
Admissible Moves in Two-player Games

Tristan Cazenave

Labo IA, Université Paris 8
2 rue de la Liberté, 93526, St-Denis, France

cazenave@ai.univ-paris8.fr

Abstract. Some games have abstract properties that can be used to
design admissible heuristics on moves. These admissible heuristics are
useful to speed up search. They work well with depth-bounded search
algorithms such as Gradual Abstract Proof Search that select moves
based on the distance to the goal. We analyze the benefits of these ad-
missible heuristics on moves for rules generation and search. We give
experimental results that support our claim for the game of AtariGo.

1 Introduction

In some games, abstract properties can be used to design admissible heuristics
on the minimal number of moves required to win the game. It is possible to
relax the rules of a game and play admissible moves in the game with relaxed
rules. The number of moves to win is always lower in the relaxed game than in
the real game. The interest of relaxation is that the minimal number of moves
can be computed faster than in the original game. The abstract knowledge on
the moves can be used to select a subset of relevant threat moves when using
a threat based search algorithm. It can also be used to stop a depth-bounded
search when the number of admissible moves required to win is greater than
twice the depth of the search.

In the paper, the attacker is the player who tries to win a game, and the
defender is the player who tries to prevent the attacker from winning. For ex-
ample, if the game is to make a group live in the game of Go, the attacker is the
player who plays moves to live, and the defender is the player who tries to kill
the group. When the game is to connect two strings in the game of Go or in the
game of Hex, the attacker tries to connect the strings and the defender tries to
prevent the attacker from doing so.

We present examples of admissible heuristics on moves, as well as experimen-
tal results and some methods relevant to the generation and the use of admissible
moves in two-players games. Where experimental results are available, we men-
tion them. Whenever it is possible, we also outline ideas that are currently under
investigation in the hope to stimulate research on admissible heuristics in games.
In the second section, the game of AtariGo is described. In the third section, we
explain how admissible heuristics can be designed in two-player games. In the
fourth section, we relate the admissible heuristics on the number of moves that
have to be played in order to win a game to threat based search algorithms. We



also describe Gradual Abstract Proof Search and we give experimental results
quantifying the usefulness of abstract knowledge for the game of AtariGo solved
by the Abstract Gradual Proof Search algorithm. In the fifth section, we out-
line the interest of admissible heuristics for the automatic generation of rules.
The sixth section details the automatic generation of admissible heuristics on
moves by transforming a logic program of the rules of the game. The last section
outlines future work and concludes.

2 AtariGo

AtariGo is used to teach beginners to play the game of Go. The board used to
play AtariGo is a square grid. It can be played on any board size. It is usually
played on a small board so that games do not take too much time. Teachers
also often choose to start with a crosscut in the centre of the board in order to
have an unstable position. We have tested the usefulness of different abstraction
levels on the game starting with a crosscut in the centre of a 6x6 board.

Fig. 1. The initial board for 6x6 AtariGo.



The rules are similar to Go: Black begins, Black and White alternate playing
stones on the intersections of the board, strings of stones are stones of the same
color that are linked by a line on the board. The number of empty intersections
adjacent to the string is the number of liberties of the string. A string is captured
if it has no liberty. For example in the Figure 1, all the strings have two liberties.
A string that has only one liberty left can be captured by the other color in one
move, it is in Atari, this is where the name of the game comes from. The goal
of the game is to be the first player to capture a string of the opponent.

3 Admissible number of moves

In this section we start with explaining how it is possible to design admissible
heuristics on the number of moves to win by relaxing the rules of the game.
Then we give some example of admissible moves, and of the related admissible
heuristics. The last subsection outlines possible optimizations of the computation
of the designed heuristics.

3.1 Relaxation of the rules of the game

The admissible rules of a game are modified rules of the game. Usually, the
admissible rules are more simple than the original ones. The rules of a game are
admissible if the number of moves to win under these rules is always lower than
the number of moves to win under the real rules, in any legal position.

