General architecture

Tristan Cazenave
LIP6, Université Pierre & Marie Curie
4, placeJusseu
75252PARIS CEDEX 05, FRANCE

Tristan.Cazenave@li p6.fr

France

Gogol
(An Analytic L ear ning Program)

Transition
| Setof Rules \ Working -
4 Regression
Problems Memory egRuI Ilr—agl
v / After
Board & Working
Move [*| Memory
Before \ Interesting Subset of
(;a;?uf | | Fadson [Explaining
Ruleson / Games Status Fads
Games Status Before
Spedalized Reordered New Rules Ga%erlahzed
Rules Rules ules
* \ Metarules of
Ci+ Rules Compilation
T \
Board [»] AND/OR Games Stratedic
I_’_ Tree Search saus [P EoUPs b Rulg Move
]

— =|sused to create

Bold characters indicate that the arresponding module has partly been written by a human. Bold redangles represent the
Go playing program. Normal characters represent the parts of the system that are aeated by the system itself. At the
beginning of the learning process the system is only given threesets of rules. The transition rules describe the dired effeds
of a move on the facts representing a board. Ten production rules define the six interesting subgoals of the game of Go:
Conned-Disconned, Take-Live and Make an_eye-Remove an_eye. The metarules of compilation enable to transform
learned rules in order to use them efficiently. Using a set of problems, it creates a C++ program that is used to develop
prodf trees for the Go playing program. The aeation of the C++ program follows a six step process described in the six

foll owing subsedions.

Problem Solving

Transition Working
Rules Memory
After
Board & R Working
Move ”| Memory
Before \ v
~ Games
ules on
Games Staﬁus/ Status

We use a deductive problem solving method. The system begins with transforming a board and its associated move into a
working memory before containing approximately thousands of facts. Then it use the transition rules to deduce the working
memory representing the board after the move. After that, it deduces the games status before and after the move, using the
rules on the games status. Before learning, the system has only ten rules defining won game status.

Regression Rules

Games Interesting Fads on
Status Games Status Before

Selection of interesting facts

To seled interesting facts, the system compares the game status before the move and after the move. If the game status after
the move is more acaurate than the game status deduced before the move, then the fact describing the new game status is
interesting to explain so as to create a new rule which will enable to deduceit the next time.

Salf-Observation

Trace

Interesting v
Fads on Subset of
Games Status » Explaining
Before Fads

Onceit has sleded some interesting facts on game status, the system uses the trace aeated whil e solving the problem to
explain why the interesting facts have been deduced. The result of this explanation is a subset of the facts contained in the
working memory before the move.

Generalization

Subset of
Explaining
Fads

Generali zed
Rules

The rule obtained after self-observation is composed of instantiated variables and constants. Thisrule is very spedfic to the
problem solved. So asto useit in many other cases, it is generalized by replacing instantiated variables with variables. This
generali zaion procedureis truth preserving. The rules created this way are theorems of the learned game. They always give
a true onclusion. On the mntrary of previous approaches, we never over-generalize rules. We approach the optimum as

shown in figure 2 and not like in figure 1, which isthe dasdcal approach. This property is very important when learning to
develop prodf trees. Otherwise, the learned rules are not theorems and cannot be used to develop prodf trees. Moreover, we
do not want to learn fal se rules because this would lead to learning more and more false rules.

%7-

Figure 1 Figure 2

Adding and removing rules

Rules on
Games Status

New Rules |¢ Generalized
Rules

The system removes rules which are too spedfic by unifying generalized rules and rules previoudy learned. This way, only
new rules are included in the system, and too spedfic rules are removed.

Compilation
Rules on
Games Status

Speciali zed Reordered

Rules Rules
l M etar ules of

Compilation

C++ Rules

Reor dering conditions

A goad ordering of conditions can provide big speedups in production systems. To reorder conditions in our learned rules,
we use a very simple and efficient algorithm. It is based on the estimated number of foll owing nodes that the firing of a
condition will createin the semi-unification tree

Compilingin C++

Ancther source of inefficiency is the interpretation of production rules. When an interpreted problem solver instantiates a
variable, it hasto traverse trees representing the working memory, to create a linked list of the instantiations of the variable
and to go through this linked list. Instantiating a variable or making a test requires many instructions at the assembly
language level. If a rule is compiled into a C++ program, tests are represented by only one instruction and multiple
instantiations by a smple loop.

Strong point of Gogol: Analytic Learning

Gogol learns to play Go using the rules of the game and the definitions of some interesting goals. It spedalizes the goals
using the rules of the game. The resulting rules are cmpiled into a C++ program. The system which has learned the
tactical Go rules (Introspead) is general and the learning algorithm has been used in other domains.

Asit isimpossbleto search the entire treefor the game of Go, the best Go playing programs rely on a knowledge intensive
approach. They are generally divided in two modules :

- atactical module that develops narrow and deep search trees. Each treeis related to the achievement of a subgoal of the
game of Go.

- astrategic module which choases the move to play according to the results of the tactical module.

The tactical module usually uses patterns to choose a few number of moves in order to develop the search tree These
patterns are numerous and hand-coded. Creating this large number of tactical patterns requires a high level of expertise, a
lot of time and along processof trial and errors. Moreover, even the people who are expert in Go and in programming find
it difficult to design these patterns. This phenomenon can be explained by the high level of spedalizétion of these patterns:
oncethe epert has acquired them, they become unconscious and it is hard and painful for the expert to explain why he has
chosen to consider a move rather than another one. However, despite its great interest for Artificial Intelli gence research,
the best Go programs are not well described in the Artificial Intelli gence literature. A Go program contains thousands of
spedfic expert rules. Thus, it is difficult to describe them in a synthetic way.

The difficulty of encoding Go knowledge is the mnsequence of a well known difficulty of expert system development: the
knowledge engineaing battlenedk. The goal of Gogol is to avoid this battlenedk by replacing the knowledge extraction
processwith an automated construction of knowledge based on examples of problem solving. Machine learning techniques
enable Go programmersto get rid of the painful expert knowledge acquisition. Thus, computer Go is an ideal domain to test
the dficiency of the various machine learning techniques.

Previous Computer Go Tour naments
1996 Fost Cup : 12" out of 19, 4 wins, 5 losses.

GamesLost against : Mutsuki, immy, Go Intelled, Explorer and Takuchan.
GamesWon against : Katsunari, Tokyo96, Goater, Goro.

How to get my program

Tristan Cazenave
LIP6, Université Pierre & Marie Curie
4, placeJusseu
75252PARIS CEDEX 05, FRANCE
Tristan.Cazenave@li p6.fr
http://www-laforia.ibp.fr/~cazenave/Tristan.html

