
Generation of Patterns With External Conditions for the
Game of Go

Tristan Cazenave1

Abstract. Patterns databases are used to improve search in games. We have generated pattern databases for the game of Go. The
generated patterns are associated to conditions external to the pattern. This enables the pattern to cover much more positions, but it leads
to new problems for pattern generation. We explain how we have managed to solve these problems. We believe that patterns associated to
external conditions can be useful in other games.

1 INTRODUCTION

In this paper, we explain how to generate pattern-based knowledge associated to external conditions for the game of Go. This approach has
good properties for the game of Go. Tsume-Go is an important problem of the game of Go, it consists in finding if a group is ali ve (the
opponent cannot remove it) or dead. Patterns have also been generated for connections and removing of stones.

In the second section, we relate our work to similar works in other games and especiall y Chess and Checkers, then explain why associating
external conditions to patterns is useful in the game of Go. In the third section, we present how we manage this special pattern based
knowledge. The fourth section is devoted to the explanation and the optimization of the algorithm that generates the patterns. The fifth
section presents the results obtained with this approach.

In this paper, Black is the friend color and White the enemy color.

2 USEFULNESS OF DATABASES OF PATTERNS WITH EXTERNAL CONDITIONS

2.1 Game Databases

Perfect knowledge game databases are an effective mean for significantly controlli ng and reducing the search trees in many planning
domains. A pattern database enumerates in a given planning domain all possible subgoals required by any solution, subject to constraints
on the subgoal size. Work on Chess endgame databases was initi ated in (Herik & al. 1985, Thompson 1986). It was pushed further with 6-
piece endgames databases by L. Still er, K. Thompson (Still er 1996, Thompson 1996). Endgame databases enabled to discover new chess
knowledge (Nunn 1993) and to play some endgames better than any human. Another well known appli cation is Chinook's endgame
databases for Checkers (Lake & al. 1994). In single agent planning, pattern databases have been used successfull y to reduce the total
number of nodes searched on a standard problem set of 100 15-puzzle positions by over 1000-fold (Culberson & al. 1998), and to find
optimal solutions to Rubik's Cube (Korf 1997). Dynamic pattern databases construction has been used as a real-time learning algorithm to
speed-up Sokoban problem solving (Junghanns & al. 1998). Some simple raw pattern databases have also been computed for the game of
Go (three by three eye patterns in the center) (Cazenave 1996).

2.2 Go Patterns with external conditions

The figure 1 is a position where Black stones are ali ve. The Figure 2 contains a group that can li ve if Black plays first at A. If White plays
first, the group cannot make two eyes.

B

A

A
Figure 1 Figure 2

Finding the status of a group (unconditionall y ali ve, ali ve if friend plays first, dead) and the associated moves is a called a Tsume-Go
problem. To solve Tsume-Go problems, Go players use a lot of knowledge about eye shapes.

A
Figure 3 Figure 4

Some eye shapes are used to detect that an eye is done some moves in advance li ke the shape in the Figure 3 that apply to detect the upper

1 Labo IA, Dept Informatique, Université Paris 8, 2 Rue de la Liberté, 93526 Saint-Denis, France. Email : cazenave@ai.univ-paris8.fr

eye in the Figure 2 before it is rawly done. Other eye shapes are used to find the moves to play, as the shape in the Figure 4 that advises
the Black move at A to make the lower eye of the Figure 2.

To date, all the pattern databases used to reduce search trees contained pattern with only raw information. The element of the pattern
always correspond to occupation of raw elements of the problem.

These kinds of patterns do not take into account some fundamental properties of some domains, as it is the case in the game of Go. One
essential property of a string of stones is its number of li berties. However, in small patterns li ke the ones depicted in the Figures 3 and 4,
some parts of the strings that are present in the pattern are not represented. So the number of li berties of the strings that border the edge of
the pattern (if this edge is not also the edge of the board) cannot be calculated when the pattern only is given.

Figure 5
The Figure 5 stresses the importance of the number of li berties of a string. The position at the upper left of the Figure 5 has similariti es
with the position of the Figure 2. Moreover the two raw patterns of the Figure 3 and 4 apply to this position as well . But on the contrary of
the position of the Figure 2, the Black group of the Figure 5 is dead even if Black plays first. The sequence explaining why the upper
enclosed Black region is not an eye but an half eye (eye if Black plays first) is given by the sequence of moves following the arrows of the
Figure 5.