An example of relaxation in the game of Go is to remove the forbidden moves.
For example, relaxed rules where it is always legal to play on an empty intersec-
tion can be designed. Relaxations of the rules of a game can be automatically
discovered by removing some conditions of the rules of the game represented in
a logic language. However, with this method there are a large number of possible
relaxations. It is not always easy to automatically find the useful relaxations out
of all the possible ones. It can be easier in some games than in other. For example
in Go, the number of liberties is easily deduced as an admissible heuristic on the
number of moves to capture a string. For the 15-puzzle, the Manhattan distance
can also be found with a relaxation of the rules of the game, just by removing
the condition that the target tile has to be empty.

3.2 Admissible moves

An admissible move is a move in a game with relaxed rules. The number of
admissible moves required to win is always lower than the number of moves
required to win in the real game.

For example in the game of Go, putting a stone on the liberty of a string is
an admissible move. In the real game of Go, it is not always possible to play on
the liberty of a string. For example it is not possible to remove a liberty if it is
an eye, and if it is not the last liberty of the string. But if we relax the rules of
Go, stating that it is always possible to put a stone on an empty intersection,
we have admissible moves.



3.3 Admissible number of moves

The admissible number of moves is a lower bound on the number of moves needed
to win the game. It is also the number of admissible moves needed to win the
game. For example in the game of Go, the number of liberties of a string is
an admissible heuristic of the number of moves in a row needed to capture the
string.

In Philosopher’s Football (Phutball) [1] threat search algorithms work very
well. It is also possible to define simple admissible heuristics on the number of
moves. A move in Phutball consists either in putting a white stone on an empty
intersection, or jumping the ball (a black stone) over white stones. The game is
over when the ball is on or behind the opponent goal line. A simple admissible
heuristic on the number of moves is the length of the shortest line of empty
intersections touching the goal line. The minimal number of moves in a row
needed to win is half this length plus one, as there has to be at least one white
stone every two intersections to move the ball to the goal line, and that moving
the ball is the last move.

For the game of connection in Go, an admissible heuristic on the number of
moves required to connect two strings is the length of the shortest path between
the two strings. The length of the path being the number of empty intersections
on the path plus the number of liberties that are not already on the path of the
opponent strings that are on the path.

A refinement of these simple heuristics is to perform a tree search to find
the minimum number of moves the attacker has to play when the defender is
allowed to play one move, to play two moves separated by one or more moves by
the attacker, etc... It is equivalent to a search algorithm, but it is faster than an
Alpha-Beta as the Alpha-Beta is the limit of this sequence of trees: In Alpha-Beta
the defender is allowed to play as many moves as the attacker. As the complexity
of the search is exponential with the depth, these trees are computed much faster
than the usual Alpha-Beta and they can stop search earlier and memorize useful
information for move ordering as in the iterative deepening algorithm. We will
come back to this refinement in the section on search.

3.4 Optimisation of the computation of the admissible number of
moves

In Hex or in the connection game of Go, the admissible number of moves is the
length of the shortest path between the two strings to connect. An optimization
to the computation of the shortest path is to start searching the shortest path
from the two strings to connect and to iteratively expand the perimeter around
each string. It is equivalent to a bidirectionnal search, and it is faster than to
expand from the first string until the second string is touched. It is also much
faster that a brute force algorithm that would try all the possible moves.

An important speed-up come from the incremental updating of the heuristic.
For the capture game of Go, it is not so simple to maintain the liberties incre-
mentally from move to move. The algorithm used to incrementally update the



liberties is an union find algorithm. In our experiments, all the liberties of all
strings are maintained incrementally each time a move is made and each time
it is taken back. The admissible heuristic which is the minimum number of lib-
erties over all the strings for each player is also maintained incrementally. The
incrementality gives a substantial speed-up.

In our experiments, it is faster to maintain the liberties incrementally for the
capture game than to recompute them when needed. We did not test the efficacy
of incrementality for the connection game. We are not aware of any theory that
could tell us in which games incrementality speeds computations up. Such a
theory would be very useful.

4 Optimization of Gradual Abstract Proof Search with
abstract knowledge on the admissible number of moves

In games that have a large number of possible moves, and when playing few
moves in a row often means a win, search algorithms based on threats can greatly
outperform brute force Alpha-Beta. Go-Moku was solved by V. Allis using a
search algorithm based on threats [2]. More recently, Abstract Proof Search [3]
and Lambda Search [4] were designed and have outperformed basic Alpha-Beta
search in the capture game of Go. The order of a position is the number of
moves in a row that have to be played to win the game. A threat move leads
to a position of order one. Abstract Proof Search uses abstract information to
select the possible moves that can win a game at a given order.

