Generation of Patterns With External Conditionsfor the
Game of Go

Tristan Cazenavel

Abstract. Patterns databases are used to improve seach in games. We have generated pettern databases for the game of Go. The
generated petterns are asociated to conditions external to the pattern. This enables the pattern to cover much more positions, but it leads
to new problems for pattern generation. We explain how we have managed to solve these problems. We beli eve that patterns associated to
external conditions can be useful in other games.

1 INTRODUCTION

In this paper, we explain how to generate pattern-based knowledge asociated to external conditions for the game of Go. This approach has
goad properties for the game of Go. Tsume-Go is an important problem of the game of Go, it consists in finding if a group is alive (the
opponent cannot remove it) or deal. Patterns have dso been generated for connections and removing o stones.

In the second section, we relate our work to similar works in other games and especially Chessand Checkers, then explain why associating
externa conditions to patterns is useful in the game of Go. In the third section, we present how we manage this secial pattern based
knowledge. The fourth section is devoted to the explanation and the optimization of the dgarithm that generates the patterns. The fifth
section presents the results obtained with this approach.

In this paper, Black is the friend color and White the enemy color.

2 USEFULNESS OF DATABASES OF PATTERNSWITH EXTERNAL CONDITIONS

2.1 Game Databases

Perfect knowledge game databases are an effective mean for significantly controlling and reducing the seach trees in many planning
domains. A pattern database enumerates in a given planning domain all possble subgoals required by any solution, subject to constraints
on the subgeal size. Work on Chessendgame databases was initiated in (Herik & al. 1985 Thompson 1986. It was pushed further with 6-
piece endgames databases by L. Still er, K. Thompson (Still er 1996 Thompson 199§. Endgame databases enabled to discover new chess
knowledge (Nunn 1993 and to play some endgames better than any human. Another well known application is Chinodk's endgame
databases for Checkers (Lake & a. 1994). In single ayent planning, pattern databases have been used succesully to reduce the total
number of nodes sached on a standard problem set of 100 15puzZe positions by over 1006fold (Culberson & a. 1998, and to find
optimal solutions to Rubik's Cube (Korf 1997). Dynamic pattern databases construction has been used as ared-time leaning algorithm to
speead-up Sokoban problem solving (Junghanns & al. 1998. Some simple raw pattern databases have dso been computed for the game of
Go (threeby three ge patternsin the center) (Cazenave 1996).

2.2 Go Patterns with external conditions

The figure 1 is a position where Black stones are dive. The Figure 2 contains a group that can live if Black plays first at A. If White plays
first, the group cannot make two eyes.

- 1,\\
Figurel Figure2
Finding the status of a group (unconditionally alive, aive if friend pays first, dead) and the asciated moves is a caled a Tsume-Go
problem. To solve Tsume-Go problems, Go players use alot of knowledge gout eye shapes.

it

Figure 3 Figure4
Some g/e shapes are used to detect that an eye is done some moves in advance like the shape in the Figure 3 that apply to detect the upper

1 aho IA, Dept Informatique, Université Paris 8, 2 Rue de la Liberté, 93526Saint-Denis, France. Email : cazenave@ai .univ-paris8.fr

eyein the Figure 2 before it is rawly done. Other eye shapes are used to find the moves to play, as the shape in the Figure 4 that advises
the Black move & A to make the lower eye of the Figure 2.

To date, al the pattern databases used to reduce seach trees contained pettern with only raw information. The dement of the pattern
always correspond to acaupation of raw elements of the problem.

These kinds of patterns do not take into acoount some fundamental properties of some domains, as it is the case in the game of Go. One
essentia property of astring o stones is its number of liberties. However, in small patterns like the ones depicted in the Figures 3 and 4
some parts of the strings that are present in the pattern are not represented. So the number of liberties of the strings that border the edge of
the pattern (if this edgeis not also the edge of the board) cannot be calculated when the pattern only is given.

