
Extended General Gaming Model

Michel Quenault and Tristan Cazenave

LIASD
Dept. Informatique

Universit́e Paris 8, 93526, Saint-Denis, France
miq75@free.fr, cazenave@ai.univ-paris8.fr

Abstract. General Gaming is a field of research on systems that can manage
various game descriptions and play them effectively. These systems, unlike spe-
cialized ones, must deal with various kinds of games and cannot rely onany
kind of game algorithms designed upstream, such as DEEPERBLUE ones. This
field is currently mainly restricted to complete-information board games. Given
the lack of more various games in the field of General Gaming, we propose in
this article a very open functional model and its tested implementation. This
model is able to bring together on the same engine both card games and board
games, both complete- and incomplete-information games, both deterministic
and chance games.

1 Introduction

Many people are playing strategy games like Chess all aroundthe world. Beyond the
amusement they provide and their abstract forms, they surely lead to create some kind of
reflection process that would be useful in everyday life. They build this way some kind
of ‘intelligence’. This is one of the main reason why they always are a prolific research
field in computer sciences, which needs highly efficient frameworks and especially in
Artificial Intelligence which try to define new ones.

Many Artificial Intelligence projects such as DEEPERBLUE are focused on specific
games. This implies they use highly specific players, which use specialized data corre-
sponding to some particular attributes of the game they are playing. Such players would
certainly be efficient when confronted to their game, even tovery similar ones, but they
could not afford playing any other simply different games. However, since quite some
time[1] a branch of Artificial Intelligence focuses on this problem and tries to develop
players that would be able to play any kind of strategy games:General Gaming.

In General Gaming, as in the Metagame project[2], the objective is to compute play-
ers that would be efficient in playing various kinds of games.As we have seen, these
players are not be implemented focusing on a specified game. This implies to define
games engines which are able to deal with such players and to link them to the desired
games. General Gaming’s objective is to afford playing a maximum of different games,
but card games, for example, are so much different from strategy games that nowa-
days, no general gaming project integrates them with strategy games. General Gaming
engines focus only on strategy games, which is already a large and interesting field.

General game engines already exist. The General Game Playing Project from the
Stanford University Computer Science Department[3] is a good example. Using games

rules defined as logic programs, it makes play worldwide computer players on various
strategy games, allowing players to know the game rules and to adapt themselves to be
more efficient on a specific rule. Some commercial engines exist too, such as ZILLIONS

OF GAMES[4], which has a specific functional language to describe a game’s rule. Us-
ing a proprietary engine, he creates the game’s engine and allows human players to play
against their own proprietary computer player. A huge collection of games is already
downloadable and is extended day by day by the users. However, these two projects
have some limitations and use structures that restrict their usage to strategy games.
Some of these restrictions are: no incomplete-information, no or very few chance and,
for the second one, no way to create efficient connection games like Hex.

Based on this observation we have designed and implemented an engine based on
three objectives. The principal one is to allow players to confront each other on many
game kinds, including strategy games but also card games andboard games such as
Monopoly. Our second point is to give to players of various kinds the ability to simulate
sequences of moves. The last but not the least point is to makesuch games and players
easy to define. Such an engine is useful to compare players’ efficiency on various kinds
of games.

However, allowing players to confront each other on many games has some limits.
We planned to integrate as many board games as possible, but computers are limited.
We intend to manage finite strategy games such as Chess, card games, board games
such as Monopoly and domino games. For different reasons, welimit our games to
non-continuous boards, no query/answers games, no speech or dispute games, and no
ultra-rich game universes as for role-playing games. Some games like wargames or deck
collection games (such as Magic the Gathering) are left aside in the current version, but
our structure intends to be easily adaptable to them.

This article presents the general gaming model we have defined. First the way we
define games, then the way we connect players to games and eventually the main engine
process. We conclude with a short discussion.

2 Games Descriptions

Any game is composed by exactly two things: A set ofEquipments, with specific
properties (boards, pieces, cards, dices) and theRule of the game, which describes how
players interact with components. Equipments which may seem to be very different
can often be unified together. Here we present an organization of all the components
we need to use to play a game, then we define what are game rules and eventually we
present a simple rule as it is written in our engine.

2.1 Equipments

A strategy game often uses a board and some pieces. The board is anArea composed
of a list of independent positions where the pieces can take place. ThesePositionsare
themselves relatives, they form a graph where nodes are positions and arcs areDirec-
tions. The pieces areElementswith different specifications. They are organized into
Assortmentsof pieces, sometimes with many identical pieces, and sometimes no two

pieces are the same. The Equipments we use here are Areas, Positions, Directions, Ele-
ments, and Assortments. Areas are graphs of Positions and Directions, Assortments are
composed of Elements.