4.1 Gradual Abstract Proof Search

Gradual Abstract Proof Search [5] is a refinement of Abstract Proof Search that
solves the game of 6x6 AtariGo starting with a crosscut in the center. In AtariGo
the first player to capture a string of stones wins. Abstract Proof Search selects
MIN node moves using small depth bounded search. Lambda Search selects MIN
node moves using order bounded search. Gradual Abstract Proof Search selects
MIN node moves using both depth and order bounded search.

The gradual games that select moves at MIN nodes start with the letters
’ip’. Following the ip letters, a number gives the maximum number of attacker
moves that can be played before winning the game. Then a sequence of numbers
give the maximum order of each of these moves. For example the ip1 game finds
moves that prevent the attacker from winning in one move. The ip2 game finds
moves that prevent the attacker from winning in a depth two search tree. The
ip2 game should be noted ip211, but as all the attacker moves in an ip2 game are
always of order 1 it is simply noted ip2. The ip311 game finds moves that prevent
a winning sequence of two consecutive direct threats followed by a winning move.
All the attacker moves lead to positions of order one or less (winning position
if the attacker moves and won positions). The ip4221 game finds moves that
prevent the attacker from winning after two order 2 threats.



Figure 2 gives some examples of trees representing different gradual games.
As in combinatorial game theory the two players are named Left and Right. The
Left player is the attacker and the Right player is the defender. In these trees,
a branch that goes on the left represents a Left move, and a branch that goes
on the right represents some Right moves. Left branches are associated with
winning moves for Left, and right branches are associated with the complete
set of Right moves that can possibly prevent the win of the corresponding left
branch (the left branch directly at the left of the right one, i.e. its sibling). All
the leaves of the trees are positions won for Left. In order for the game to be
verified, all Left moves have to be winning moves, and all Right moves have to
be refuted by Left.

The tree labeled ip1 in the Figure 2 is the most simple one. The ip1 game is
verified when the attacker can win in one move. A left branch that ends with a
leaf node is always a winning move for the attacker. The ip2 tree represents a
position where the attacker can win in at most two moves. The first left branch
represents an attacker move that threatens to win. Below this first branch, there
are two branches. The left one is the winning attacker move that executes the
threat, and the right one represents all the defender moves that can potentially
invalidate the threat. But all the defender moves are followed by a winning
attacker move as symbolized by the last left branch. The other trees in the
figure show some other games following the same graphical convention.

ip1

ip2

ip311

ip4111

ip321

Fig. 2. Some gradual games.

4.2 Abstract knowledge for gradual games

Verifying complex gradual games such as ip4221 can take a relatively long time.
Abstract knowledge can be used to detect early that a gradual game cannot be



verified, for example when the number of admissible moves to win is greater than
the order of the game. For example in AtariGo, it means that no order 2 game
can be verified when the minimum number of liberties of all the defender strings
is 3.

The abstract knowledge of order one is the knowledge to optimize the gener-
ation of possible moves when looking for a winning move. It consists in testing if
there is an opponent string with only one liberty left. The attacker move gener-
ator returns the liberty if it is the case, and returns an empty set of moves when
there is no such string. The defender move generator of order one first tries to
capture an opponent string with only one liberty, and if there is none, it looks
for friend strings with only one liberty. If there is one such string, it plays its
liberty. If there is none, it returns an empty set of moves.

This order one abstract knowledge is very useful. An Abstract Gradual Proof
Search with no abstract knowledge is impractical. We have stopped it after
more than one hour of search. Whereas a simple order one abstract knowledge
optimization makes it practical as can be seen in Table 1: 6x6 AtariGo with a
cross cut in the centre is solved in less than 10 minutes.

The order two abstract knowledge for the attacker move generator consists in
returning the liberty of a defender string if it has only one liberty, otherwise in
returning an empty set if the minimum number of liberties of opponent strings
is greater than two, else to return the liberty of a friend string with only one
liberty, else to return the liberties of the opponent strings with two liberties, and
if this last condition is not verified to return an empty set.