—> > —>

Figure5
The Figure 5 stresses the importance of the number of liberties of a string. The position at the upper left of the Figure 5 has smilarities
with the position of the Figure 2. Moreover the two raw patterns of the Figure 3 and 4 apply to this position as well . But on the contrary of
the position of the Figure 2, the Black group of the Figure 5 is dead even if Black plays first. The sequence explaining why the upper
enclosed Black region is not an eye but an half eye (eye if Black plays first) is given by the sequence of moves following the arows of the
Figure5.

Why does the patterns in the Figure 3 and 4 are right for the Figure 2 and ot for the Figure 5 ? This is due to properties external to the
pattern. The difference between the two positions is that when Black answers White move, the upper black string has two liberties in the
first position and only one liberty in the second one. A string with only one liberty is in Atari: the opponent can remove it the next move.
Soin the first position, White cannot remove Black eye whereas he can in the second positi on.

So as to enable our system to hand e such positions we have to add external conditions to the dements of our pattern. The dement of a
pattern are the string o stones and the empty intersections that it contains. The external conditions associated to the dements of the
pattern are conditi ons on the number of liberties external to the pattern for strings and conditi ons on the number of liberties external to the
pattern if one color plays there, for the empty intersections.

|

>=1 libertiesif Black plays C

>=1 liberties T

>=1 liberties >=1 liberties

Figure 6 Figure7 Figure8 Figure9

The Figure 6 gives an example of a set of conditi ons that have to be alded to the pattern in the Figure 3 to ensure that it represent an eye
whatever is the environment of the pattern: if the upper Black string has more than one external li berty, it will have more than one liberty
when White puts its gone inside and Black answer on the upper left empty intersection as in the Figure 5. So White will not be ale to
remove the string after Black move, and Black will ke his eye.

However the conditions given in the Figure 6 are not verified for the Figure 2 nor for the Figure 5. But for each raw pattern there may be
more than one set of external conditi ons attached. For example, the Figure 7 gives another set of conditi ons attached to the pattern of the
Figure 3 that ensure aBlack eye. Thistime the set of conditionsis verified for the Figure 2 and rot for the Figure 5.

One could argue that the need for external conditions associated to pattern can be overcome by extending the pattern to take into acoount
its direct environment. But this method will make use of many more patterns and will cover less cases. The Figure 8 ill ustrate the large
coverage of different situations the external logcal information can take into acoount: The direct environment of the upper eye pattern in
the Figure 8 is equivalent to the one of the Figure 5, however the Black string has one more liberty in the upper right corner of the Figure
8. This information is taken into account by the logical condition and could not be taken into acoount by raw patterns only. Situations
involving such slight but vital differences often appea in red game positions. This is why logcal external conditions are aconvenient,
efficient and useful way to represent important knowledge.

Patterns associated to external conditions are used in many Go programs, without them patterns are much lessuseful. The novelty of our

approach is to generate automatically this kind of patterns, not using external conditions. We believe that the use of external logcal
information associated to patterns can improve the use of pattern databases in other domains than Go. Examples of this kind of information
could be the existence of a corridor behind an emplacement at Sokoban or the control of a square & Chess

2.3 Computer Tsume-Go

Most Go programs have Tsume-Go problem solvers. Some other programs are specialized in Tsume-Go. The best Tsume-Go problem
Solver is Tomas Wolf's Gotod's (Wolf 1994). Gotods is a very strong Tsume-Go problem solver, it can solve 5-dan problems (an amateur
5-dan is roughly equivalent to a professonnal 1-dan Go player). It relies on heary Alpha-Beta seaching and numerous hand-coded and
tuned petterns for directing search and evaluating positions. However, Gotods is restricted to completely enclosed problems that contain
thirteen or lessempty intersections (Wolf 1996 and most of the problems that are to be solved in red games are not enclosed.

