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1 Introduction

The use of meta-programming todlsin games has enabled to automaticaly gener-
ate dficient spedfic seach program for a given game by spedalizing the definition
of the goal of the game with the rules of the game [Cazenave 1998a,b]. A follow-up
of thisresearch would be to discover general search algorithm that can be gplied to
many games, using program transformation techniques such as the ruleststrategies
approac [Pettoross 20040.

We show that it is possble to improve the dficiency of standard search algo-
rithms with program transformation. The most well-known o the Al search algo-
rithm may be the Minimax and its enhanced courterpart: Alpha-Beta. We will de-
scribe some of the transformations that enable to dscover Alpha-Beta with program
transformation gven the Minimax algorithm. We dso consider program transfor-
mation as a seach agorithm, and ouline the achitedure of a system that can
automaticdly perform the transformations we have described.

In sedion 2 we briefly describe the Minimax search algorithm, and its improve-
ments auch as Negamax and Alpha-Beta. In sedion 3 we give the transformations
that enable to dscover Beta auts, given a simplified Minimax algorithm. Sedion 4
shortly gives hints on the program transformations needed to discover Alpha-Beta
cuts given a redistic Minimax algorithm. Sedion 5 analyzes the achitedure of a



general seach program that can perform the discovery of Alpha-Beta aits. Sedion 6
concludes and ouli nes future work.

2 Minimax, Alpha-Beta, Negamax and Nega-Alpha-Beta

The Minimax algorithm and its related improved seach algorithms are used in
most two players, zero-sum complete information games. The dgorithm was pro-
posed half a century ago by von Neumann and Morgenstern [Neumann 1944 to
dedde which move to make in Chess Alan Turing [Turing 1953 proposed some
seach strategies based onthe Minimax principle, and an important improvement on
the dgorithm was Alpha-Beta. A weg form of Alpha-Beta first appeaed in ealy
Chessprograms sich as NSS by Newell, Shaw and Smon [Newell 1953.

The Minimax seach algorithm is asociated to an evaluation function, that takes
a position d the game & inpu and computes a numericd evaluation for this posi-
tion. The higher the evaluation, the better the positionis. Given a perfed evaluation
function, it is uselessto seach many moves ahead. However, in complex games,
such as Go ar Chess there is no perfed evaluation function. A program is much
better if it can search many moves aheal of the aurrent position. The fundamental
hypahesis of the Minimax algorithm is that the opporent uses the same evaluation
function as the program. Therefore, the goal of the program isto play the moves that
maximize the evaluation function, whereas the opporent plays the moves that
minimize this same evaluation function. The two payers play alternatively, so the
reaursive Minimax algorithm successvely cdls maximizing and minimizing func-
tions.

An improvement on the Minimax algorithm is the Alpha-Beta dgorithm that al-
ways look at less nodes than Minimax while dways giving the same axswer. The
Alpha ait is made & the Min levels of the search treelt is based on the reasoning
that if the aurrent value for a Min level is lower than the aurrent value of the upper
Max level, whatever are the remaining values of the Min noce, they won't change
the value of the upper Max level. Example:
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The Beta aut isthe symmetric of the Alpha aut for Max nodes. Example:
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When the nodes are well ordered, the Alpha-Beta finds an answer in 1+2vVn
nodes, whereas Minimax finds the same answer in n noeks [Knuth 1973.

A more mncise formulation d the Minimax algorithm is the Negamax algorithm.
The sign d the evaluation is changed at ead level, so that ead level is a maximiz-
inglevel. In the Negamax framework, the dgorithm is described reaursively as:

Negamax (n) = max, (-Negamax(n,))

where the n, are the successors of node n. In the Negamax framework, the same
kind d Alpha-Beta aut can be performed at ead nock of the search treg leading to
the Nega-Alpha-Beta dgorithm.

Many other enhancements, such as iterative deepening, transposition tables, the
kill er heuristic, the history heuristic or null move forward pruning, have been found
that improve the Nega-Alpha-Beta dgorithm [Marsland 2000Q.