The order two abstract knowledge for the defender move generator is almost
the symmetric of the attacker move generator, except when there is a defender
string to save with two liberties. In this case the possible moves are the liberties
of the defender string, the empty neighbors of the liberties of the defender string,
the liberties and the empty neighbors of the liberties of the strings that have
two liberties and which are also adjacent to the defender string, the liberties of
the strings that have three liberties and which are also adjacent to the defender
string and the liberties of the attacker strings that have two liberties.

The order three abstract knowledge for the attacker move generator is pro-
grammed in a similar way as the order two abstract knowledge, except that all
the empty intersections that can be connected in two moves to the defender
string are sent back when the defender string has only two liberties. Only the
liberties are sent back when the defender string has three liberties.

There is no order three abstract knowledge for the defender move generator,
it return all possible moves.

4.3 Experimental results quantifying the usefulness of abstraction

In order to estimate the usefulness of this abstract knowledge, we solved 6x6
AtariGo with Abstract Gradual Proof Search using different abstract knowledge
orders. The results are given in the Table 1. The game is solved in 1 minute
with the order three abstract knowledge, and in 10 minutes with the order one



Table 1. Search time with different abstractions orders.

Time (s)

Depth Order1 Order2 Order3

1 0.06 0.02 0.00
2 17.86 4.23 2.41
3 18.06 4.04 2.98
4 54.86 11.56 5.56
5 52.95 9.59 5.43
6 114.71 21.66 10.19
7 127.42 23.25 12.85
8 174.98 38.28 19.09
9 21.07 8.15 3.89
10 3.16 0.68 0.25

Total 585.13 121.46 62.65

abstract knowledge. We did not report the results for the solution with no ab-
stract knowledge as it took too much time. The maximum gradual game needed
to solve 6x6 AtariGo is ip4221. At each MIN node, the ip1, ip2, ip311, ip4111,
ip51111, ip4121, ip4211, ip4221 games are checked. If at least one game is veri-
fied, the intersection of all the sets of moves sent back by the verified games is
performed and the moves in the intersection set are tried for the defender.

Table 2. Average time used to verify gradual games for different abstract orders.

Average time (µs)

Game Order1 Order2 Order3

ip1 2 5 5
ip2 328 66 136
ip311 1165 137 137
ip4111 1751 253 220
ip51111 1763 187 148
ip321 36877 8476 4614
ip4121 63737 7843 3809
ip4211 40451 9477 4878
ip4221 196836 40368 20661

We have also output the average time used for the verification of the different
gradual games. The results are given in Table 2. As can be expected the abstract
knowledge of order three is quite useful for the more complex gradual games.
For the ip4221 game, using abstractions of order 3 is 10 times faster than using
abstractions of order 1, and twice as fast as abstractions of order 2.



The overall Alpha-Beta that calls the gradual games at MIN nodes, uses
transposition tables, iterative deepening, two killer moves, the history heuristic
and the difference between the minimum number of liberties of the attacker and
the minimum number of liberties of the defender as an evaluation function.

The verification of the games definitions in Abstract Proof Search and Grad-
ual Abstract Proof Search can be related to the progressive admissibility of the
depth of the win. We have used so far as an admissible heuristic the number
of moves in a row of the attacker color needed to win the game. If instead, we
refine the heuristic by taking into account only one defender move. We still have
an admissible heuristic on the depth of the win, but it is usually higher as the
defender is allowed to play one move before all the attacker moves are played. If
the admissible heuristic with one move for the defender gives a number greater
than the maximal depth allowed, then we can cut. The number of allowed de-
fender moves can be progressively increased until it is equal to the number of
attacker moves or the depth of the search is too high. This progressive increase
of the admissible heuristic costs one defender move at each step. The cost of
the search is exponential in the number of moves. The final tree is the Alpha-
Beta tree. This progressive refinement of the admissible heuristic toward the real
Alpha-Beta is very close to what is performed when verifying the gradual games
definitions as the reader can verify.

Currently, we do not use heuristics for move ordering when verifying the
gradual games. It would make the search faster to use transposition tables and
the killer move heuristic in the gradual games.