An important asertion that is true for Tsume-Go but for all goal-based seach isthat if arule enable to detect life on move ealier and that
there is an average of five possble moves at each node of the treg then finding all the rules that detect life one move ealier reduces the
size of the tree by a factor five. Many of our rules enable to detect won goals many moves aheal (10 moves or more), so using aur
generated rules enables to solve much harder problems than with a simple problem solver.

3 REPRESENTATION OF GO PATTERNSWITH EXTERNAL CONDITIONS

3.1 Kind of external conditions

Number of liberties outside the patterns

Each intersection in a pattern can have three values, each empty intersection on the side of a pattern leads to three posshiliti es (no
conditions,0,1) for the dlot MaxNumberOfLibertylfEnemy, and three posshilities (no condtion,1,2) for the ot
MinNumberOfLibertylfFriend. Each string in a pattern leads to three posshiliti es : no condition, 0 or 1 for the slot MaxNumberOfLiberties
if it is an enemy string, and ro condition, 1 or 2 for the slot MinNumberOfLiberties if it is a friend string. So each empty intersection on
the side of the pattern leals to nine possble choices, and each string in the pattern leads to three possble choices.

For example the pattern in the figure 9 has two empty intersection on its sde and two stings. So the number of possble rule that can be
tested by the pattern generator is 9*9*3*3=743 dfferent rules.

3.2 Possible moves

Possible moves with external conditions.

When checking if arule is awinning rule, the program has to try al possble Black moves and find if one leads to a winning rule. The
possble Black moves are putting Black stones on empty intersections. If the intersection has a MinNumberOfLibertieslfBlackPlays
condition, then it is removed and transformed in a MinNumberOfLiberties condition for the new string containing the played Black stone.
The other possble moves for Black are to remove White strings that have no liberties inside the pattern and at most one li berty outside the
pattern. If Black plays on an empty intersection in the pattern and if a White strings only has this empty intersection as liberty in the
pattern and ro liberties outside, then the White string is remove from the pattern.

Possble moves for White:
>2 libertiesif Black plays

/ >2 Ilbertles
J \ >2 libertiesif Black plays >2 libertiesif Black plays

>1 liberty if Black plays >2 libertiesif Black plays

é i>2||bert|e£ E i>1I|berty é i>2I|bert|e£ é i>2||bert|e£ é i>2||bert|e£

Figure 10

Admissible heuristics on moves

One important property of the game of Go is that a move can remove & most one liberty of a string. Sometimes, li berties are protected and
the opponent has to make gproach moves before filli ng them. The minimum number of moves to remove one liberty to a friend string is
one, so the White moves other than putting stones inside the pattern are éther decrease by one the number of liberties of a Black string, or
decrease by one the number of liberties if Black plays of an empty intersection, or remove an external condition on the maximum number
of liberties of a White string, or remove an external conditi on on the maximum number of liberties if White plays on an empty intersection.
This ensures that we generate rules that enable Black to achieve his goal whatever White does, even if the external environment is

completely favorable to White and defavorable to Black. So there is no neel for consistency checking o verification of the generated
patterns (except maybe to find bugs in the generation program, but it has not been done automatically).

I ndependence of conditions
We make the hypothesis that the external conditions of the generated rules are independent of each other. That means that the opponent
can only modify one of the conditions at each move. This pre-condition has to be verified by the program that uses the generated rules

when it matches them.

3.3 Smaller patternsincluded
Figure 1l

Patternsincluded

Patterns that contain small er patterns concluding an the same goels are not memorized. This enables to reduce alot the number of patterns
generated for large patterns as most of the large patterns that can be generated are only small patterns with some useless conditi ons added.
The Figure 11 gives an example of this. The pattern on the left has been generated as a won eye in the center, it is a three by three
intersections pattern. The pattern on the left is a four by threeintersections pattern in the center, but this pattern can be deduced from the
one on the left, so it will not be memorized. The selection of patterns not containing smaller patterns reduces gredly the number of
generated patterns, however it forces to generate pattern sizes using a partial order.