A card game often uses a table with some defined placements andcards. It also uses
some abstract Equipments such as players’ hands which are sets of cards. The table is a
kind of Area, generally but not systematically without Directions defined. The cards are
Elements, organized into Assortments too. The abstract sets of cards are represented on
tables Areas as Positions because it makes easier the representation of the game and the
human interface. This implies that Positions can be occupied with multiple Elements,
but this is already the case in some strategy games, so it implies no modification in our
Equipments list. Moreover, we use exactly the same Equipments to define both strategy
and card games.

However, some other Equipments are necessary to completelycover the field of
board games:Dicesas chance generators andScoremarkers to register score. At last,
we need aPlayer which represents one of the active player in our system and aTable
which is the container of all other Equipments. With all these Equipments, we could
define almost all computable board games, if we specify some restrictions. Here is a
recapitulated view of these Equipments with few spotted remarks:

1. Area: A picture associated with a Position graph.
– Area, Direction and Positions define the board or the card table.
– Almost all games have at least one Area, but this number is totally free.

2. Position: Node of Area’s graph.
3. Direction: Oriented and labeled arc of Area’s graph.

– Positions could be empty, occupied with one Element, or occupied with an
ordered list of Elements.

4. Assortment: A list of Elements used in the game. This couldrepresent a card deck,
or a stock of go stones.

– Almost all games have at least one Assortment, but this number is totally free.
5. Element: These are cards, pieces, stones, etc.

– Elements must be able to receive any kind of attribute, with any possible value.
This allows to define cards (with colors, values, ranks, etc.) or Chess pieces
(with type, cost, etc.). Actually, this restriction is extended to all the Equip-
ments in the game, for easiness in the rule definition process.

6. Dice: A specific equipment to generate chance.
7. Score: A specific equipment to keep score data as in most card games.
8. Player: One more specific equipment representing a playerin the game.
9. Table: This last equipment is a container of all other equipments in play.

All of these Equipments possess methods that return other related Equipments. This
way the engine and the Rule can navigate through them ad libitum.

2.2 Rule

The second thing defining a game isRule. First it defines the number of players. Then
it defines a graph of successions of player’s turns1. Nodes of this graph are play stages

1 Many strategy two players games simply alternate the two players roles, butsome complex
games like traditional Mah-Jong needs all the potential of graphs.

where one or more players may choose to execute Actions. Arcsare brace of players
and possible Actions.

Then the rule defines the initial state of the Equipments2 and final conditions with
associated winners. These parts of the rules need the use of amethod call. The last thing
defined by the rule is the explanation of legal Actions. Theselegal Actions are the link
between initial state and final states described with final conditions. Here again, the use
of a method call to create the list of legal Actions is coerced.

Method calls are needed to define initial states, Actions andfinal conditions. These
methods must be defined in the rules objects and will always have as single argument
a Table. This argument refers to all Equipments defined in theRule and used in the
play. The method must return new built objects corresponding to atomicActions that
alter the Table and correspond to players moves. These Actions could be any ordered
combination of any number of Actions to ensure complex Actions ability to be defined.
The initial state method must return exactly one Action. Thefinal condition method
return nothing or one special end game Action.The moves methods must return the list
of actual legal Actions for the current stage of the play.

The possible Actions and their effects are:

1. Pass: Nothing to do.
2. Move: Move any number of Elements from a Position or a Assortment to another.
3. Score: Mark points in a Score Equipment.
4. FinishPlay: Declare some winners, some losers or a draw game.
5. Set: Add an attribute to any Equipment.
6. Del: Removes an attribute to any Equipment. Access to these attributes is ensured

by methods in Equipments. Here are just defined Actions that alter the Equipments.
7. Distribute: Distributes all Elements from a Position or aAssortment to a list of

Positions or Assortments and affects them a new owner relative to the Positions.
8. Sort: Sort the list of Elements in a Position or a Assortment.
9. Shuffle: Shuffle the list of Elements in a Position or a Assortment.

10. Roll: Randomly changes the value of a Dice list.

2.3 Example

Algorithm 1 is an example of the full definition file for a rule.The game is basic Tic-tac-
toe. The language used is python. Theboard andturns values respectively describe
the board graph and the turn order arc. Inline tools are provided to easily generate these
lists but the use of such lists ensures that any board or turn order graph can be defined
even when automatic method fails.

