Extended General Gaming Model

Michel Quenault and Tristan Cazenave

LIASD
Dept. Informatique
Universié Paris 8, 93526, Saint-Denis, France
m q75@ree. fr, cazenave@i . univ-paris8.fr

Abstract. General Gaming is a field of research on systems that can manage
various game descriptions and play them effectively. These systetile ape-
cialized ones, must deal with various kinds of games and cannot regngn
kind of game algorithms designed upstream, such esAHERBLUE ones. This

field is currently mainly restricted to complete-information board gameserGi

the lack of more various games in the field of General Gaming, we peoipos
this article a very open functional model and its tested implementation. This
model is able to bring together on the same engine both card games add boa
games, both complete- and incomplete-information games, both detdiminis
and chance games.

1 Introduction

Many people are playing strategy games like Chess all arthmavorld. Beyond the
amusement they provide and their abstract forms, theyysle@d to create some kind of
reflection process that would be useful in everyday life.yTtmgild this way some kind
of ‘intelligence’. This is one of the main reason why they ajw are a prolific research
field in computer sciences, which needs highly efficient Eauorks and especially in
Artificial Intelligence which try to define new ones.

Many Artificial Intelligence projects such asHBPERBLUE are focused on specific
games. This implies they use highly specific players, whid specialized data corre-
sponding to some particular attributes of the game theylaggng. Such players would
certainly be efficient when confronted to their game, everety similar ones, but they
could not afford playing any other simply different gameswhéver, since quite some
time[1] a branch of Artificial Intelligence focuses on thi®plem and tries to develop
players that would be able to play any kind of strategy gai@esteral Gaming.

In General Gaming, as in the Metagame project[2], the ol to compute play-
ers that would be efficient in playing various kinds of ganfswe have seen, these
players are not be implemented focusing on a specified gahis.implies to define
games engines which are able to deal with such players aiktthem to the desired
games. General Gaming’s objective is to afford playing aimear of different games,
but card games, for example, are so much different fromegiyagames that nowa-
days, no general gaming project integrates them with sfyagjames. General Gaming
engines focus only on strategy games, which is already a kg interesting field.

General game engines already exist. The General Game @IByaject from the
Stanford University Computer Science Department[3] is @dgexample. Using games

rules defined as logic programs, it makes play worldwide agspplayers on various
strategy games, allowing players to know the game rules@adapt themselves to be
more efficient on a specific rule. Some commercial enginest @, such as ZLIONS
OF GAMES[4], which has a specific functional language to describeragiarule. Us-
ing a proprietary engine, he creates the game’s engine kovesdiuman players to play
against their own proprietary computer player. A huge ctite of games is already
downloadable and is extended day by day by the users. Howiese two projects
have some limitations and use structures that restrict tiegige to strategy games.
Some of these restrictions are: no incomplete-informationor very few chance and,
for the second one, no way to create efficient connection gdikeHex.

Based on this observation we have designed and implementedgine based on
three objectives. The principal one is to allow players tofeant each other on many
game kinds, including strategy games but also card game$®aard games such as
Monopoly. Our second point is to give to players of variousdsi the ability to simulate
sequences of moves. The last but not the least point is to maltegames and players
easy to define. Such an engine is useful to compare playéigeaty on various kinds
of games.

However, allowing players to confront each other on manyemhas some limits.
We planned to integrate as many board games as possibleprputers are limited.
We intend to manage finite strategy games such as Chess, aaesgboard games
such as Monopoly and domino games. For different reasondinviteour games to
non-continuous boards, no query/answers games, no speédpate games, and no
ultra-rich game universes as for role-playing games. Saneeg like wargames or deck
collection games (such as Magic the Gathering) are lefedsithe current version, but
our structure intends to be easily adaptable to them.

This article presents the general gaming model we have defifiest the way we
define games, then the way we connect players to games artd@&¥ethe main engine
process. We conclude with a short discussion.

2 Games Descriptions

Any game is composed by exactly two things: A setEofuipments, with specific
properties (boards, pieces, cards, dices) anéRtile of the game, which describes how
players interact with components. Equipments which maynseebe very different
can often be unified together. Here we present an organizafiall the components
we need to use to play a game, then we define what are game nadlevantually we
present a simple rule as it is written in our engine.

2.1 Equipments

A strategy game often uses a board and some pieces. The Baarérea composed
of a list of independent positions where the pieces can tl@pThesdositionsare
themselves relatives, they form a graph where nodes arégussand arcs arBirec-
tions. The pieces ar&lementswith different specifications. They are organized into
Assortmentsof pieces, sometimes with many identical pieces, and somestino two

pieces are the same. The Equipments we use here are Areti®rdpBirections, Ele-
ments, and Assortments. Areas are graphs of Positions aadtibins, Assortments are
composed of Elements.