2x2 Corner —» 3x2 Corner — P> 4x2 Comner «¢— 3x2 Side —» 4x2 Side ——p» 5x2 Side 3x3 Center —P» 4x3 Center

2x3 Corner —P» 2x4 Corner 3x3 Side 4x3 Side 3x4 Center
Q‘ 3x3 Corner
Figure 12

The partial order is given in the Figure 12. Each arrow represents a dependency between a pattern size and another one. The main
drawback is that all pattern databases cannot be computed in parallel, we can only have apartial parall elism. For example, if we want to
compute four by threeintersections on the side eye pattern database, we must wait for the three by two, the four by two and the three by
threeintersections on the side pattern databases to be computed.

Patterns are used in two diff erent ways. On one hand rew patterns on won eyes or unsettled eyes are used to detect sooner in the prodf tree
that an eye is made or can be made. On the other hand, patterns that threaen to make an eye and that give forced moves to prevent the
opponent to make an eye ae used to find the moves to try in the seach tree

Calculating the conditions for inside patterns

When verifying that a small er pattern is included in a larger one, set of conditions for the small er pattern have to be calculated given the
larger pattern and its own set of conditions. There is an example in the Figure 13 where the empty intersection in the center of the 4x3
pattern in the center become aborder empty intersection in the 3x3 sub-pattern, therefore we can add a condition that is calculable: if
White plays on this empty intersection he will have no external liberties. Similarly, the number of liberties if Black plays on the upper
empty intersection isincreased by one to take into account the liberty contained in the 4x3 pettern that is external to the 3x3 pattern.

’

>1 liberty if Black plays 0 liberty if White plays 2 liberty if Black plays

21 liberty >1 liberty

Figure 13
Once the conditions of the sub-pattern are calculated, the program looks for rules that are more general than the sub-pattern and its
conditions. For example, if the 3x3 rule in the Figure 14 has already been deduced for the same state and the same gaal, the 4x3 rule will
be discarded.

0 liberty if White plays ‘21 liberty if Black plays

=

Figure 14

3.4 Number of possible patterns and rules

Size of the pattern Location Total number of posshble patterns Total number of possble rules
2x2 Corner 81 5 133
3x2 Corner 729 184 137
4x2 Corner 6 561 6 498 165
3x3 Corner 19 683 23 719 791
5x2 Corner 59 049 228 469 857
4x3 Corner 531 441 3 238 523 049
6x2 Corner 531 441 8 023 996 893
5x3 Corner 14 348 907 464 991 949 659
3x2 Side 729 541 101
4x2 Side 6 561 18 513 177
3x3 Side 19 683 191 890 599
5x2 Side 59 049 631 651 053
4x3 Side 531 441 20 752 761 345
6x2 Side 531 441 21 555 306 681
3x4 Side 531 441 68 094 804 369
5x3 Side 14 348 907 2 353 796 975 871
3x3 Center 19 683 663 693 159
4x3 Center 531 441 239 111 765 601
5x3 Center 14 348 907 59 241 069 331 995

Table 1: Number of posshle patterns and rules for different sizes and locations

Accoording to (Lake & al. 1994, the number of position for the seven pieces Checkers endgame databases is 34 779 531 48@nd 406 309
208 481for the eght pieces Checkers endgame databases. So the number of rectangular rules that contains lessthan fifteen intersectionsis
much higher than the number of eight pieces endgame positions in Checkers. A pattern is a rectangular shape containing anly Black, White
and Empty intersections. A rule is a pattern associated to external conditions. To calculate the number of possble rules, we made a
program that generated and counted al of them. All the possble rules we have counted are valid ones and can be matched on some boards.