Why does the patterns in the Figure 3 and 4 are right for the Figure 2 and not for the Figure 5 ? This is due to properties external to the
pattern. The difference between the two positions is that when Black answers White move, the upper black string has two liberties in the
first position and only one liberty in the second one. A string with only one liberty is in Atari: the opponent can remove it the next move.
So in the first position, White cannot remove Black eye whereas he can in the second position.

So as to enable our system to handle such positions we have to add external conditions to the elements of our pattern. The element of a
pattern are the string of stones and the empty intersections that it contains. The external conditions associated to the elements of the
pattern are conditions on the number of li berties external to the pattern for strings and conditions on the number of li berties external to the
pattern if one color plays there, for the empty intersections.

>=1 liberties

>=1 liberties

>=1 liberties

>=1 liberties if Black plays

Figure 6 Figure 7 Figure 8 Figure 9

The Figure 6 gives an example of a set of conditions that have to be added to the pattern in the Figure 3 to ensure that it represent an eye
whatever is the environment of the pattern: if the upper Black string has more than one external li berty, it will have more than one liberty
when White puts its stone inside and Black answer on the upper left empty intersection as in the Figure 5. So White will not be able to
remove the string after Black move, and Black will keep his eye.

However the conditions given in the Figure 6 are not verified for the Figure 2 nor for the Figure 5. But for each raw pattern there may be
more than one set of external conditions attached. For example, the Figure 7 gives another set of conditions attached to the pattern of the
Figure 3 that ensure a Black eye. This time the set of conditions is verified for the Figure 2 and not for the Figure 5.

One could argue that the need for external conditions associated to pattern can be overcome by extending the pattern to take into account
its direct environment. But this method will make use of many more patterns and will cover less cases. The Figure 8 ill ustrate the large
coverage of different situations the external logical information can take into account: The direct environment of the upper eye pattern in
the Figure 8 is equivalent to the one of the Figure 5, however the Black string has one more liberty in the upper right corner of the Figure
8. This information is taken into account by the logical condition and could not be taken into account by raw patterns only. Situations
involving such slight but vital differences often appear in real game positions. This is why logical external conditions are a convenient,
eff icient and useful way to represent important knowledge.

Patterns associated to external conditions are used in many Go programs, without them patterns are much less useful. The novelty of our

approach is to generate automaticall y this kind of patterns, not using external conditions. We believe that the use of external logical
information associated to patterns can improve the use of pattern databases in other domains than Go. Examples of this kind of information
could be the existence of a corridor behind an emplacement at Sokoban or the control of a square at Chess.

2.3 Computer Tsume-Go

Most Go programs have Tsume-Go problem solvers. Some other programs are speciali zed in Tsume-Go. The best Tsume-Go problem
Solver is Tomas Wolf's Gotools (Wolf 1994). Gotools is a very strong Tsume-Go problem solver, it can solve 5-dan problems (an amateur
5-dan is roughly equivalent to a professionnal 1-dan Go player). It relies on heavy Alpha-Beta searching and numerous hand-coded and
tuned patterns for directing search and evaluating positions. However, Gotools is restricted to completely enclosed problems that contain
thirteen or less empty intersections (Wolf 1996) and most of the problems that are to be solved in real games are not enclosed.

An important assertion that is true for Tsume-Go but for all goal-based search is that if a rule enable to detect li fe on move earlier and that
there is an average of five possible moves at each node of the tree, then finding all the rules that detect li fe one move earlier reduces the
size of the tree by a factor five. Many of our rules enable to detect won goals many moves ahead (10 moves or more), so using our
generated rules enables to solve much harder problems than with a simple problem solver.

3 REPRESENTATION OF GO PATTERNS WITH EXTERNAL CONDITIONS

3.1 Kind of external conditions

Number of liberties outside the patterns
Each intersection in a pattern can have three values, each empty intersection on the side of a pattern leads to three possibiliti es (no
conditions,0,1) for the slot MaxNumberOfLibertyIfEnemy, and three possibiliti es (no condition,1,2) for the slot
MinNumberOfLibertyIfFriend. Each string in a pattern leads to three possibiliti es : no condition, 0 or 1 for the slot MaxNumberOfLiberties
if it is an enemy string, and no condition, 1 or 2 for the slot MinNumberOfLiberties if it is a friend string. So each empty intersection on
the side of the pattern leads to nine possible choices, and each string in the pattern leads to three possible choices.

