Program Generation for Firms Simulations in Competitive
Environments

Tristan Cazenave
LIP6
Case 169
Université Pierre et Marie Curie
4, place Jussieu, 75252 Paris Cedex 05, France
Tristan.Cazenave @lip6.fr

Abstract

In a competitive environment, the results of a firm strongly depend on the behaviors of the other firms.
Therefore, the valuation of a firm must take into account its competitors. We propose a methodology to
automatically create a program to assess the potential of a firm given a particular model of the firms. The
rules forecasting the future behavior of the firm are generated under the assumption of the strongest
possible resistance of its competitors. These rules can be used to evaluate the future minimal performance
of the firm.

Keywords
Metaprogramming, Competition, Valuation of a Firm.
1 Introduction

Introspect [Cazenave 1996b] is a system that automatically create programs that enable to achieve some
goals, given the definitions of the goals and a theory of the domain in which the goals apply. Introspect
has been applied to the management of a firm [Cazenave 1996a]. It is given a program that models a firm,
and some goals related to the good management of a firm (essentially have a positive cash and have a
good return on investment). Using a metaprogram it automatically creates program that enable to find
rapidly the good decision to achieve the defined goals under the assumption that the model is valid. Our
current model is used to teach management [Alia 1992], but our approach is general and can be applied to
other models. This work is a part of a more general research on the usefulness of metaknowledge
(knowledge about knowledge) [Pitrat 1990].

In a first part, we describe how knowledge about the firm is represented. In a second part, we show how
rules used by opponent firms to prevent a firm to achieve a goal can be automatically created. Then we
explain how the generated program can be used to model the evolution of a firm in a competitive
environment.

2 Knowledge representation

In order to generate a program, a metaprogram must be given a declarative domain theory of the market
and of the firms. The declarativity of knowledge presents many aspects. The first one is the explicit
representation of knowledge, it allows the program to manipulate the knowledge it uses. This aspect is
typical of logic programming techniques, as in Prolog programs or in expert systems. The second

constraint that declarativity imposes on knowledge representation is that the instructions of a program
must be given without the order to execute them. A declarative program is both explicit and given without
a defined order [Pitrat 1990]. This second aspect is very important because it facilitates
metaprogramming, enabling the unfolding of programs without constraints and the reordering of the
conditions . We chose to represent knowledge using predicate logic.

Rule_Cash_1: Rule_Cash _2:
Selllncome (T2, N3) :-
Quantity_Sold (T, N1),
Sell_Price (T N2),
Delay_of_payment_sell (T1),

Cash (T1,N5) :-
Cash (T,N),
Sell_Income (T, N1),
Quantity_Work (T, N3),

T2=T+T1, Buy_Outcome (T, N4),
N3 = NI * N2. TI=T+1,
N5 =N+ N1 -N3-N4.
Table 1

Table 1 gives two examples of rules making of the Monetary level domain theory that compute the cash of
a firm.

Cash (0, 5000)

Quantity_Sold (0, 10
)
Quantity_Sold (1, 10
)
Quantity_Sold (2, 10
)
Quantity_Sold (3, 10
)
Quantity_Sold (4, 15
)
Quantity_Sold (5, 15
)
Sell_Price (0, 170)
Sell_Price (1, 170)
Sell_Price (2, 170)
Sell_Price (3, 170)
Sell_Price (4, 160)
Sell_Price (5, 160)

Quantity_Products_Bought (0, 10)
Quantity_Products_Bought (1, 10)
Quantity_Products_Bought (2, 10)
Quantity_Products_Bought (3, 10)
Quantity_Products_Bought (4, 15)
Quantity_Products_Bought (5, 15)
Price_Product (0, 70)
Price_Product (1, 70)
Price_Product (2, 70)
Price_Product (3, 70)
Price_Product (4, 70)
Price_Product (5, 70)
Quantity_Work (0, 700)

Quantity_Work (1, 700)
Quantity_Work (2, 700)
Quantity_Work (3, 700)
Quantity_Work (4, 1050)
Quantity_Work (5, 1050)
Quantity_Sold (0, 10)
Quantity_Sold (1, 10)
Quantity_Sold (2, 10)
Quantity_Sold (3, 10)
Quantity_Sold (4, 15)
Quantity_Sold (5, 15)
Delay_of_payment_buy (3)
Begin_activity (0)

Table 2

Table 2 gives an example of a working memory for the monetary level. Working memories contains only
predicates and constants. Whereas rules can also contain metapredicates and variables.