4 GENERATION OF GO PATTERNSWITH EXTERNAL CONDITIONS

4.1 Coding patterns

Usually when generating patterns databases, only one or two bits are used per pattern (Lake & al. 1994 Korf 1997 Culberson & al. 1998
Junghanns & al. 1999. All patterns are sssociated to ane or two bits, sometimes a byte so as to encode the minimal |ength to the winning
position (Thompson 1986 1996 Schadfer 1997). We do not use this representation, instead each pattern is coded on a 32 hits unsigned
integer. This representation takes lessmemory because out of the total number of possble rules for each size and each location, only a few
conclude on awon or awinning state. Moreover, different sets of conditions can be aswciated to a pattern and this is easier to asociate
this superset to an entry in atable of patterns.

For example, if we use one hit per rule, the 5x3 in the center rules for won states would take 7 405 133 666 499ykes, which is out of
question for current machines. If instead, we dlocate apointer on a superset of set of conditions for each possble pattern, we get 57 395
628 hytes for the pointer table without counting the memory for the sets of conditions. Thisis gill too much. If instead we record only a
table of 32 hits unsigned integer per won pettern, we only use 1317*4=5268 lytes for patterns and roughly the same memory for associated
conditi ons.

4.2 Simple algorithm

Simple forward algorithm:
do {
NewPat t er n=0;
for (Pattern=0; Pattern<NunberOf Patterns(length, height); Pattern++) {
For Al | Possi bl eArrangenent OF Ext er nal Li berti es(Pattern, Li berties) {
if (NewwnPattern(Pattern,Liberties)) {
AddwonPattern(Pattern, Li berties); NewPattern=1; } } }
for (Pattern=0; Pattern<NunberOf Patterns(length, height); Pattern++) {
For Al | Possi bl eArrangenent OF Ext er nal Li berti es(Pattern, Li berties) {
i f (NewW nni ngPattern(Pattern,Liberties)) {
AddW nni ngPattern(Pattern, Li berties); NewPattern=1; } } }

}
whi | e(NewPat t ern) ;

This smple dgarithm looks at all the possble patterns and check if they are won or winning patterns for the desired goal. However, this
algarithm cannot be used for the sizes of the patterns we want to generate. For example, the small est size of pattern for making life in the
center is5x3. There ae 59 241 069 331 995 different possble rules for 5x3 petterns in the center. Each time we want to regress
rules one move further, this algorithm has to check all this huge number of rules.

4.3 Backward algorithm

Unmove generator.

To improve the forward algorithm, we can write ax unmove generator that given a rule gives all the rules that lea to it in one move
databases (Lake & al. 1994 Thompson 1996 Gasser 1996. However, writing an unmove generator is a difficult task when deding with
externa conditions and dfferent patterns szes and locations. It is much easier to write ax unmove generator for raw pattern without
externa conditions. So we improved the simple dgarithm by unmoving the raw patterns and lodking at al the arangements of external
li berties for the unmoved raw patterns.

Simple backward algorithm

for (Pattern=0; Pattern<NunberOf Patterns(length, height); Pattern++) {
For Al | Possi bl eArrangenent OF Ext er nal Li berti es(Pattern, Li berties) {
if (NewwnPattern(Pattern,Liberties)) AddwnPattern(Pattern,Liberties); } }
do {
NewPat t er n=0;
for (i=0; i<NunmberOWnningPatterns; i++) {
NewPat t er nsToUnnmove=Unnove(Eneny, W nni ngPattern[i]);
for (j=0; j<NunberOf NewPatternsToUnnove; j++) {
Pat t er n=NewPat t er nsToUnnove [j];
For Al | Possi bl eArrangenent OF Ext er nal Li berti es(Pattern, Li berties) {
if (NewwnPattern(Pattern,Liberties)) {
AddwonPattern(Pattern, Li berties); NewPattern=1; } } }
for (i=0; i<NunberOWonPatterns; i++) {
NewPat t er nsToUnnove=Unnove(Fri end, WonPattern[i]);
for (j=0; j<NunberOf NewPatternsToUnnove; j++) {
Pat t er n=NewPat t er nsToUnnove [j];
For Al | Possi bl eArrangenent OF Ext er nal Li berti es(Pattern, Li berties) {
i f (NewW nni ngPattern(Pattern,Liberties)) {
AddW nni ngPattern(Pattern, Li berties); NewPattern=1; } } }

