanation is the search getting lost in the resolution of instances
from the NRG and NRH sets which are very large and not very dense. Since each
candidate does not cover a lot of rows, the sequences are longer before reaching
the coverage condition. Escpecially for BNRPALR, whose entire search is carried
out on a binary tree with an initial non-negligible probability of ignoring actions.
In contrast, DBNMCS is better because playouts at nested level zero are shorter
and allow testing of many small variations when constructing solutions.

Moreover, regardless of the instance, BNRPALR takes more time to find a
better solution than a basic iterative greedy algorithm, whereas DBNMCS finds
quickly a close solution from its first traversed sequence, see Figure 1.

However, for all more moderate instances, BNRPALR give much better re-
sults, see Table 3. It often comes close to, and sometimes even achieves, the best-
known results for several instances. Generally the most efficient policy learning
and the most frequently optimal results are obtained on the densest instances
(sets 4, 5, 6, B, D, E, NRE, NRF).

Standard deviations in Table 3 are much larger with BNRPALR due to its
stochastic nature (each branch choice depends on a probability linked to the
simulated action policy). Non-zero standard deviations for DBNMCS, despite it
being deterministic, are due to random choice when several candidates have the
same score in the simulations. Additionally, these standard deviations are bigger
with CGP heuristic than with SBH, which has a more complex formula. Thus
two different solutions are less likely to have the same score.

Despite similar computational complexities, SBH takes a bit more time than
CGP. Under the same computation time limit, CGP is often more efficient at
it allows simulation of more nodes, and thus exploration of more solutions, see
Table 3. Within the same number of calls to the simulation heurisitc, BNRPALR-
SBH outperforms BNRPALR-CGP, see Figure 1.

For DBNMCS, SBH is significantly better than CGP. Indeed, the actions will
be chosen more scrupulously with SBH and therefore the numerous variations
around solution constructions lead to better performance. The evolution of the
DBNMCS performance with CGP is slow but regular, see Figure 1. The evolution
of the performance of the same method with SBH is sometimes very quickly
improved thanks to the more efficient simulation heuristic.

Pulse Repetition Frequency Selection Problem. On its own, greedy iter-
ative resolution performs poorly on the PRF Selection Problem, especially on
Instance 2. Binarized Monte Carlo Search methods can greatly improves the
results.

According to the SCP results, BNRPALR is more effective when an efficient
simulation heuristic is available. This is not the case for this problem, and this
explains the small difference between the performances of DBNMCS and BNR-
PALR, see Table 2. According to the conclusion of the original paper [5], NMCS
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can be used even without a good heuristic to guide the search, which is the case
with the PRF Selection Problem.

The search can also be improved with an initial randomized rating as the
simulation heuristic. This approach can be suitable even without an effective
greedy heuristic.

LDS also performs better because the size of the instances lends itself better
to this type of search. LDS beats Simulated Annealing but is not overall better
than Binarized Monte Carlo Search.

In summary, Dynamic Binarized NMCS requires little hyperparameter tuning
and is therefore suitable when the knowledge of the problem is limited or when
there is no existence of a good simulation heuristic that is not too computa-
tionally intensive. Binarized NRPA(LR) is suitable when a good result needs to
be achieved over a slightly longer period of time, or when additional informa-
tion from the data can be used to help improve this result continually. Possible
improvements could come from GNRPA [6] and should primarily improve its
robustness (variance).

DBNMCS and BNRPA(LR) significantly outperform the basic iterative greedy
algorithm since they use it as a simulation heuristic for choosing actions while
being more extensive on the exploration. DBNMCS will directly surpass this
result, while BNRPA(LR) may take some time before exceeding it.

A good simulation heuristic applied to these methods significantly improves
the final result. However, there is a tradeoff to find between the efficiency of the
heuristic and its computational cost. Here, for an equivalent computation time,
the simulation with the least effective heuristic (and consequently the fastest)
will be preferred with BNRPA(LR).

The characteristics of the instances can also influence the choice of the res-
olution method. On instances of reasonable sizes (<∼ 5000 candidates) and
balanced (consistent density for the SCP), BNRPALR is very effective. On more
aberrant instances, DBNMCS is more appropriate. Furthermore, LDS is worth
considering on small instances.

A deterministic method with a more discriminative simulation heuristic will
improve the robustness (variance) of the optimization.