5 Automatic generation of rules

Retrograde analysis of patterns has been succesfully applied to the 15-puzzle [6]
and to the Rubik’s cube [7] to improve the accuracy of admissible heuristics. In
our application to the game of Go, we rather use admissible heuristics to generate
safe rules associated with external conditions by retrograde analysis [8]. A rule
is a rectangular pattern associated with conditions related to the number of
liberties of the objects in the pattern. The admissible number of moves is used
to reduce the amount of learned rules, to generate more general rules and to
ensure the validity of the generated rules. Hundreds of thousands of rules have
been generated for making one eye, making two eyes and connecting strings.
They give a large speed-up for our problem solver as they enable the solver to
detect eyes and life many moves in advance.

In an automatically generated rule, the conditions associated with the at-
tacker are always admissible conditions. For example, if the attacker has to be
able to resist two defender moves for the capture of a string, the associated con-
dition is that the minimum number of liberties of the string at the exterior of the
pattern is three. On the contrary, the conditions associated with the defender
are always upper bounds of the real value. For example, if a defender string
has to be captured in one move when it has no more liberties at the interior
of the pattern, the associated condition is that the string has one liberty or no



liberty at the exterior of the pattern. There are never conditions on more than
one liberty for the defender, as a string with two external liberties can have two
eyes, and can possibly never be captured whatever the number of moves of the
attacker.

The conditions for the defender strings are the maximal number of moves to
remove all his liberties, and the conditions for the attacker strings are minimal
number of moves to remove them. This ensures that the attacker will always be
able to verify the conditions, whatever the real values are. On the contrary of
admissible heuristics in one player games where there are only lower bounds on
the number of moves, here we see that we need both lower and upper bounds on
the number of moves.

It would be interesting to relate the time used to solve problems with the
size of the generated databases and see if the same behavior is observed as in
single agent search [9]. The condition that the number of external liberties of
the defender is always less than one can sometimes prevent from learning useful
rules. A refinement of the heuristic to take into account situations where the
maximum number of moves to capture a defender string is greater than one
would enable our system to generate more complex rules.

6 Automatic generation of heuristics

Introspect is a partial evaluator specialized on games [10]. It can automatically
generate programs that verify the gradual game definitions described in the
section on search. It uses the rules of the game written in first order logic to
unfold the gradual games definitions and obtains efficient programs for gradual
games. It is able to discover by partial evaluation the admissible heuristics on the
number of moves. For example, in the generated programs for the capture game
of Go, the number of liberties of the string is tested at first to see if the string
can be captured a given number of moves ahead. The generated programs are
also very selective on the moves to consider. They have knowledge very similar
to the knowledge on relevant moves described in the section on search.

An important issue when using partial evaluation to unfold the rules of a
game is the set of predicates used to represent the rules. Different rules rep-
resentations can generate very different programs. For example, if some of the
rules used to specialize the capture game contain the two commonly occuring
conditions ’liberties(X, N), N > 2’ it is worse than containing the condition
’minliberties(X, 2)’. In the first case, the specializer will unfold the definition
of liberties, and there are many rules to update liberties after a move. In the
second case, the number of rules to compute the minimal number of liberties is
much less. As the specializer will unfold the rules of the game as many times as
there are moves in a gradual game, it will generate a very large number of rules
in the first case, and only a few rules in the second case.

A related problem is the unfolding of recursive predicates. The number of
liberties is a recursive function, and it is well known that unfolding recursive
function has to be done very cautiously, and sometime is not to be done at all.



In the case of the number of liberties, the unfolding leads to an explosion of the
number of generated rules and to worse generated programs. So the number of
liberties should not be unfolded.

Given these warnings on the use of partial evaluation to generate game knowl-
edge, it is possible to use partial evaluation to generate clever programs that
select relevant moves and find admissible heuristics on moves. The unfolding on
the rules of the game of the dumb algorithm that plays all the possible moves n
times in a row to see a win can generate a very selective and efficient algorithm
for generating moves. Another possible use of partial evaluation is to find fast
way to compute the heuristics when they are given. For example, it could find a
fast way to compute the shortest path between two strings given a simple and
inefficient algorithm.