For example the pattern in the figure 9 has two empty intersection on its side and two stings. So the number of possible rule that can be
tested by the pattern generator is 9*9*3*3=743 different rules.

3.2 Possible moves

Possible moves with external conditions.
When checking if a rule is a winning rule, the program has to try all possible Black moves and find if one leads to a winning rule. The
possible Black moves are putting Black stones on empty intersections. If the intersection has a MinNumberOfLibertiesIfBlackPlays
condition, then it is removed and transformed in a MinNumberOfLiberties condition for the new string containing the played Black stone.
The other possible moves for Black are to remove White strings that have no liberties inside the pattern and at most one liberty outside the
pattern. If Black plays on an empty intersection in the pattern and if a White strings only has this empty intersection as li berty in the
pattern and no liberties outside, then the White string is remove from the pattern.

Possible moves for White:

>2 liberties

>2 liberties if Black plays

>2 liberties

>1 liberty if Black plays

>1 liberty

>2 liberties if Black plays

>2 liberties >2 liberties

>2 liberties if Black plays

>2 liberties

>2 liberties if Black plays

Figure 10
Admissible heuristics on moves
One important property of the game of Go is that a move can remove at most one liberty of a string. Sometimes, li berties are protected and
the opponent has to make approach moves before filli ng them. The minimum number of moves to remove one liberty to a friend string is
one, so the White moves other than putting stones inside the pattern are either decrease by one the number of li berties of a Black string, or
decrease by one the number of li berties if Black plays of an empty intersection, or remove an external condition on the maximum number
of li berties of a White string, or remove an external condition on the maximum number of li berties if White plays on an empty intersection.
This ensures that we generate rules that enable Black to achieve his goal whatever White does, even if the external environment is

completely favorable to White and defavorable to Black. So there is no need for consistency checking or verification of the generated
patterns (except maybe to find bugs in the generation program, but it has not been done automaticall y).

Independence of conditions
We make the hypothesis that the external conditions of the generated rules are independent of each other. That means that the opponent
can only modify one of the conditions at each move. This pre-condition has to be verified by the program that uses the generated rules
when it matches them.

3.3 Smaller patterns included

Patterns included

Figure 11
Patterns that contain smaller patterns concluding on the same goals are not memorized. This enables to reduce a lot the number of patterns
generated for large patterns as most of the large patterns that can be generated are only small patterns with some useless conditions added.
The Figure 11 gives an example of this. The pattern on the left has been generated as a won eye in the center, it is a three by three
intersections pattern. The pattern on the left is a four by three intersections pattern in the center, but this pattern can be deduced from the
one on the left, so it will not be memorized. The selection of patterns not containing smaller patterns reduces greatly the number of
generated patterns, however it forces to generate pattern sizes using a partial order.

Figure 12
The partial order is given in the Figure 12. Each arrow represents a dependency between a pattern size and another one. The main
drawback is that all pattern databases cannot be computed in parallel, we can only have a partial paralleli sm. For example, if we want to
compute four by three intersections on the side eye pattern database, we must wait for the three by two, the four by two and the three by
three intersections on the side pattern databases to be computed.

Patterns are used in two different ways. On one hand new patterns on won eyes or unsettled eyes are used to detect sooner in the proof tree
that an eye is made or can be made. On the other hand, patterns that threaten to make an eye and that give forced moves to prevent the
opponent to make an eye are used to find the moves to try in the search tree.

Calculating the conditions for inside patterns
When verifying that a smaller pattern is included in a larger one, set of conditions for the smaller pattern have to be calculated given the
larger pattern and its own set of conditions. There is an example in the Figure 13 where the empty intersection in the center of the 4x3
pattern in the center become a border empty intersection in the 3x3 sub-pattern, therefore we can add a condition that is calculable: if
White plays on this empty intersection he will have no external li berties. Similarly, the number of li berties if Black plays on the upper
empty intersection is increased by one to take into account the li berty contained in the 4x3 pattern that is external to the 3x3 pattern.