ThedefineEquipments method selects the Equipments used in the game. The
Assortment last argument is the Elements layout. The two last methods define the final
conditions and the legal Actions.

Notice the way the play data are accessed:table.getPositions(). Such as in
table.getElement(player=table.getCurrentPlayer()), Equipments
methods may have arguments to restrict returned Equipmentson any attribute values.

2 Equipments are indeed first defined in the rule too, so the rule is enough to fully define a game.

This short page is enough to create a complete game with our engine. The complex
parts of code of Algorithm 1 are detailed in Appendix A.

1 from rule import *

2 board=[(’A1’, (60, 60), [(’H’, ’B1’), (’V’, ’A2’), (’B’, ’B2’)]) ,
(’B1’, (150, 60), [(’H’, ’C1’), (’V’, ’B2’), (’B’, ’C2’)]),
(’C1’, (240, 60), [(’V’, ’C2’)]),
...]

3 turns=[(’wait Cross’, True, True, [(’Cross’,TicTacToe.move, ’wait Circle’)]),
(’wait Circle’, True, True, [(’Circle’,TicTacToe.move, ’wait Cross’)])]

4 pawns=[(’X’, ’Cross’, ’images/cross.gif’),
(’O’, ’Circle’, ’images/circle.gif’)]

5 class TicTacToe(Rule):
6 def init (self):
7 self.name = ’Tic Tac Toe’
8 self.players = [’Cross’, ’Circle’]
9 self.turns = turns

10 def defineEquipments(self, table):
11 table.addEquipment(Area(’images/tttboard.gif’,board))
12 table.addEquipment(Assortment(pawns, [’name’, ’player’, ’image’]))

13 def playResult(self, table):
14 action=table.getLastP layerAction()
15 if action!=None andtable.hasNewLine([move.getPositionTo()], 3,

elementRestraints={’player’: table.getCurrentP layer()}):
16 return FinishPlay(table, table.getCurrentP layer())

17 def move(self, table):
18 res=[]
19 forpos in table.getPositions():
20 if pos.isEmpty():
21 res.append(Move(table.getAssortment(), pos,

table.getElement(player=table.getCurrentP layer())))
22 returnres

ALG. 1: Tic-Tac-Toe Class.

3 Players Descriptions

Here is a quick list of possible players we have started to develop and integrate in our
general gaming model. All these methods can be easily combined:

1. Alpha-Beta, Min-Max, tree exploration based,

2. Monte-Carlo methods,
3. Neural Networks,
4. Genetic Algorithms and Genetic Programming.

Our model is based on functional rule description and step bystep play unfolding.
At any time in the game when some player can make an Action, this player is called
with a list of each player possible Actions computed following the rule definition on the
players variant of the Table. The player has to send back the Action he prefers. He may
also launch a simulation of an Action and his consequences onthe play. He could pursue
this process anytime he wants and explore the play tree. For incomplete-information
games the player sees all unknown information trough a randomly generated possible
Table state. This unknown part of the play can be shuffled anytime to simulate another
possible situation.

As for games, there are some limits to our application and theplayer that we could
connect to it. One is that our model is based on functional rule description and step by
step play deployment. This implies that we do not provide tools for analyzing game
rules before the play begins. Actually no access to these data is provided yet and it can
be easily improved, but it is complex enough to implement this model without querying
about pre rule analyzer players. The other point is that our players are highly integrated
in our game engine and that the engine is in charge of generating possible Actions for
the player, even in simulations. Detaching players to try tosolve this problem is one of
the planned evolution of our engine.

Our players are connected to our engine with some few methods:

1. doAction: Play the selected player’s Action.
2. doSimulateAction: Play any legal Action and compute the next possible Ac-

tions for all players, modify only the players specific Table.
3. undoSimulateAction: Undo the last simulated Action and restore specific Ta-

ble and next possible Actions.
4. getChoices: Return the list of all possible players Actions corresponding to the

current simulation or play.
5. getEval: Read the game engine’s result on current simulation or play.

4 Engine Description

In this section we will focus on our game engine. First we willexplain its global be-
havior, then we will present how we have implemented it and how we want to use and
improve it later.

4.1 Main Loop of the Engine

The Algorithm 2 presents the main tasks of the Engine. After having initialized the rule
object, the engine uses its attributes to define the different parts of the play: the turn
order graph and the Tables related Equipments. The turn order graph leads the main
course of the events by defining the possible players and the possible Actions during

each play step. In order to do that, the engine needs to apply the rules Action creation
method on each player’s Tables (lines 7 and 8).