5 Conclusion

In this paper, we have presented adaptations of two Monte Carlo Search meth-
ods, Dynamic Binarized Nested Monte Carlo Search (DBNMCS) and Binarized
Nested Rollout Policy Adaptation (BNRPA) including its variants BNRPALR
and BGNRPA. With the use of binary decision trees and heuristic-based sim-
ulations, these adaptations are suitable for solving selection problems and po-
tentially other optimization problems . We have shown that it’s the case for the
Weighted Set Cover Problem, where the most relevant method managed to find
the best score on certain suitable instances, and for the Pulse Repetition Fre-
quency Selection Problem, where we beat the results of other tested methods. In
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addition , we have also highlighted and explained the interest of each method de-
pending on the characteristics and knowledge of the problem and instances to be
solved and the quality of the heuristic on which the simulation is based. Further
work may focus on accelerating the playouts of these methods and improving
DBNMCS’s performance and BNRPA’s variance.
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Algorithm 1: BNRPALR(level, policy)

if level = 0 then
return BNRPALR Playout(policy)

else
bestScore← −∞
repetitions← 0
while repetitions ≤ R do

(score, sequenceActions)← BNRPALR(level − 1, policy)
if score = bestScore then
repetitions ← repetitions + 1

end if
if score > bestScore then
repetitions← 0
bestScore← score
bestSequenceActions← sequenceActions

end if
policy ← BNRPALR Adapt(policy, bestSequenceActions)

end while
return (bestScore, bestSequenceActions)

end if

Algorithm 2: BNRPALR Playout(policy)

node← root
sequenceActions← {}
while true do
if state(node) is a complete solution then
return (score(state(node)), sequenceActions)

else
if node has not yet been traversed then
action← Simulate(node)
state(child(node, 0))← state(node)
state(child(node, 1))← state(node) ∪ action

else
action← action(children(node))

end if
end if
sequenceActions← sequenceActions+ [action]
z ← exp(policy[(action, 0)]) + exp(policy[(action, 1)])
child← choose child i with probability proportional to

exp(policy[(action, i)])
node← child

end while
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Algorithm 3: BNRPALR Adapt(policy, sequenceActions)

policy´ ← policy
for num ← 1 to length(sequenceActions) do

action← sequenceActions[num]
if action is not selected then policy´ [(action, 0)] += α
elif action is selected then policy´ [(action, 1)] += α
z ← exp(policy[(action, 0)]) + exp(policy[(action, 1)])
policy´ [(action, 0)] -= α × exp(policy[(action, 0)]) / z
policy´ [(action, 1)] -= α × exp(policy[(action, 1)]) / z

end for

Algorithm 4: Simulate(node)

greedyScores← {}
for each available action do
greedyScores← greedyScores + [greedy score of action on state(node)
according to the simulation heuristic]

return action corresponding to argmax(greedyScores)

Algorithm 5: DBNMCS(level, node)

if level = 0 then
while state(node) is not a complete solution do
action← Simulate(node)
state(child(node))← state(node) ∪ action
node← child(node)

end while
return score(state(node))

else
bestScore← −∞
while node is not a leaf do

action← Simulate(node)
state(child(node, 0))← state(node)
state(child(node, 1))← state(node) ∪ action
for children i of node do
temp← child(node, i)
score← DBNMCS(level − 1, temp)
if score > bestScore then

bestScore← score
bestChild← temp

end if
end for
node← bestChild

end while
return bestScore

end if
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Table 3. Set Cover Problem results