3 Transforming a smplified version of Minimax

In order to identify the kind d program transformation knavledge needed to re-
discover Alpha-Beta, we first transform a smplified MiniMax. In the simplified
version, only two moves are possble in ead pasition and we do nd care dou the
termination d the search, so the program is:

maxeval(A):- mineval(B), mineval(C),maxi(B,C,A).
mineval(A):- maxeval(B), maxeval(C),mini(B,C,A).
. maxi(B,C,B):- B>=C.
. maxi(B,C,C):- C>=B.
. mini(B,C,B):- B<=C.
. mini(B,C,C):- C<=B.
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Unfolding the second mineval predicatein 1 gves:

~

maxeval(A):- mineval(B), maxeval(B1), maxeval(C1l),
mini(B1,C1,C),maxi(B,C,A).



The goal is to prove that when B >= B1, there is no read to compute maxeval
(C1). We unfold mini and maxi in clause 7. First we unfold mini:

8. maxeval(A):- mineval(B), maxeval(B1), maxeval(C1l),
B1<=C1,maxi(B,B1,A).
9. maxeval(A):- mineval(B), maxeval(B1), maxeval(C1l),

C1<=B1,maxi(B,C1,A).

Then we unfold maxi:

10. maxeval(B):- mineval(B), maxeval(B1), maxeval(C1l),
B1<=C1,B>=B1.

11. maxeval(B1):- mineval(B), maxeval(B1), maxeval(C1l),
B1<=C1,B1>=B.

12. maxeval(B):- mineval(B), maxeval(B1), maxeval(C1l),
Cl1<=B1,B>=C1.

13. maxeval(Cl):- mineval(B), maxeval(B1), maxeval(C1l),

C1<=B1,C1>=B.

Here the dauses are written in a dedarative way, so that the order of the litterals
in the dause can be changed subjed to usual constraints on the posshility of
matching the litteral (for example, B>=B1 can oy be matched when B and B1 are
already known). Therefore 10 and 12are the same dauses with a different ordering,
and 11and 13also, they can be rewritten:

14. maxeval(B):- mineval(B), maxeval(Bl),
B>=B1,maxeval(C1),B1<=C1.
15. maxeval(B):- mineval(B), maxeval(Bl),

maxeval(C1),B>=C1,C1<=B1.

Either B<B1 or B>=B1, so we can split the dause 15 with these two cases:

16. maxeval(B):- mineval(B), maxeval(B1),B<B1,
maxeval(C1),B>=C1,C1<=B1.
17. maxeval(B):- mineval(B), maxeval(B1),B>=B1,

maxeval(C1),B>=C1,C1<=B1.

Then, the test B>=C1 in clause 17 can be removed because we drealy have the
tests B>=B1 and B1>=C1 that ensure that B>=C1. Therefore 17 can be rewritten:

18. maxeval(B):- mineval(B), maxeval(Bl),
B>=B1,maxeval(C1),C1<=B1.

By considering that clauses 14 and 18are the same except for the cmplementary
tests at the end, we can join them in a new clause:

19. maxeval(B):- mineval(B), maxeval(B1),B>=B1,
maxeval(C1).



In clause 19, the variable C1 is not linked any more to the other variables, so we
can remove the sssociated predicate (provided the program are dedarative and that
sub-goals do nd have side dfeds), and we have:

20. maxeval(B):- mineval(B), maxeval(B1),B>=B1.

Which isaBeta aut! So the resulting program is now:

20. maxeval(B):- mineval(B), maxeval(B1),B>=B1.

16. maxeval(B):- mineval(B), maxeval(B1),B<B1,
maxeval(C1),B>=C1,C1<=B1.

11. maxeval(B1):- mineval(B), maxeval(B1l),
maxeval(C1),B1<=C1,B1>=B.

13. maxeval(Cl):- mineval(B), maxeval(Bl),

maxeval(C1),C1<=B1,C1>=B.

Which can be transformed in:

21. maxeval( Res):- mineval(B), maxeval(B1),
maxeval (B,B1,Res).
22. maxeval(B,B1,B):- B>=B1.
23. maxeval(B,B1,Res):- maxeval(C1), maxeval(B,B1,C1,Res).

24. maxeval(B,B1,C1,B):- B<B1,B>=C1,C1<=B1.
25. maxeval(B,B1,C1,B1):- B1<=C1,B1>=B.
26. maxeval(B,B1,C1,C1):- C1<=B1,C1>=B.

This program is performing Beta aits. So, on this smplified verson d Minimax,
we have been able to discover Beta auts using smple program transformation toals.

4 Transforming Negamax into Nega-Alpha-Beta

We will now show how to transform a redistic Negamax algorithm into a Nega-
Alpha-Beta dgorithm. The definition d a Negamax algorithm is:

1.value(  Pos,Depth,Move,Eval):-
possiblemoves(  Pos,List),
maxmovelist( Pos,List,D,Move,Eval).