3 Generating programs to prevent from achieving a goal

The use of metaprograms to generate programs to prevent from achieving goals has already been described
for the game of Go [Cazenave 1998]. In this section, we explain how this kind of metaprograms can be
used in the context of firms simulation.

The following metarule enables to create rules concluding on actions of a firm that prevent another firm to
have benefits, given rules concluding on how to make benefits.

addconclusion (R1l, PreventBenefits (FIRM, AMOUNT)),

addrule (R1l) :-
rule (R),
conclusion (R, MakeBenefits (FIRM, AMOUNT)),
setofconditions (R, SET2),
setofmodifyingconditions (SET1, SET2),
newrule (R1),
addsetofconclusions (R1, SET1),
addsetofconditions (R1l, SET2).

The rules concluding on how to make benefits are also created by Introspect as described in a previous
paper [Cazenave 1996a].

The first condition of this metarule, 'rule (R)', selects all the rules and instantiate them in the variable R.
The second condition selects among the rules those that conclude on the goal MakeBenefits for the firm
denoted by the variable FIRM. The next condition 'setofconditions (R, SET2)' puts into SET2 the set of
conditions of the rule R selected. Then the condition 'setofmodifyingconditions (SET1, SET2)' calls a
metaprogram specific to the simulation of firms that fills SET1 with a set of actions that prevents the
conditions in SET to be achieved. After that, the metarule, creates a new rule R1 and adds SET1 to the set
of conclusions of R1 and SET2 to the set of conditions of R1. Eventually, the metarule adds in the
conclusion of the rule R1 the predicate about the goal of rule R1 and adds R1 to the set of rules.

Note that rules about achieved goals are used to create rules about action to take, that are themselves used
to create rules about actions to prevent from achieving a goal, that are in turn used to create rule about
achieved goals (when no preventive action works). This enables the system to incrementally create more
and more complex rules, until the size of the created rules is set to the maximum available memory for the
generated program.

4 Using the generated programs to forecast

The generated programs have to be used over a long term simulation in order to return valid results. There
is often a possibility for a firm to damage its competitors at its own expenses. For example by fixing the
price of its manufactured products lower than the real prices, loosing money over a short period of time but
preventing the other firms to sell their products. However this strategy cannot be used in the long term, or
even if it can be used on a period of time, it may have catastrophic consequences for all the firms. That is
why a long term simulation of the competition between the firm gives a better indication on their respective
reasonably expected performances than a short term one.

The main advantage of the generated programs is that they reduce the number of reasonable possible
actions for each firm, therefore enabling to forecast on a longer period of time.

5 Conclusion

We have described how to generate program for efficiently simulating firms in a competitive environment.
The main interest of the generated program is that they enable to forecast efficiently over a long period of
time the behavior of a firm in a simulated competitive environment. Therefore giving insights on the
performance of the firm on the market and on its valuation.

References

Alia C. (1992). Conception et réalisation d’'un modéle didactique d’enseignement de la gestion en milieu
professionnel. Ph.D. Thesis, Montpellier II University, 1994.

Cazenave T. (1996a). Learning to Manage a Firm. Proceedings of the International Conference on
Industrial Engineering Applications and Practice, Houston, 1996.

Cazenave T. (1996b). Systeme d'apprentissage par auto-observation. Application au jeu de Go. These de
1'Université Paris 6, Décembre 1996.

Cazenave T. (1998). Metaprogramming Forced Moves. Proceedings ECAI'98.

Pitrat J. (1990). Métaconnaissances. Hermes, 1990.