A card game often uses a table with some defined placementsedsl It also uses
some abstract Equipments such as players’ hands whichtarefssrds. The table is a
kind of Area, generally but not systematically without Qitiens defined. The cards are
Elements, organized into Assortments too. The abstresbéetrds are represented on
tables Areas as Positions because it makes easier theaefatsn of the game and the
human interface. This implies that Positions can be occuwi¢th multiple Elements,
but this is already the case in some strategy games, so igisnpd modification in our
Equipments list. Moreover, we use exactly the same Equipsrterdefine both strategy
and card games.

However, some other Equipments are necessary to completedr the field of
board gamesDicesas chance generators aBdoremarkers to register score. At last,
we need @Player which represents one of the active player in our system arabke
which is the container of all other Equipments. With all #an&&uipments, we could
define almost all computable board games, if we specify s@stictions. Here is a
recapitulated view of these Equipments with few spottedanis

1. Area: A picture associated with a Position graph.
— Area, Direction and Positions define the board or the caie tab
— Almost all games have at least one Area, but this numberadiydtee.
2. Position: Node of Area’s graph.
3. Direction: Oriented and labeled arc of Area’s graph.
— Positions could be empty, occupied with one Element, or piecliwith an
ordered list of Elements.
4. Assortment: A list of Elements used in the game. This coegdesent a card deck,
or a stock of go stones.
— Almost all games have at least one Assortment, but this nuiabetally free.
5. Element: These are cards, pieces, stones, etc.

— Elements must be able to receive any kind of attribute, with@ossible value.
This allows to define cards (with colors, values, ranks,) etc Chess pieces
(with type, cost, etc.). Actually, this restriction is emtked to all the Equip-
ments in the game, for easiness in the rule definition process

Dice: A specific equipment to generate chance.

Score: A specific equipment to keep score data as in matgeanes.
Player: One more specific equipment representing a playbe game.
Table: This last equipment is a container of all other papgints in play.

© N

All of these Equipments possess methods that return otlaedeEquipments. This
way the engine and the Rule can navigate through them adribit

2.2 Rule

The second thing defining a gameRsle. First it defines the number of players. Then
it defines a graph of successions of player’s thrhodes of this graph are play stages

1 Many strategy two players games simply alternate the two players rolespimg complex
games like traditional Mah-Jong needs all the potential of graphs.

where one or more players may choose to execute Actions. akecbrace of players
and possible Actions.

Then the rule defines the initial state of the Equipmeatsd final conditions with
associated winners. These parts of the rules need the useathad call. The last thing
defined by the rule is the explanation of legal Actions. THegal Actions are the link
between initial state and final states described with finatldns. Here again, the use
of a method call to create the list of legal Actions is coerced

Method calls are needed to define initial states, Actionsfiawadl conditions. These
methods must be defined in the rules objects and will always ha single argument
a Table. This argument refers to all Equipments defined inRtile and used in the
play. The method must return new built objects correspantbratomicActions that
alter the Table and correspond to players moves. Theserictiould be any ordered
combination of any number of Actions to ensure complex Awiability to be defined.
The initial state method must return exactly one Action. Tihal condition method
return nothing or one special end game Action.The movesadstmust return the list
of actual legal Actions for the current stage of the play.

The possible Actions and their effects are:

Pass: Nothing to do.
Move: Move any number of Elements from a Position or a Assent to another.
Score: Mark points in a Score Equipment.
FinishPlay: Declare some winners, some losers or a dravega
Set: Add an attribute to any Equipment.
Del: Removes an attribute to any Equipment. Access tethtsbutes is ensured
by methods in Equipments. Here are just defined Actions tteatthe Equipments.
Distribute: Distributes all Elements from a Position oAssortment to a list of
Positions or Assortments and affects them a new ownervelgtithe Positions.
8. Sort: Sort the list of Elements in a Position or a Assortmen
9. Shuffle: Shuffle the list of Elements in a Position or a Assent.
10. Roll: Randomly changes the value of a Dice list.

ok wnNPE

~

2.3 Example

Algorithm 1 is an example of the full definition file for a rulehe game is basic Tic-tac-

toe. The language used is python. Tear d andt ur ns values respectively describe
the board graph and the turn order arc. Inline tools are gealto easily generate these
lists but the use of such lists ensures that any board or taler graph can be defined
even when automatic method fails.

Thedef i neEqui pnent s method selects the Equipments used in the game. The
Assortment last argument is the Elements layout. The twianashods define the final
conditions and the legal Actions.