Instance BS
LDS DBNMCS BNRPALR

CGP SBH CGP SBH CGP SBH
AVG GAP AVG GAP AVG STD GAP AVG STD GAP AVG STD GAP AVG STD GAP

41 429 465.9 8.6 465 8.4 443 0.4 3.3 442 0 3 433 0.9 0.9 437.2 1.9 1.9
42 512 567.1 10.8 560 9.4 543.9 0.8 6.2 534.2 0.1 4.3 514* 0.8 0.4 515.2* 1.1 0.6
43 516 572.4 10.9 560 8.5 550.4 1.2 6.7 542 0 5 522.6 1.2 1.3 523 1.3 1.4
44 494 533.2 7.9 534 8.1 522.3 0.5 5.7 521 0 5.5 498.5 0.3 0.9 499.6 0.4 1.1
45 512 570.1 11.4 568 10.9 534.8 0.6 4.5 532 0 3.9 515 0.2 0.6 516.3 0.8 0.8
46 560 596.1 6.4 599 7 575 0.4 2.7 574 0 2.5 564.4 0.4 0.8 565.1 0.5 0.9
47 430 469.4 9.2 476 10.7 445.2 0.5 3.5 441 0.5 2.6 433.5 0.1 0.8 433.4 0.1 0.8
48 492 525.9 6.9 524 6.5 505.8 0.5 2.8 502 0 2 499.2 0.5 1.5 499.2 0.6 1.5
49 641 715.9 11.7 700 9.2 674.7 0.5 5.3 672 0 4.8 647.1 0.7 0.9 649.1 1.4 1.3
410 514 544.3 5.9 543 5.6 529.6 0.4 3 529 0 2.9 517 0.2 0.6 517.2 0.3 0.6
51 253 283.8 12.2 282 11.5 269.6 0.9 6.6 265 0.1 4.8 259 0.7 2.4 259.7 1 2.7
52 302 337.5 11.8 335 10.9 322.7 0.7 6.8 315 0 4.3 308.4 0.9 2.1 310.2 1.3 2.7
53 226 243.9 7.9 241 6.6 236 0.4 4.4 233 0 3.1 228.8 0.3 1.2 229.4 0.7 1.5
54 242 257.2 6.3 259 7 253 0.4 4.6 254.2 2.1 5 244.5 0.8 1 247.5 1.6 2.3
55 211 234.2 11 229.3 8.7 222.4 0.9 5.4 220 0 4.3 213.4 0.6 1.1 215.2 1.4 2
56 213 242.1 13.7 243 14.1 228.4 0.9 7.2 221.9 0.1 4.2 214.5 0.4 0.7 215 0.6 0.9
57 293 314.1 7.2 319 8.9 303.8 0.7 3.7 304 0 3.8 296.1 0.5 1.1 297.1 0.6 1.4
58 288 315.3 9.5 318 10.4 303.4 0.5 5.4 300 0 4.2 290.7 0.3 0.9 291.8 0.8 1.3
59 279 297.4 6.6 295 5.7 293 0.6 5 287 0 2.9 280.4* 0.6 0.5 281.8* 0.8 1
510 265 284.7 7.4 284 7.2 278.7 0.3 5.2 277 0 4.5 268.7 0.5 1.4 268.6 0.5 1.4
61 138 148.9 7.9 148 7.2 142.4 0.4 3.2 149.6 0.2 8.4 139* 0.8 0.7 139.3* 1 1
62 146 163.3 11.8 163 11.6 150.5 0.6 3.1 154 0 5.5 147.1* 0.6 0.7 147* 0.6 0.7
63 145 157.9 8.9 158 9 152 0 4.8 153 0 5.5 149.8 0.9 3.3 149.9 1 3.4
64 131 140.5 7.3 140 6.9 134.2 0.7 2.4 136 0 3.8 132 0 0.8 132.2 0.3 0.9
65 161 183.3 13.8 182 13 171.8 0.7 6.7 175 0 8.7 161.6* 0.3 0.4 161.2* 0.2 0.1
A1 253 281.6 11.3 280 10.7 267.2 0.6 5.6 261.5 0.4 3.4 258 0.5 2 260.3 0.8 2.9
A2 252 282.9 12.2 279 10.7 265.4 0.5 5.3 264 0 4.8 257.1 0.9 2 260.1 1.1 3.2
A3 232 260 12.1 256 10.3 249.2 1.9 7.4 244 0 5.2 238.3* 1.4 2.7 240.6 1.3 3.7
A4 234 269.9 15.4 266 13.7 256.1 1 9.5 253 0 8.1 239.3 0.7 2.3 242.9 1.2 3.8
A5 236 256.7 8.8 254.4 7.8 248.5 0.4 5.3 244 0 3.4 240.1 0.5 1.7 242.1 0.8 2.6
B1 69 73.9 7.1 75 8.7 71.9 0.4 4.2 73 0 5.8 70.2 0.6 1.8 70.3 0.5 1.9
B2 76 83 9.2 82 7.9 77.8 0.6 2.4 78 0 2.6 76.2* 0.3 0.3 76.8* 0.8 1.1
B3 80 85.4 6.8 86 7.5 82.4 0.3 3.1 86 0 7.5 81.7 0.4 2.2 81.9 0.4 2.4
B4 79 86.5 9.5 87 10.1 82 0.5 3.8 85 0 7.6 79.5* 0.3 0.6 79.6* 0.4 0.7
B5 72 78 8.3 78 8.3 73.8 0.2 2.4 74 0 2.8 72.8* 0.8 1.1 73* 0.7 1.4
C1 227 256.4 13 252 11 244.6 0.5 7.8 243 0 7 239.5 0.9 5.5 241.8 0.9 6.5
C2 219 251.5 14.8 246 12.3 238.5 0.7 8.9 234.1 0.7 6.9 231.4 1.2 5.6 234.2 2 7
C3 243 267.8 10.2 266 9.5 263.2 1.3 8.3 265.6 2 9.3 257.1 1.5 5.8 261.4 2.1 7.6
C4 219 256.3 17 252 15.1 241.7 1.4 10.4 241 0 10 229.3 1.5 4.7 233.1 1.9 6.4
C5 215 234.9 9.2 235 9.3 231 0.8 7.4 233 0 8.4 225.6 1.4 4.9 230.8 1.5 7.3
D1 60 68.1 13.4 68 13.3 63.3 0.5 5.5 64 0 6.7 61.7 0.5 2.8 62.4 0.6 3.9
D2 66 70.5 6.8 70 6.1 67.6 0.3 2.4 68 0 3 66.3* 0.3 0.5 66.7* 0.4 1
D3 72 79.1 9.9 81 12.5 74.9 0.3 4 75 0 4.2 73.3* 0.5 1.8 73.5* 0.7 2.1
D4 62 66.1 6.5 65.5 5.7 62.8* 0.5 1.3 63.4 0.3 2.2 62.7* 0.5 1.1 63.4* 0.7 2.3
D5 61 66.9 9.7 69 13.1 63.5 0.4 4.1 64 0 4.9 61.5* 0.4 0.8 62.1* 0.7 1.8