}
whi | e(NewPat t er n) ;

4.4 Memorizing last iteration

The next optimization is not to unmove dl the patterns but to unmove only the last deduced petterns. This leals to a substantial speedup
for large pattern sizes, as a large number of rules are generated, this optimization is mentioned in the paper on Chinodk’s databases (Lake
& a. 19949). Instead of unmoving al the winning rules, we only unmove the winning rules found duing the last iteration. We do the same
for the won rules. This reduces alot the number of rules to unmove & each step.

4.5 Order of test and cut

Ancther important optimization relies on the property that the progam does not have to do al the tests in the
For Al | Possi bl eAr rangenent OF Ext er nal Li berti es loop. If we begin to test the arangements with the most favorable ones
for Black, then as soon as one arangement does not lead to a new rule, we can stop looking for arrangement lessfavorable for Black: they
won't lead to new rules either.

This optimization works particularly well when looking for won states, as one White move is sufficient to disprove the won state. As oon
as this move is found the logp is gopped, even if it is the first arrangement tested: the most favorable for Black. It happens many times
that a White unmove |leals to no Won state, because dl White moves have to be disproved for the state to be Won. It happens very rarely
that a Black unmove does not lead to awinning state.

Type of rules Time without constraints optimization Time with constraints optimization
4x2 eyes on the side of the board 7 min. 1min.
3x3 eyes on the side of the board 1 hour 41 min. 13 min.
5x2 eyes on the side of the board 9 hours 10 min. 55 min.

Table 2: Impact of constraints optimization

Some tests, on a slow workstation, that evaluate the impact of constraints optimization are given in the Table 2.

4.6 Rule coverage reductions

If the number of empty intersection on the side of the pattern is grictly greaer than four, the program only keeps
intersections at the corner of the pattern. Thisis a domain dependent coverage reduction, that enable to keep the number of
possble conditi ons associated to a pattern low, whil e kegoing a large number of interesting rules. For example, in the next
pattern on the right, only the empty intersections in the corners will be a<ociated to conditi ons.

5 RESULTS
5.1 Eyeson the side
>=1 liberties The foll owing table gives the number of generated rules for eyes on the side for each pettern size.
\A The number of generated rules is remarkably low in comparison of the number of possble rules.
Thisis due that many conditi ons must be fulfill ed to make an eye. However these numbers are quite
high in comparison of the number of rules used by other Go programs that use hand-written pattern
databases. My Go program also used Theaening to make an eye rules, but they are not listed here.
< >=1liberties The figure 15 gives a won eye on the side rule generated by the system.
Figure 15
Size of the pattern Location Number of won rules Number of winning rules
3x2 Side 11 108
4x2 Side 171 1 081
3x3 Side 727 5 570
5x2 Side 1 661 5 952
4x3 Side 38 909 146 272
3x4 Side 14 966 62 329
6x2 Side 18 194 31 500

Table 3: Number of generated rules for eyes on the side

5.2 Lifein the corner

Life in the corner of the board is a tricky part of the game of Go. Many patterns gives birth to living strings, and some of them need quite
deep and acaurate reading for proving life.

Size of the pattern Location Number of won rules Number of winning rules
4x2 Corner 15 164
3x3 Corner 75 977
5x2 Corner 151 1172
4x3 Corner 10 305 72 014
6x2 Corner 2 916 19 490
5x3 Corner 93 301 483 519

Table 4: Number of generated rules for lifein the corner

The figure 16 shows some generated rules where Black can live in one move (winning rules).