Notice the way the play data are accessetbl e. get Posi ti ons().Suchasin
tabl e. get El enent (pl ayer =t abl e. get Current Pl ayer ()), Equipments
methods may have arguments to restrict returned Equipnoendsy attribute values.

2 Equipments are indeed first defined in the rule too, so the rule is enouglhytddfine a game.

This short page is enough to create a complete game with @inenThe complex
parts of code of Algorithm 1 are detailed in Appendix A.

16

17
18
19
20
21

22

fromrule import *

board=[(AL’, (60, 60), [(H’, 'B1"), (V’,’A2"), (B’,'B2)]) ,
(B, (150, 60), [('H’, 'C1"), ('V’,'B2"), ('B’, 'C2)]),
('C1, (240, 60), [('V’,'C2)]),
o]
turns=[(wait Cross’, True, True, [(CrossT'icT acT oe.move, 'wait Circle’)]),
('wait Circle’, True, True, [('Circle’, TicTacT oe.move, 'wait Cross’)])]
pawns=[(X', 'Cross’, 'images/cross.gif’),
('O, 'Circle’, images/circle.gif’)]

class TicTacTo€Rule):
def__init__(self):
sel f.name ="Tic Tac Toe’
sel f.players =['Cross’, 'Circle’]
sel f.turns = turns

def defineEquipmentisel f, table):
table.add Equipment(Area(images/tttboard.gif’, board))
table.add Equipment(Assortmentfawns, ['name’, 'player’, 'image’]))

def playResultsel f, table):
action=table.get Last Player Action()
if action!=None andiable.hasN ew Line([move.get PositionTo()], 3,
elementRestraintd=player’: table.getCurrent Player()}):
return FinishPlaygble, table.getCurrent Player())

def movésel f, table):
res=[|
forpos in table.get Positions():
if pos.isEmpty():
res.append(Move(table.get Assortment(), pos,
table.get Element(playerzable.getCurrent Player())))
returnres

ALG. 1: Tic-Tac-Toe Class.

3 Players Descriptions

Here is a quick list of possible players we have started teldgvand integrate in our
general gaming model. All these methods can be easily cadbin

1. Alpha-Beta, Min-Max, tree exploration based,

2. Monte-Carlo methods,
3. Neural Networks,
4. Genetic Algorithms and Genetic Programming.

Our model is based on functional rule description and stestéy play unfolding.
At any time in the game when some player can make an Actios,plaiyer is called
with a list of each player possible Actions computed follogvthe rule definition on the
players variant of the Table. The player has to send back thie\he prefers. He may
also launch a simulation of an Action and his consequencésaguiay. He could pursue
this process anytime he wants and explore the play tree.neomiplete-information
games the player sees all unknown information trough a rahdgenerated possible
Table state. This unknown part of the play can be shuffledmeyto simulate another
possible situation.

As for games, there are some limits to our application angbliager that we could
connect to it. One is that our model is based on functional deiscription and step by
step play deployment. This implies that we do not providdstdor analyzing game
rules before the play begins. Actually no access to theseisl@rovided yet and it can
be easily improved, but it is complex enough to implemers thodel without querying
about pre rule analyzer players. The other point is that taygps are highly integrated
in our game engine and that the engine is in charge of gengratissible Actions for
the player, even in simulations. Detaching players to trydive this problem is one of
the planned evolution of our engine.

Our players are connected to our engine with some few methods

=Y

. doAct i on: Play the selected player’s Action.

2. doSi nul at eAct i on: Play any legal Action and compute the next possible Ac-
tions for all players, modify only the players specific Table

3. undoSi nul at eAct i on: Undo the last simulated Action and restore specific Ta-
ble and next possible Actions.

4. get Choi ces: Return the list of all possible players Actions correspogdo the
current simulation or play.

5. get Eval : Read the game engine’s result on current simulation or. play

4 Engine Description

In this section we will focus on our game engine. First we wiplain its global be-
havior, then we will present how we have implemented it and he want to use and
improve it later.

4.1 Main Loop of the Engine

The Algorithm 2 presents the main tasks of the Engine. Afésirig initialized the rule
object, the engine uses its attributes to define the diffgoarts of the play: the turn
order graph and the Tables related Equipments. The turmr grdeh leads the main
course of the events by defining the possible players anddbsilge Actions during

each play step. In order to do that, the engine needs to applsutes Action creation
method on each player’s Tables (lines 7 and 8).