≥1 liberty

≥1 liberty if Black plays

≥1 liberty

≥2 liberty if Black plays0 liberty if White plays

Figure 13
Once the conditions of the sub-pattern are calculated, the program looks for rules that are more general than the sub-pattern and its
conditions. For example, if the 3x3 rule in the Figure 14 has already been deduced for the same state and the same goal, the 4x3 rule will
be discarded.

≥1 liberty if Black plays0 liberty if White plays

Figure 14

3x3 Center 4x3 Center

3x4 Center

2x2 Corner 3x2 Corner 3x2 Side 4x2 Side4x2 Corner

2x3 Corner 2x4 Corner

3x3 Corner

5x2 Side

3x3 Side 4x3 Side

3.4 Number of possible patterns and rules

Size of the pattern Location Total number of possible patterns Total number of possible rules
2x2 Corner 81 5 133
3x2 Corner 729 184 137
4x2 Corner 6 561 6 498 165
3x3 Corner 19 683 23 719 791
5x2 Corner 59 049 228 469 857
4x3 Corner 531 441 3 238 523 049
6x2 Corner 531 441 8 023 996 893
5x3 Corner 14 348 907 464 991 949 659
3x2 Side 729 541 101
4x2 Side 6 561 18 513 177
3x3 Side 19 683 191 890 599
5x2 Side 59 049 631 651 053
4x3 Side 531 441 20 752 761 345
6x2 Side 531 441 21 555 306 681
3x4 Side 531 441 68 094 804 369
5x3 Side 14 348 907 2 353 796 975 871
3x3 Center 19 683 663 693 159
4x3 Center 531 441 239 111 765 601
5x3 Center 14 348 907 59 241 069 331 995

Table 1: Number of possible patterns and rules for different sizes and locations

According to (Lake & al. 1994), the number of position for the seven pieces Checkers endgame databases is 34 779 531 480 and 406 309
208 481 for the eight pieces Checkers endgame databases. So the number of rectangular rules that contains less than fifteen intersections is
much higher than the number of eight pieces endgame positions in Checkers. A pattern is a rectangular shape containing only Black, White
and Empty intersections. A rule is a pattern associated to external conditions. To calculate the number of possible rules, we made a
program that generated and counted all of them. All the possible rules we have counted are valid ones and can be matched on some boards.

4 GENERATION OF GO PATTERNS WITH EXTERNAL CONDITIONS

4.1 Coding patterns

Usuall y when generating patterns databases, only one or two bits are used per pattern (Lake & al. 1994; Korf 1997; Culberson & al. 1998;
Junghanns & al. 1998]. All patterns are associated to one or two bits, sometimes a byte so as to encode the minimal length to the winning
position (Thompson 1986, 1996; Schaeffer 1997). We do not use this representation, instead each pattern is coded on a 32 bits unsigned
integer. This representation takes less memory because out of the total number of possible rules for each size and each location, only a few
conclude on a won or a winning state. Moreover, different sets of conditions can be associated to a pattern and this is easier to associate
this superset to an entry in a table of patterns.
For example, if we use one bit per rule, the 5x3 in the center rules for won states would take 7 405 133 666 499 bytes, which is out of
question for current machines. If instead, we allocate a pointer on a superset of set of conditions for each possible pattern, we get 57 395
628 bytes for the pointer table without counting the memory for the sets of conditions. This is still t oo much. If instead we record only a
table of 32 bits unsigned integer per won pattern, we only use 1317*4=5268 bytes for patterns and roughly the same memory for associated
conditions.

4.2 Simple algorithm

Simple forward algorithm:
do {
 NewPattern=0;
 for (Pattern=0; Pattern<NumberOfPatterns(length,height); Pattern++) {
 ForAllPossibleArrangementOfExternalLiberties(Pattern,Liberties) {
 if (NewWonPattern(Pattern,Liberties)) {
 AddWonPattern(Pattern,Liberties); NewPattern=1; } } }
 for (Pattern=0; Pattern<NumberOfPatterns(length,height); Pattern++) {
 ForAllPossibleArrangementOfExternalLiberties(Pattern,Liberties) {
 if (NewWinningPattern(Pattern,Liberties)) {
 AddWinningPattern(Pattern,Liberties); NewPattern=1; } } }
 }
while(NewPattern);

This simple algorithm looks at all the possible patterns and check if they are won or winning patterns for the desired goal. However, this
algorithm cannot be used for the sizes of the patterns we want to generate. For example, the smallest size of pattern for making li fe in the
center is 5x3. There are 59 241 069 331 995 different possible rules for 5x3 patterns in the center. Each time we want to regress
rules one move further, this algorithm has to check all this huge number of rules.