W >=1 libertiesif >=1 liberties
Black plays
0 libertiesif _
>=1 liberties White plays |

Figure 16
5.3 Lifeon the side

Size of the pattern Location Number of won rules Number of winning rules
5x2 Side 25 264
4x3 Side 444 5 940
6x2 Side 298 2 808
5x3 Side 30 174 262 541

Table 5: Number of generated rules for won life on the side

To make life, one needs two eyes, so there ae many lesslife patterns than eye patterns for the same pattern size.

5.4 Other Goals

Pattern were generated for the goals make an eye, live, connect two strings, connect a string to an empty intersection, connect two empty
intersections, remove astring from the board. For each of these godls, large numbers of rules were generated for each of the threepossble
locations on the board, |ealing to substantial improvements in the problem solving abiliti es of our Go program.

5.5 Using generated rules to solve problems

To evaluate the impact of new pattern-based seach knowledge on the problem solving performance in Tsume-Go, we used problems from
two beginners bodks (Kano 1985, 1985h. The first book is for beginners and the second one for advanced beginners. We used two books
of different levels of strength to compare the influence of knowledge on easy problems and herder problems, and to seeif our experiments
scales well. The first book contains 90 Tsume-Go problems, and the second ook 127 Tsume-Go problems.

We used Prodf-Number (PN) seach (Allis & al. 1994 for our Tsume-Go problems for various reasons. The first reason is that in depth-
first search as used in Gotod's for completely enclosed problems (Wolf 1996, there ae goad heuristics to arder moves. For example, the
last move of the opponent which won is a goad candidate for the looser to try himself before, so the program can learn from terminal leaves
of the seach tree and therefore depth-first search is appropriate because it reaches the terminal leaves ealier. It is the contrary for open
problems where if a wrong move involving a ladder (a ladder is a subgaal of the game consisting in removing some stones of the board)
acrossthe board is tried first, the first subtree search may last very long a forever and the correct blocking move never be learned and the
problem never be solved. So a Best-First seach like the one used in PN-search is more gpropriate for the open Tsume-Go problems our
system tries to solve. The second reason is that we generate control knowledge in the sense that we generate patterns that advise asmall
number of moves out of the large number of possble moves (meanly 250), but we do not generate ordering knowledge for the selected
moves. Correctly ordering the moves to try is very important for the dficient use of the Alpha-Beta dgorithm, and more generally for
Depth-First search algarithms. The alvantage of PN-seach is that the correct ordering o moves is lessimportant because the interest of
each subtreeis dynamically evaluated and reconsidered at each move to take into acoount the information on the shape of the seach tree
given by thislast move.

In this experiment we counted the @ght equivalent patterns as different patterns, each one counting as one in the number of patterns. The
reason is that each dfferent pattern is a different item in our databases as they have different entries. As we have seen in section 2, each
pattern can have different sets of external conditi ons attached to it. We counted each dfferent set of conditions as one pattern. So ane raw
pattern having multi ple sets of conditi ons counts for more than one.
% of solved problems
100%—
80%-
60%

40%-1

20%-

100000 200000 300 000 400 000

Figure 17
In the figure 17, the horizontal axis represents the number of patterns used to control and stop the search. The vertical axis represents the
number of problems lved by this amount of patterns on beginners problems.

Time (s)
A
500s ——

400s—+—

300s

200s

100s+

e — i —

i i i i
100000 200000 300 000 400 000

Figure 18
In the figure 18, the horizontal axis represents the number of patterns used to control and stop the search. The vertical axis represents the
time used to search the problems. In order to solve aTsume-Go problems, our system must recognize the groups of stones on the board. So
alot of seach is used before solving the Tsume-Go problem at hand: all the subproblems concerning the connection and the capture of
stones have to be solved first to build the groups. The system calculated the total time used for building groups and solving Tsume-Go
problems, that way it gives aredistic evaluation of the red difference of time that can be used to evaluate the change in its abiliti es when
it plays red time-limited games.