Then the engine calls the players to let them define the Actionthey want to realize
(lines 9 and 10). During this phase, each player can use its own Table to manage Action
simulations. Then the engine deals with different prioritykind of rules to select the next
legal Action in the players answers (Line 11). There are two possible ways to select the
Action, one is to choose the faster player (this allows to compare quick-thinking players
to deep thought ones on fast based games). The other way is to describe priority rules
in the rule file as for in traditional Mah-Jong.

In incomplete-information games the player has in his Tableone possible distri-
bution of the Elements he doesn’t knows. During the creationof Actions (relatives to
player’s Tables but equivalents to the engine selected one)(line 12) there is a coherency
engine which modifies any player’s Table3 so that these Tables correspond to the desired
Action.

Then, the program loops until the engine detects a FinishPlay Action returned by
Rule.playResult()(line 6).

1 Createrule usingrule. init ()
2 Createturn graph usingrule.turns and select start node
3 CreateTable[engine] usingrule.defineEquipments

4 For eachplayer in rule.players:
5 CreateTable[player] usingrule.defineEquipments

6 While rule.playResult(Table[engine]) == None:
7 For eacharc in turn graph.current node:
8 Createpossible actions[player] using(Table[arc.player], arc.method)
9 For eachplayer havingpossible actions:
10 Selectfavorite action[player] usingTable[player]
11 Select one player’sfavorite action

12 Recreateselected favorite action on allTables

13 Applyselected favorite action on allTables

14 Updateturn graph.current node

ALG. 2: Engine main loop.

4.2 Implementation of the Engine

At the moment, the engine implementation is in progress in the Python language. Three
games are defined: A Tic-Tac-Toe which is described by Algorithm 1, a Go-Moku
which use a very similar file and a Chinese-Poker which is a four players card game
using poker combinations. One player is implemented too: A Min-Max player with op-

3 e.g. Before George plays a 3♠, Jane was thinking he had in his hands only a2♦ and a7♥.
When George play his 3♠, Jane’s knowledge on Georges hands would change this way: 3♠

anywhere guessed position would be swapped with either the2♦ or the7♥ ones in Jane’s idea
of George’s hands. Then George could play this card.

tional Alpha-Beta cut. A Monte-Carlo player is on the point of being added, as soon as
multiple Table control is fully realized4.

All Equipments are already defined and created, except the Dice. All Equipments
are linked to some others ones. The state of these relations represents the state of the
table during the play. Rule can use many Equipments methods to test this state. For
instance, these are few of the Position Equipment methods toillustrate the principle:

1. getArea(): Returns the Area which the Position depends on.
2. getElements(restraints): Returns the list of Elements played on the Po-

sition. Restraint is an optional dictionary of attributes which filters the returned
Elements.

3. getDirections(name, orientation): Returns the possible Directions
that links this Position with others on its Area.

4. getOppositeDirections(direction): Returns the opposite Directions
(if any) to the one given as argument.

All Actions are already defined too. They have two main methods allowing the
engine to really alter Tables. One isdoAction() which performs the desired action
and the other isundoAction() which restores the Table in its previous state. This
way the engine manages players simulations. Actions have the ability to add themselves
to each others, soMove()+Set() is seen by the engine as only one Action. There
are many other Actions methods used by the engine (to manage graphic interface for
instance) we choose not to describe here.

The engine uses a few more classes to implement the model: Graphic interface, en-
gine which manages the main loop, and graphs are used too. Some other no fundamental
tools are provided: It is possible to define options in game rules (such as exactly or at
least five pawns on Go-Moku). These options are defined in therule.__init__()
method and must be chosen before the engine starts to play. A tool is provided to au-
tomatically generate the Area’s graph definition lists, based on dimensions. Some com-
plex non required methods are provided (Table.hasNewLine() for instance) to
make easier rule creation.

Despite of its early development stage, this engine can already manage both complete-
information strategy games such as Chess and both incomplete-information card chance
based games such as traditional Mah-Jong. Today, as far as weknew, there is no another
engine with similar proficiency.

4.3 The Future of the Engine

There are many possible uses or upgrades to this engine. We present now the main ones.
The first use is for Artificial Intelligence benchmarking. With the capability to cre-

ate very different kinds of games, based on opposite moves process or goals and the
capability of develop various General Gaming players, thisengine would be useful to
compare their efficiency, their robustness and even their creativeness facing various

4 Each player has its own Table, which corresponds to what he knows of the play. These Tables
are highly cross-referenced to each others to manage incomplete-information games coherence
engine. This part is in debugging stage.

problems which have often already been classified[5]. The model was first developed
in this perspective.