2. maxmovelist( Pos,[],D,M,-1000).

3. maxmovelist( Pos,[ Move|Ls], D,M,Eval):-
maxmove(Pos,Move,D,M1,Evall),
maxmovelist(Pos,Ls,D,M2,Eval2),
takemax(M1,Evall,M2,Eval2,M,Eval).

4. takemax(M1,Evl,M2,Ev2,M1,Ev]l):-Evi>=Ev2.

5. takemax(M1,Evl,M2,Ev2,M2 Ev2):-Evi<=Ev2.



6. maxmove(Pos,M,D,M1,Ev1):-
play(Pos,M,P1), D1 is D-1,
possiblemoves(P1,LM),
maxmovelist(P1,LM,D1,M1,Ev2),
Evlis —Ev2.

In order to find cuts, we will foll ow the same pattern as in the previous smplified
example. So we begin with urfolding maxmovelist in clause 3:

8. maxmovelist( Pos,[ Move|[Move2|Ls]], D,M,Eval):-
maxmove(Pos,Move,D,M1,Evall),
maxmove(Pos,Move2,D,M2,Eval2),
maxmovelist(Pos,Ls,D,M3,Eval3),
takemax(M2,Eval2,M3,Eval3,M4,Eval4).
takemax(M1,Evall,M4,Eval4,M,Eval).

Then we can urfold the sescond maxmove litteral in clause 8:

9. maxmovelist( Pos,[ Move|[Move2|Ls]], D,M,Eval):-
maxmove(Pos,Move,D,M1,Evall),
play(Pos,Move2,P1), D1 is D-1,
possiblemoves(P1,LM),
maxmovelist(P1,LM,D1,M2,Ev2),

Eval2 is —Ev2,
maxmovelist(Pos,Ls,D,M3,Eval3),
takemax(M2,Eval2,M3,Eval3,M4,Eval4).
takemax(M1,Evall,M4,Eval4,M,Eval).

Andthen urfold the first litt eral maxmovelist in clause 9 to have:

10. maxmovelist( Pos,[ Move|[Move2|Ls]], D,M,Eval):-
maxmove(Pos,Move,D,M1,Evall),
play(Pos,Move2,P1), D1 is D-1,
possiblemoves(P1,[M5|LMs]),
maxmove(P1,M5,D1,M6,Eval6),
maxmovelist(P1,LMs,D1,M7,Eval7),
takemax(M6,Eval6,M7,Eval7,M2,Ev2).
Eval2 is —Ev2,
maxmovelist(Pos,Ls,D,M3,Eval3),
takemax(M2,Eval2,M3,Eval3,M4,Eval4).
takemax(M1,Evall,M4,Eval4,M,Eval).

Now, we can reason onthe subset of litterals compased of:

11. takemax(M6,Eval6,M7,Eval7,M2,Ev2).
Eval2 is —Ev2,
takemax(M2,Eval2,M3,Eval3,M4,Eval4).
takemax(M1,Evall,M4,Eval4,M,Eval).



If we unfold the takemax litterals, one of the unfolded set of litteral we get is:

12. Eval6>=Eval7,
—Eval6é >=Eval3,
Evall>=—Eval6.

and ancther oreis:

13. Eval7>=Eval6,
—Eval7>=Evalg3,
Evall>=—Eval7.

and either Evall>=-Eval6 o Evall<-Eval6. So by splitting 13 with these two
cases, we get:

14. Eval7>=Eval6,
—Eval7>=Evalg3,
Evall>=-Eval6
Evall>=— Eval7.

15. Eval7>=Eval6,
—Eval7>=Evalg3,
Evall<-Eval6
Evall>=—Eval7.

In 14 we have Evall>=-Eval6 and Eval7>=Eval6 therefore we can remove
Evall>=-Eval7 which can be deduced of the two former tests. Moreover, -
Eval7>=Eva3 and Eval7>=Eva6 enables to deduce that —Eval6 >= Eval3 in 14
And Eval6>=Eval7 and -Eval6>=Eval3 in 12 enable to deduce —Eval7>=Eval3 in
12. So naw, we can join 12 and 14 byremoving the complementary condtions
Eval 7>=Eval6 and Eval6>=Eval7 so asto get:

16. —Eval6>=Evalg3,

—Eval7>=Eval3,
Evall>=-Eval6.