% of solved problems

A
100% 1
80% 1
60% 1
40%
20%-|-
1 1 1 1 f 1 1 1 —p
100000 200000 300 000 400 000
Figure 19

In the figure 19, the horizontal axis represents the number of patterns used to control and stop the search. The vertical axis represents the
number of problems lved by this amount of patterns on advanced beginners problems.

6 CONCLUSION

We have presented the importance of databases of patterns with external conditions for computer Go. We have shown the importance of
logcal informations in patterns that take into acoount external properties of the pattern. We have described the representations and the
algarithms used to generate such patterns. The experimental results sow that the number of simple problems lved increases well with
the number of generated patterns. The alditional time used by the playing program to solve problems it could not solve (and rot even see
as problems) before generating the patterns, is reasonable and involves no time problem for tournament and competitive play. In fact, the
mean number of nodes and the mean time used to solve agiven problem decreases as the number of pattern increases. When tested on
harder problems, the experiments sale well and show a similar increase of the number of problems lved with the number of patterns.
Some games played by our system during tournament play show that its pattern databases and seach agarithm give it a better
understanding of Tsume-Go than the best Go playing systems on some positions. These experimental results are an encouragement to
continue working on pattern databases associated to external logical informations in Go and to test this approach in other games and single
agent search domains.

7 REFERENCES
AllisL. V., van der Meulen M., Jag van den Herik H. (1994). Proof-number search. Artificial Intelli gence 66, pp.91-124.
Cazenave, T. (1996. Automatic Acquisition d Tactical Go Rules. Game Programming Workshop in Japan'96, Hakone, 1996

Culberson J.C., Schadfer J. (1998. Pattern Databases. Computational Intelli gence, 1998

Gas=r R. (1996. Sdving Nine Men's Morris. In Games of No Chance, R. J. Nowakowski editor, MSRI Publications, Vol. 29, 1996
Van den Herik, H. J.; Herschberg, I. S. (1985. The Construction d an Ormmiscient Endgame Database. ICCA Journal, Val. 8, 1985
Junghanns A., Schadfer J. (1998. Single-Agent Search in the Presence of Dead ocks. AAAI-98.

Kano Y. (198%). Graded Go Problems For Beginners. Volume One. The Nihon Ki-in. ISBN 4-818202282 C2376

Kano Y. (19851). Graded Go Problems For Beginners. Volume Two. The Nihon Ki-in. ISBN 4-90657447-5.

Korf, R. (1997. Finding opimal solutions to Rubik's Cube using pdtern daabases. AAAI-97, pp. 700-705,

Lake R., Schadfer J., Lu P. (1994. Sdving Large Retrograde-Analysis Problems Using a Network of Workstations. Advances in
Computer Chess7, pp. 135162 University of Limburg, Maastricht, The Netherlands. ISBN 90-62161014

Nunn, J. (1993. Extracting Information From Endgame Databases. ICCA journal, December 1993 pp.191-200.

Schadfer, J. (1997). One Jump Ahead —Challenging Human Supemacy in Checkers. Springer Verlag, 1997

Still er, L. (1996. Multili near Algebra andChessEndgames. In Games of No Chances, R. J. Nowakowski editor, MSRI, Val. 29, 1996
Thompson, K. (1986. Retrograde Analysis of Certain Endgames. ICCA Journa Val. 9, No. 3, pp. 131-139

Thompson, K. (1996. 6-Piece Endgames. ICCA Journal December 1996 pp. 215-226.

Wolf T. (1994. The program GoTodls and its computer-generated tsume-go ddabase. First Game Programming Workshop in Japan,
Hakone, 1994

Wolf T. (1996. Abou problems in generalizing a tsumego ogram to open pasitions. Game Programming Workshop in Japan'96,
Hakone, 1996