Another evident possible use is for entertainment of many players around the world,
connected to many possible games against efficient computerengines. The easiness in
the game’s rule creation would probably lead to such an amazing collection of games
than for ZILLIONS OF GAMES if we bother to distribute this engine as they did.

Furthermore, this engine is quite young and it would be instructive to develop it in
some new ways, in extending the range of possible games definition, or in players inter-
face. Some evolutions concerning games could be the integration of collecting games,
such as wargames or card collecting games, where the playersmust first define their
army or their deck following specific rules before confronting other players with their
owns. Another game interface evolution could be the management of continuous boards
with some geometric tools in place of Areas and their Positions lists.

For the engine upgrading, it would be pleasant to tear apart the players and the
engine, in order to allow engines players to perform theirs owns play explorations. This
would lead to a more open engine players system, with capability of pre rule analysis.

There are many much more ways to improve this system and not enough room here
to describe them all.

5 Discussions

Before concluding this article, we suggest some short discussion about our engine in
the form of short queries with their answers.

– Is this model better than Stanford ones?
- No, it is not better, it is different. Stanford general gameplaying model uses rules

in logic form, is limited to simple strategy games, and allows players to analyze
rules. Our model is driven by the intention of playing easilyalmost any game and
our players are restricted to choose the best Action in a possible tree of Actions.
The two model are completing each other.

– Isn’t the model too heavy?
- No, the model isn’t heavy. It’s a relatively light model to cover the large field of

possible games. However, as the engine must compute all players simulations trees,
it is quite long to play a game. This is one of the reasons why one of the next
upgrade would probably be the full players parting from the engine.

– Is it really interesting to test Monte-Carlo methods on complete-information games
or Alpha-Beta methods on chance incomplete-information games?

- Yes, good results have been obtained on go with Monte-Carloplayers[6].

6 Conclusion

Nowadays, computers are very effective in most board games.The issue of years of
research in such fields as Computer Science and Artificial Intelligence is that computers
are capable to defeat the best humans players in almost all games (with some exceptions
nevertheless). This shows how the advancement of theses sciences are awesome. But

all these engines are specifics to their games, and don’t reflect even a part of the human
mind which is able to be (almost) good in any game, with the same mind.

So, it is the next step to explore the huge field of general solving methods as general
gaming tries to address. We have done one more step by creating, implementing and
testing a new model which is the first to allow the use of such various games as strategy,
card and board games. Furthermore, we have opened the way forcollecting games.

This way only, Computer Science and Artificial Intelligencewill continue on their
march to maybe beat, one day, human mind not because they are faster and more robust
systems, but because they are more malleable and adaptive ones.

A Algorithm 1 Code Explication

Some complex calls in Algorithm 1 are detailed here:

– Line 11: Area is an Equipment. The arguments are the board picture and a list
of positions data. The position layout is (name, coordinate, list of (direction name,
direction goal)).

– Line 12:Assortment is an Equipment. The arguments are a list of pieces data
and the corresponding layout. Some attributes (such as image) must been defined
in the layout.

– Line 14:Table.getLastPlayerAction() returns the previous move in the
game. This test is needed to control that we are not before thefirst move.

– Line 15:Table.hasNewLine() returns a boolean defining if a line is detected
into an Area. Arguments are the list of positions that may be in the line5, the size
of the line, and some restraints which must be checked for oneElement at each
Position on the line. Here the restraint is the name of the player that owns the
Element.

– Line 16:FinishPlay is an Action which defines the winner, which here is the
current player.

– Line 21:Move is an Action. Arguments are the source, the target and the Elements
moved. Here, we move one Element (returned bytable.getElement()) from
Table’s Assortment to the Table’s search current Position (line 19).

References

1. Pitrat, J.: Realization of a general game-playing program. In: IFIPCongress (2). (1968)
1570–1574

2. Pell, B.: A strategic metagame player for general chesslike games. In: AAAI. (1994) 1378–
1385

3. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the aaai competition.
AI Magazine26(2) (2005) 62–72

4. Lefler, M., Mallett, J.: Zillions of games. Commercial website http://www.zillions-of-
games.com/index.html.

5. Boutin, M.: Le Livre des Jeux de pions. Livres de jeux.Éditions Bornemann (april 1999)
6. Bouzy, B., Helmstetter, B.: Monte-carlo go developments. In van den Herik, H.J., Iida, H.,

Heinz, E.A., eds.: ACG. Volume 263 of IFIP., Kluwer (2003) 159–174

5 Typically the last played Positions, to avoid useless searches on all Area’s Positions.