Another clause can oltained in a similar way, and contains:
17. —Eval6>=Eval3,

—Eval7<=Eval3,

Evall>=-Eval6.
So byjoining them, we get:

18. —Eval6>=Eval3,
Evall>=-Eval6.

In this clause, there ae no more links between the Eval7 and M7 variables and
the other variables (the predicate containing the M7 and Eval7 variables have dl



their other variables aready closed). Moreover, the predicate dosing the M7 and
Eval7 variables always sicced, but its results are not taken into acourt. So we can
remove it. Then we get the foll owing transformed clause:

19. maxmovelist( Pos,[ Move|[Move2|Ls]],D,M,Evall):-
maxmove(Pos,Move,D,M1,Evall),
play(Pos,Move2,P1), D1 is D-1,
possiblemoves(P1,[M5|LMs]),
maxmove(P1,M5,D1,M6,Eval6),
Evall>=-Eval6,
maxmovelist(Pos,Ls,D,M3,Eval3),
-Eval6>=Eval3.

This transformed clause performs Alpha-Beta aits. Associated to ather trans-
formed clauses, this clause can be further refined to gve amore @ncise definition
of akind d Nega-Alpha-Beta.

5 The Search Space of Program Transfor mations

In order to estimate the complexity of a problem or a game, a useful heuristic is
to determine the search space of the problem. This means estimating the average
number of possble moves and the depth of the seach. If we mnsider program trans-
formation as a seach in the spaceof possble transformed programs, at ead noce (i.
e. transformed program), we can apply a given nunber of transformations, say N. In
order to find an interesting improved program, a minimal number of such transfor-
mation is necessary, say D. The size of the search spaceis N°. A way to acourt for
the dficagy of the transformed programsis to test them on some standard test sets.
At ead nock of the seach graph, the program is tested and in the end the trans-
formed programs are sorted acording to the time they took to solve the standard
problems. The transformed programs are stopped as ©onas they use more time than
the original program to gve their answer using the same data.

In this architedure, the time used for transformation is snall compared to the
time needed to test the transformed programs. Some usual algorithms used for com-
puter games can be used to spead-up the search for a good pogram. For example
iterative degening can be used: the seach is first performed at depth ore, then at
depth two and so on unil no more time is avail able for search. Anather useful opti-
mization is the detedion d identicd nodes in the search space some method such
as transpasition tables can de alapted to efficiently deted equivalent programs, and
save alot of time by na re-searching the same sub-trees many times.

In ou example, the number of transformations required to dscover the Alpha-
Beta dgorithm is on the order of 30. At ead nock of the transformation search
space between 4 and 20transformations are passble. The size of the search spaceis
then of the order of 10®, which is too large to be wmpletely seached. The usual
way to reduce the size of the search spaceis to define maao-moves in the seach
spacethat apply alist of transformationsinstead of applying atomic transformations.



This reduction is gmilar to the rulet+strategies approach [Pettoross 200Q. We be-
lieve that working onthe transformation d search program can urcover new inter-
esting program transformation strategies. Some interesting strategies can already be
devised looking at the transformations we have used to dscover Alpha-Beta aits.

All these ideas need further tests, but the achitedure described gives a new per-
spedive on pgogram transformation systems. It is concerned with the aitomatic
discovery of efficient search algorithm and with pradicd aspeds of the dficient
implementations of program transformation systems as fach programs. It is a
bridge between program transformation and Artificial Intelligence seach algo-
rithms. There may even be akind d refledion: program transformation can be used
to improve seach algorithms, and the improvements in seach algorithms can be
used to improve program transformation. The ultimate goal of this work being to
discover by mean of program transformation some new seach algorithms better
than the state of the at.

6 Conclusion and Future Work

Further testing is needed to evaluate empiricdly the dficiency of our approach to
seach algorithm discovery. We have shown in this paper, as a preliminary result,
that it is possble to dscover the Alpha-Beta dgorithm, given the Minimax algo-
rithm and some simple program transformation tods. We have proposed an archi-
tedure based ona seach algorithm to completely automate the discovery of search
algorithms. A necessary transformation to make the program transformation trada-
ble is the definition d maao moves in this ach space defining some maao-
transformation as a combination d basic transformations. A promising area of re-
seach is the self application d this algorithm: using the achitedure to dscover a
seach algorithm than can improve the search that discovers new search algorithms.
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