E12345 5 5* 0 5* 0 5* 0 0 5* 0 0 5* 0 0 5* 0 0
NRE1 29 30.3 4.4 30 3.4 29.1* 0.3 0.3 30 0 3.4 29.1* 0.3 0.3 29.2* 0.3 0.6
NRE2 30 32.8 9.3 33 10 31.1* 0.5 3.6 32 0 6.7 30.5* 0.5 1.6 31.3* 0.5 4.3
NRE3 27 28.3 4.7 28 3.7 27.9* 0.3 3.3 28 0 3.7 27.6* 0.5 2.1 27.2* 0.4 0.7
NRE4 28 30.8 10 31 10.7 28.6* 0.4 2.3 29 0 3.6 28.4* 0.5 1.3 28.6* 0.5 2.1
NRE5 28 31 10.7 31 10.7 28* 0 0 28* 0 0 28* 0 0 28* 0.2 0.1
NRF1 14 14* 0 14* 0 14* 0 0 14* 0 0 14* 0 0 14* 0 0
NRF2 15 15* 0 15* 0 15* 0 0 15* 0 0 15* 0 0 15* 0 0
NRF3 14 15 7.1 15 7.1 15 0 7.1 15 0 7.1 14.9* 0.4 6.3 14.8* 0.6 5.4
NRF4 14 14* 0 14* 0 14* 0 0 14* 0 0 14* 0 0 14* 0 0
NRF5 13 13.5* 3.7 14 7.7 14 0 7.7 14 0 7.7 13.5* 0.7 4 13.8* 0.5 6.2
NRG1 176 202.1 14.8 197 11.9 194 0.6 10.2 193 0 9.7 217.4 1.9 23.5 232.9 2.3 32.3
NRG2 154 176.3 14.4 171 11 169.5 0.6 10.1 169 0 9.7 188.2 2.6 22.2 203.4 3.2 32.1
NRG3 166 189.1 13.9 187 12.7 182.7 0.6 10 179.2 0.2 8 203.7 3.1 22.7 220.7 2.8 33
NRG4 168 188.6 12.3 192 14.3 184 0.5 9.5 184.4 0.2 9.8 204.9 2.3 22 221.8 2.7 32
NRG5 168 189.9 13 194 15.5 184.3 0.5 9.7 182 0 8.3 205.2 2.7 22.2 218.8 2.4 30.3
NRH1 63 72.7 15.4 71 12.7 68.1 0.5 8.1 68 0 7.9 69.6 1 10.5 70.9 1 12.6
NRH2 63 71.9 14.1 71 12.7 68.2 0.5 8.3 69 0 9.5 69.9 0.6 10.9 70.9 1 12.6
NRH3 59 66.3 12.4 67 13.6 63.4 0.4 7.5 64 0 8.5 65.6 0.8 11.1 66.8 1 13.2
NRH4 58 64.6 11.3 65 12.1 61.8 0.5 6.6 63 0 8.6 63.6 0.8 9.7 65.2 1.1 12.4
NRH5 55 61.6 12 61 10.9 57.9 0.4 5.2 56 0 1.8 59.2 1 7.6 61.5 1.4 11.8
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