Then the engine calls the players to let them define the At¢kiey want to realize
(lines 9 and 10). During this phase, each player can use itsTable to manage Action
simulations. Then the engine deals with different priokityd of rules to select the next
legal Action in the players answers (Line 11). There are togsfble ways to select the
Action, one is to choose the faster player (this allows togara quick-thinking players
to deep thought ones on fast based games). The other way és¢ailte priority rules
in the rule file as for in traditional Mah-Jong.

In incomplete-information games the player has in his Talvle possible distri-
bution of the Elements he doesn’t knows. During the creadioActions (relatives to
player’s Tables but equivalents to the engine selectedlome)2) there is a coherency
engine which modifies any player’s Tabko that these Tables correspond to the desired
Action.

Then, the program loops until the engine detects a FinishR&tion returned by
Rul e. pl ayResul t () (line 6).

Createrule usingrule.__init_()
Createturn_graph usingrule.turns and select start node
Createl'able[engine] usingrule.de fine Equipments
For eactplayer in rule.players:
Createl'able[player] usingrule.de fine Equipments
While rule.play Result(Table[engine]) == None:
For eachurcin turn_graph.current_node:
Createpossible_actions|[player| using(Table[arc.player], arc.method)
For eactplayer havingpossible_actions:
Selectfavorite_action[player] usingT able[player]
Select one player'avorite_action
Recreataelected_favorite_action on all Tables
Apply selected_favorite_action on all Tables
Updateurn_graph.current_node

O©CoO~NOOOUTA,WNBE

el el
WN RO

H
S

ALG. 2: Engine main loop.

4.2 Implementation of the Engine

At the moment, the engine implementation is in progresserPython language. Three
games are defined: A Tic-Tac-Toe which is described by Atgoril, a Go-Moku
which use a very similar file and a Chinese-Poker which is a fdayers card game
using poker combinations. One player is implemented too:iA-Max player with op-

3 e.g. Before George plays a3 Jane was thinking he had in his hands onlgaand a7<.
When George play his#, Jane’s knowledge on Georges hands would change this way: 3
anywhere guessed position would be swapped with eithetther the7< ones in Jane’s idea
of George’s hands. Then George could play this card.

tional Alpha-Beta cut. A Monte-Carlo player is on the poihbeing added, as soon as
multiple Table control is fully realized

All Equipments are already defined and created, except tbe. Bill Equipments
are linked to some others ones. The state of these relatpnesents the state of the
table during the play. Rule can use many Equipments mettmtisst this state. For
instance, these are few of the Position Equipment methotlsstrate the principle:

1. get Area() : Returns the Area which the Position depends on.

2. get El ement s(restraints): Returns the list of Elements played on the Po-
sition. Restraint is an optional dictionary of attributehkieh filters the returned
Elements.

3. getDirections(nane, orientation): Returns the possible Directions
that links this Position with others on its Area.

4. get Opposi teDi rections(direction): Returns the opposite Directions
(if any) to the one given as argument.

All Actions are already defined too. They have two main meshaliowing the
engine to really alter Tables. OnedsAct i on() which performs the desired action
and the other isindoAct i on() which restores the Table in its previous state. This
way the engine manages players simulations. Actions havettitity to add themselves
to each others, sbbve() +Set () is seen by the engine as only one Action. There
are many other Actions methods used by the engine (to managéig interface for
instance) we choose not to describe here.

The engine uses a few more classes to implement the modghi@raterface, en-
gine which manages the main loop, and graphs are used to@ &ber no fundamental
tools are provided: It is possible to define options in gantesr(such as exactly or at
least five pawns on Go-Moku). These options are defined intthee. i nit__ ()
method and must be chosen before the engine starts to playl Astprovided to au-
tomatically generate the Area’s graph definition lists dabasn dimensions. Some com-
plex non required methods are providelhbl e. hasNewli ne() for instance) to
make easier rule creation.

Despite of its early development stage, this engine caa@dyrsmanage both complete-
information strategy games such as Chess and both inca¥ipfermation card chance
based games such as traditional Mah-Jong. Today, as farlasemethere is no another
engine with similar proficiency.

4.3 The Future of the Engine

There are many possible uses or upgrades to this engine.aéserntmow the main ones.
The first use is for Artificial Intelligence benchmarking.t¥Wthe capability to cre-
ate very different kinds of games, based on opposite mowaseps or goals and the
capability of develop various General Gaming players, ¢imgine would be useful to
compare their efficiency, their robustness and even themtimeness facing various

4 Each player has its own Table, which corresponds to what he knows pfali. These Tables
are highly cross-referenced to each others to manage incompletsyaifon games coherence
engine. This part is in debugging stage.

problems which have often already been classified[5]. Thdahwas first developed
in this perspective.