4.3 Backward algorithm

Unmove generator.
To improve the forward algorithm, we can write an unmove generator that given a rule gives all the rules that lead to it in one move
databases (Lake & al. 1994, Thompson 1996, Gasser 1996). However, writi ng an unmove generator is a diff icult task when dealing with
external conditions and different patterns sizes and locations. It is much easier to write an unmove generator for raw pattern without
external conditions. So we improved the simple algorithm by unmoving the raw patterns and looking at all the arrangements of external
li berties for the unmoved raw patterns.

Simple backward algorithm

for (Pattern=0; Pattern<NumberOfPatterns(length,height); Pattern++) {
 ForAllPossibleArrangementOfExternalLiberties(Pattern,Liberties) {
 if (NewWonPattern(Pattern,Liberties)) AddWonPattern(Pattern,Liberties); } }
do {
 NewPattern=0;
 for (i=0; i<NumberOfWinningPatterns; i++) {
 NewPatternsToUnmove=Unmove(Enemy,WinningPattern[i]);
 for (j=0; j<NumberOfNewPatternsToUnmove; j++) {
 Pattern=NewPatternsToUnmove [j];
 ForAllPossibleArrangementOfExternalLiberties(Pattern,Liberties) {
 if (NewWonPattern(Pattern,Liberties)) {
 AddWonPattern(Pattern,Liberties); NewPattern=1; } } }
 for (i=0; i<NumberOfWonPatterns; i++) {
 NewPatternsToUnmove=Unmove(Friend,WonPattern[i]);
 for (j=0; j<NumberOfNewPatternsToUnmove; j++) {
 Pattern=NewPatternsToUnmove [j];
 ForAllPossibleArrangementOfExternalLiberties(Pattern,Liberties) {
 if (NewWinningPattern(Pattern,Liberties)) {
 AddWinningPattern(Pattern,Liberties); NewPattern=1; } } }
 }
while(NewPattern);

4.4 Memorizing last iteration

The next optimization is not to unmove all the patterns but to unmove only the last deduced patterns. This leads to a substantial speedup
for large pattern sizes, as a large number of rules are generated, this optimization is mentioned in the paper on Chinook’s databases (Lake
& al. 1994). Instead of unmoving all the winning rules, we only unmove the winning rules found during the last iteration. We do the same
for the won rules. This reduces a lot the number of rules to unmove at each step.

4.5 Order of test and cut

Another important optimization relies on the property that the program does not have to do all the tests in the
ForAllPossibleArrangementOfExternalLiberties loop. If we begin to test the arrangements with the most favorable ones
for Black, then as soon as one arrangement does not lead to a new rule, we can stop looking for arrangement less favorable for Black: they
won't lead to new rules either.

This optimization works particularly well when looking for won states, as one White move is suff icient to disprove the won state. As soon
as this move is found, the loop is stopped, even if it is the first arrangement tested: the most favorable for Black. It happens many times
that a White unmove leads to no Won state, because all White moves have to be disproved for the state to be Won. It happens very rarely
that a Black unmove does not lead to a winning state.

Type of rules Time without constraints optimization Time with constraints optimization
4x2 eyes on the side of the board 7 min. 1 min.
3x3 eyes on the side of the board 1 hour 41 min. 13 min.
5x2 eyes on the side of the board 9 hours 10 min. 55 min.

Table 2: Impact of constraints optimization

Some tests, on a slow workstation, that evaluate the impact of constraints optimization are given in the Table 2.

4.6 Rule coverage reductions

If the number of empty intersection on the side of the pattern is strictly greater than four, the program only keeps
intersections at the corner of the pattern. This is a domain dependent coverage reduction, that enable to keep the number of
possible conditions associated to a pattern low, while keeping a large number of interesting rules. For example, in the next
pattern on the right, only the empty intersections in the corners will be associated to conditions.

5 RESULTS

5.1 Eyes on the side

The following table gives the number of generated rules for eyes on the side for each pattern size.
The number of generated rules is remarkably low in comparison of the number of possible rules.
This is due that many conditions must be fulfill ed to make an eye. However these numbers are quite
high in comparison of the number of rules used by other Go programs that use hand-written pattern
databases. My Go program also used Theatening to make an eye rules, but they are not listed here.
The figure 15 gives a won eye on the side rule generated by the system.