A more ambitious goal for Introspect is to discover more accurate heuristics.
Given a simple heuristic such as the number of liberties of a string in the capture
game, it could transform the definition of the heuristic to find another one which
always gives a greater value. For example, a more accurate admissible heuristic
for the capture game is to add the number of independent protected intersections
minus one. An intersection is protected if the opponent is captured when he
plays on it. It is possible to find this heuristic and some other by unfolding
the definition of the heuristic with the MinMax algorithm and the rules of the
games. Once this unfolding is performed, many rules are generated that give
all the cases when the heuristic has underestimated the number of moves. Out
of all this rules, the most simple and general can be kept. A similar method
to generate admissible heuristics is to remove conditions inside the rules of the
game [11, 12]. The two methods overlap, but a combination of the two might
give better results than each of them.

7 Conclusion and Future Work

We have given experimental evidence that admissible heuristics on moves in
two-player games account for a large speed-up for threat search algorithms.
These algorithms are already much faster than basic Alpha-Beta for the games
of AtariGo, Phutball and others games with frequent low order threats. The
admissible heuristics we have used can also improve a depth-bounded Alpha-
Beta to stop search earlier. We feel that some progress can still be made in the
accuracy of these heuristics so as to improve the efficacy of current threat based
search algorithms.

Admissible heuristics on the number of moves are also required in the genera-
tion of rules by retrograde analysis. Using them, our system reduces the amount
of learned rules, generates more general rules and ensures the validity of the
generated rules.

Some work is still needed to understand the reasons why incrementality of
the computation of the admissible heuristics works well for some heuristics in
some games but not in others. Improving the accuracy of our current admissible
heuristics on the number of moves could speed-up our search algorithm by orders



of magnitude. We are interested in experimenting threat search algorithms with
different games and different admissible heuristics. Introspect, our partial eval-
uation system can be used to automatically generate accurate heuristics from
simple ones. A special attention has to be given to the representation of the rules
of the game, as different representations can lead to very different qualities of
generated programs. Introspect can also be used to generate programs that can
compute a given heuristic faster. In some games where it is not so easy to write
admissible heuristics, it has been used as a program writing assistant that writes
long, complex and efficient programs by unfolding the definition of the gradual
games on the rules of the game.

References

1. Conway, J.H., Berlekamp, E., Guy, R.K.: Philosopher’s football. In: Winning
Ways. Academic Press (1982) 688–691

2. Allis, L.V., van den Herik, H.J., Huntjens, M.P.H.: Go-moku solved by new search
techniques. Computational Intelligence 12 (1996) 7–23

3. Cazenave, T.: Abstract proof search. In Marsland, T.A., Frank, I., eds.: Computers
and Games. Volume 2063 of Lecture Notes in Computer Science., Springer (2002)
39–54

4. Thomsen, T.: Lambda-search in game trees - with application to go. In Marsland,
T.A., Frank, I., eds.: Computers and Games. Volume 2063 of Lecture Notes in
Computer Science., Springer (2002) 19–38

5. Cazenave, T.: Gradual abstract proof search. In: Proceedings of RFIA, Angers,
France (2002)

6. Culberson, J., Schaeffer, J.: Pattern databases. Computational Intelligence 14(4)
(1998) 318–334

7. Korf, R.E.: Recent progress in the design and analysis of admissible heuristic
functions. In: AAAI/IAAI. (2000) 1165–1170

8. Cazenave, T.: Generation of patterns with external conditions for the game of go.
In van den Herik, H., Monien, B., eds.: Advance in Computer Games 9. Universiteit
Maastricht, Maastricht (2001) 275–293 ISBN 90 6216 566 4.

9. Holte, R., Hernadvolgyi, I.: Experiments with automatically created memory-based
heuristics. In: SARA-2000, Lecture Notes in Artificial Intelligence N 1864 (2000)
281–290

10. Cazenave, T.: Synthesis of an efficient tactical theorem prover for the game of go.
ACM Computing Surveys 30 (1998)

11. Knoblock, C.A.: Automatically generating abstractions for planning. Artificial
Intelligence 68 (1994) 243–302

12. Prieditis, A., Davis, R.: Quantitatively relating abstractness to the accuracy of
admissible heuristics. Artificial Intelligence 74 (1995) 165–175