Another evident possible use is for entertainment of maayess around the world,
connected to many possible games against efficient compntgnes. The easiness in
the game’s rule creation would probably lead to such an argamillection of games
than for ZLLIONS OF GAMES if we bother to distribute this engine as they did.

Furthermore, this engine is quite young and it would be utdive to develop it in
some new ways, in extending the range of possible gamestdsfiror in players inter-
face. Some evolutions concerning games could be the iniegraf collecting games,
such as wargames or card collecting games, where the playessfirst define their
army or their deck following specific rules before confrogtiother players with their
owns. Another game interface evolution could be the manageof continuous boards
with some geometric tools in place of Areas and their Pasitists.

For the engine upgrading, it would be pleasant to tear aparptayers and the
engine, in order to allow engines players to perform theirsplay explorations. This
would lead to a more open engine players system, with capatilpre rule analysis.

There are many much more ways to improve this system and nagérroom here
to describe them all.

5 Discussions

Before concluding this article, we suggest some short digon about our engine in
the form of short queries with their answers.

— Is this model better than Stanford ones?

- No, it is not better, it is different. Stanford general gapteying model uses rules
in logic form, is limited to simple strategy games, and aloglayers to analyze
rules. Our model is driven by the intention of playing easiljmost any game and
our players are restricted to choose the best Action in ailpessee of Actions.
The two model are completing each other.

— Isn’t the model too heavy?

- No, the model isn’'t heavy. It's a relatively light model tower the large field of
possible games. However, as the engine must compute adiglaymulations trees,
it is quite long to play a game. This is one of the reasons why a@inthe next
upgrade would probably be the full players parting from thgiee.

— Isitreally interesting to test Monte-Carlo methods on ctatgeinformation games
or Alpha-Beta methods on chance incomplete-informationegs?

- Yes, good results have been obtained on go with Monte-Qéailgers[6].

6 Conclusion

Nowadays, computers are very effective in most board gaftes.issue of years of

research in such fields as Computer Science and Artificielligence is that computers
are capable to defeat the best humans players in almostadigg@vith some exceptions
nevertheless). This shows how the advancement of thessscesi are awesome. But

all these engines are specifics to their games, and don'treflen a part of the human
mind which is able to be (almost) good in any game, with theesarimd.

So, itis the next step to explore the huge field of generalisglnethods as general
gaming tries to address. We have done one more step by @eetiplementing and
testing a new model which is the first to allow the use of suctoua games as strategy,
card and board games. Furthermore, we have opened the wegllEsting games.

This way only, Computer Science and Artificial Intelligeng# continue on their
march to maybe beat, one day, human mind not because theaséeednd more robust
systems, but because they are more malleable and adapéise on

A Algorithm 1 Code Explication

Some complex calls in Algorithm 1 are detailed here:

— Line 11: Ar ea is an Equipment. The arguments are the board picture and a lis
of positions data. The position layout is (name, coordinéeof (direction name,
direction goal)).

— Line 12: Assor t ment is an Equipment. The arguments are a list of pieces data
and the corresponding layout. Some attributes (such ase)magst been defined
in the layout.

— Line 14:Tabl e. get Last Pl ayer Acti on() returns the previous move in the
game. This test is needed to control that we are not beforirghenove.

— Line 15:Tabl e. hasNewLi ne() returns a boolean defining if a line is detected
into an Area. Arguments are the list of positions that mayrbthe line, the size
of the line, and some restraints which must be checked forEdement at each
Position on the line. Here the restraint is the name of thgepléhat owns the
Element.

— Line 16:Fi ni shPI ay is an Action which defines the winner, which here is the
current player.

— Line 21:Move is an Action. Arguments are the source, the target and thadties
moved. Here, we move one Element (returned bl e. get El enent ()) from
Table's Assortment to the Table'’s search current Positioe (9).

References

1. Pitrat, J.: Realization of a general game-playing program. In: {FdRgress (2). (1968)
1570-1574

2. Pell, B.: A strategic metagame player for general chesslike gameAARAl. (1994) 1378-
1385

3. Genesereth, M.R., Love, N., Pell, B.: General game playingr\@ee of the aaai competition.
Al Magazine26(2) (2005) 62—72

4. Lefler, M., Mallett, J.: Zillions of games. Commercial website http://wyilions-of-
games.com/index.html.

5. Boutin, M.: Le Livre des Jeux de pions. Livres de jelritions Bornemann (april 1999)

6. Bouzy, B., Helmstetter, B.: Monte-carlo go developments. In vanHierik, H.J., lida, H.,
Heinz, E.A., eds.: ACG. Volume 263 of IFIP., Kluwer (2003) 15941

5 Typically the last played Positions, to avoid useless searches on als/Resitions.