Figure 15

Size of the pattern Location Number of won rules Number of winning rules
3x2 Side 11 108
4x2 Side 171 1 081
3x3 Side 727 5 570
5x2 Side 1 661 5 952
4x3 Side 38 909 146 272
3x4 Side 14 966 62 329
6x2 Side 18 194 31 500

Table 3: Number of generated rules for eyes on the side

5.2 Life in the corner

Life in the corner of the board is a tricky part of the game of Go. Many patterns gives birth to li ving strings, and some of them need quite
deep and accurate reading for proving li fe.

Size of the pattern Location Number of won rules Number of winning rules
4x2 Corner 15 164
3x3 Corner 75 977
5x2 Corner 151 1 172
4x3 Corner 10 305 72 014
6x2 Corner 2 916 19 490
5x3 Corner 93 301 483 519

Table 4: Number of generated rules for li fe in the corner

The figure 16 shows some generated rules where Black can li ve in one move (winning rules).

>=1 liberties

>=1 liberties if
Black plays

>=1 liberties

0 liberties if
White plays

Figure 16

5.3 Life on the side

Size of the pattern Location Number of won rules Number of winning rules
5x2 Side 25 264
4x3 Side 444 5 940
6x2 Side 298 2 808
5x3 Side 30 174 262 541

Table 5: Number of generated rules for won li fe on the side

To make li fe, one needs two eyes, so there are many less li fe patterns than eye patterns for the same pattern size.

>=1 liberties

>=1 liberties

5.4 Other Goals

Pattern were generated for the goals make an eye, li ve, connect two strings, connect a string to an empty intersection, connect two empty
intersections, remove a string from the board. For each of these goals, large numbers of rules were generated for each of the three possible
locations on the board, leading to substantial improvements in the problem solving abiliti es of our Go program.

5.5 Using generated rules to solve problems

To evaluate the impact of new pattern-based search knowledge on the problem solving performance in Tsume-Go, we used problems from
two beginners books (Kano 1985a, 1985b). The first book is for beginners and the second one for advanced beginners. We used two books
of different levels of strength to compare the influence of knowledge on easy problems and harder problems, and to see if our experiments
scales well . The first book contains 90 Tsume-Go problems, and the second book 127 Tsume-Go problems.

We used Proof-Number (PN) search (Alli s & al. 1994) for our Tsume-Go problems for various reasons. The first reason is that in depth-
first search as used in Gotools for completely enclosed problems (Wolf 1996), there are good heuristics to order moves. For example, the
last move of the opponent which won is a good candidate for the looser to try himself before, so the program can learn from terminal leaves
of the search tree and therefore depth-first search is appropriate because it reaches the terminal leaves earlier. It is the contrary for open
problems where if a wrong move involving a ladder (a ladder is a subgoal of the game consisting in removing some stones of the board)
across the board is tried first, the first subtree search may last very long or forever and the correct blocking move never be learned and the
problem never be solved. So a Best-First search li ke the one used in PN-search is more appropriate for the open Tsume-Go problems our
system tries to solve. The second reason is that we generate control knowledge in the sense that we generate patterns that advise a small
number of moves out of the large number of possible moves (meanly 250), but we do not generate ordering knowledge for the selected
moves. Correctly ordering the moves to try is very important for the eff icient use of the Alpha-Beta algorithm, and more generall y for
Depth-First search algorithms. The advantage of PN-search is that the correct ordering of moves is less important because the interest of
each subtree is dynamicall y evaluated and reconsidered at each move to take into account the information on the shape of the search tree
given by this last move.

In this experiment we counted the eight equivalent patterns as different patterns, each one counting as one in the number of patterns. The
reason is that each different pattern is a different item in our databases as they have different entries. As we have seen in section 2, each
pattern can have different sets of external conditions attached to it. We counted each different set of conditions as one pattern. So one raw
pattern having multiple sets of conditions counts for more than one.

Figure 17
In the figure 17, the horizontal axis represents the number of patterns used to control and stop the search. The vertical axis represents the
number of problems solved by this amount of patterns on beginners problems.

100%

80%

60%

40%

20%

100 000 200 000 300 000 400 000

% of solved problems

Figure 18
In the figure 18, the horizontal axis represents the number of patterns used to control and stop the search. The vertical axis represents the
time used to search the problems. In order to solve a Tsume-Go problems, our system must recognize the groups of stones on the board. So
a lot of search is used before solving the Tsume-Go problem at hand: all the subproblems concerning the connection and the capture of
stones have to be solved first to build the groups. The system calculated the total time used for building groups and solving Tsume-Go
problems, that way it gives a reali stic evaluation of the real difference of time that can be used to evaluate the change in its abiliti es when
it plays real time-limited games.

Figure 19
In the figure 19, the horizontal axis represents the number of patterns used to control and stop the search. The vertical axis represents the
number of problems solved by this amount of patterns on advanced beginners problems.

6 CONCLUSION

We have presented the importance of databases of patterns with external conditions for computer Go. We have shown the importance of
logical informations in patterns that take into account external properties of the pattern. We have described the representations and the
algorithms used to generate such patterns. The experimental results show that the number of simple problems solved increases well with
the number of generated patterns. The additional time used by the playing program to solve problems it could not solve (and not even see
as problems) before generating the patterns, is reasonable and involves no time problem for tournament and competiti ve play. In fact, the
mean number of nodes and the mean time used to solve a given problem decreases as the number of pattern increases. When tested on
harder problems, the experiments scale well and show a similar increase of the number of problems solved with the number of patterns.
Some games played by our system during tournament play show that its pattern databases and search algorithm give it a better
understanding of Tsume-Go than the best Go playing systems on some positions. These experimental results are an encouragement to
continue working on pattern databases associated to external logical informations in Go and to test this approach in other games and single
agent search domains.

7 REFERENCES

Alli s L. V., van der Meulen M., Jaap van den Herik H. (1994). Proof-number search. Artificial Intelli gence 66, pp.91-124.

Cazenave, T. (1996). Automatic Acquisiti on of Tactical Go Rules. Game Programming Workshop in Japan'96, Hakone, 1996.

500s

400s

300s

200s

100s

100 000 200 000 300 000 400 000

Time (s)

100%

80%

60%

40%

20%

100 000 200 000 300 000 400 000

% of solved problems

Culberson J.C., Schaeffer J. (1998). Pattern Databases. Computational Intelli gence, 1998.

Gasser R. (1996). Solving Nine Men’s Morr is. In Games of No Chance, R. J. Nowakowski editor, MSRI Publi cations, Vol. 29, 1996.

Van den Herik, H. J.; Herschberg, I. S. (1985). The Construction of an Omniscient Endgame Database. ICCA Journal, Vol. 8, 1985.

Junghanns A., Schaeffer J. (1998). Single-Agent Search in the Presence of Deadlocks. AAAI-98.

Kano Y. (1985a). Graded Go Problems For Beginners. Volume One. The Nihon Ki-in. ISBN 4-8182-0228-2 C2376.

Kano Y. (1985b). Graded Go Problems For Beginners. Volume Two. The Nihon Ki-in. ISBN 4-906574-47-5.

Korf, R. (1997). Finding optimal solutions to Rubik's Cube using pattern databases. AAAI-97, pp. 700-705.

Lake R., Schaeffer J., Lu P. (1994). Solving Large Retrograde-Analysis Problems Using a Network of Workstations. Advances in
Computer Chess 7, pp. 135-162. University of Limburg, Maastricht, The Netherlands. ISBN 90-6216-1014.

Nunn, J. (1993). Extracting Information From Endgame Databases. ICCA journal, December 1993, pp.191-200.

Schaeffer, J. (1997). One Jump Ahead – Challenging Human Supremacy in Checkers. Springer Verlag, 1997.

Still er, L. (1996). Multili near Algebra and Chess Endgames. In Games of No Chances, R. J. Nowakowski editor, MSRI, Vol. 29, 1996.

Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal Vol. 9, No. 3, pp. 131-139.

Thompson, K. (1996). 6-Piece Endgames. ICCA Journal December 1996, pp. 215-226.

Wolf T. (1994). The program GoTools and its computer-generated tsume-go database. First Game Programming Workshop in Japan,
Hakone, 1994.

Wolf T. (1996). About problems in generali zing a tsumego program to open positions. Game Programming Workshop in Japan'96,
Hakone, 1996.

