Ary, a general game playing program

Jean Méhat, Tristan Cazenave

Abstract
We present our program Ary that won the 2009 and 2010 General
Game Playing competition. In General Game Playing (GGP), players
have to play games they never encountered before. The rules are trans-
mitted as a description in a specific language and the player have to au-
tomatically analyse the rules and select a method of playing.

1 Introduction

The field of program playing games is an extensively explored field of computer
science and more particularly of artificial intelligence as it is a domain where
common methods of reasonning are to be applied, while offering a closed world,
completely described by the game rules. Moreover the quality of the play is easy
to evaluate quantitatively by observing the matches outcomes, and a human
expertise has been developped. Great successes have been obtained: in many
games, including chess, programs routinely outplay even the best human player.

The program usually embed a important body of knowledge that is specific
of the game they play. This knowledge is used by the designer beforehand and
limit somewhat the generality of the program. While a program like Deep Blue
is able to play well chess, it can not play a match of Checker, or even Tic Tac
Toe: while an expert in its domain, the playing program is limited to one game
in its abilities, and these are not easily extended to other domains or even to
other games.

The Logic Group at the university of Stanford addresses this limitation with
GGP. In a GGP match, the players receive the rules of the game they have
to play in a specific langage called Game Description Language from a Game
Master. The players have a set time, usually between 30 seconds and 20 minutes,
to analyse the game. After that analyse phase, every player repeatedly selects
a move in a fixed time, usually between 10 seconds and 1 minute, and sends it
to the Game Master that combines them in a joint move transmitted back to
all the players.

The Logic Group organize an annual competition at the summer conference
of the Association for the Advancement of Artificial Intelligence (AAAI) [3].

As they do not know beforehand the games that will be played, General
Game Player have to analyse the rules of the game to select a method that
work well for the game at hand, of use only methods that work well for all the
conceivable games.



In the following of this article, we will present the Game Description Lan-
guage, sketch the method used by our program and present some examples of
games played in the past competitions.

2 The Game Description Language (GDL)

The GDL is used to describe the status of a match, and its consequences, using
only a very small set of properties that are specific of game description. It
is semantically equivalent to Datalog, a restricted version of the Prolog logic
programming language[5].

It is expressed in Knowledge Interchange Format (KIF), whose syntax is
reminiscent of the Lisp programming language. For example, to indicate that
the X player has marked the center cell of a Tic Tac Toe grid may be expressed
with (cell 2 2 x). Note that cell is not a special world in the GDL; in the
following, special words will be noted in UPPERCASE.

2.1 The elements of the GDL

The set of game playing specific properties is as follows:

e (ROLE player) is used to identify the players that take part in a game. The
GDL can be used to describe games with any number of players, including
one player games that amount to puzzles and many players games.

e TERMINAL is a property that holds when the game is finished.

e (GOAL player reward ) describes what a player obtain when a game is
finished. The reward is an integer varying from 0 to 100. In a zero sum
two players games, the winner obtains a reward of 100 and the looser 0
and a draw is usually translated by reward of 50 for all the players. As the
reward is defined independantly for the players, it is possible to describe
non zero sum games, where whe players best interest may be to cooperate.

e (LEGAL player move) is the property that describes what the legal moves
are for a given player in a given status. Every player has to play a move at
each step of a game. For turn taking games, there is usually a no-operation
move to be played by the inactive players.

e (DOES player mowve) indicates the move played by a specific player in the
last turn.

There is also a set of properties that are used to manage a base of facts that
may be valid during the games, used to describe the match status. These are:

e (INIT fact) for facts that are true at the beginning of the match. It is
used to describe the starting position in the game.

e (NEXT fact) describes the facts that will be true after a move. It is used
to define the new fact base to be used to describe the new game status.



e (TRUE fact) allows one to verify that a fact is true in the present status.

There is set of theorems that allows one to produce deductions from the
game rules and the fact base. It is expressed as (<= property list-of-properties) ,
indicating that the indicated property holds if all the properties of the list are
true. There is also a NOT property allowing one to make deduction on the basis
of properties that are not true in a given status. For example, a theorem to
prove that the player O has completed the first row at Tic Tac Toe may be:

(<= (row o)
(TRUE (cell 1 1 0))
(TRUE (cell 1 2 0))
(TRUE (cell 1 3 0)))

which translates into Datalog with

row(o) :- true(cell(l, 1, o)),
true(cell(l, 2, o)),
true(cell(2, 2, o)).

and in natural language with If the first, second and third cells of the first row
all contain an O, the O player has completed a Tow.

The right part of the theorem is actually a way to express a logical conjonc-
tion (an AND). In the current GDL, there is nothing specifically used to describe
a logicial disjonction (an OR). For example to indicate that a Tic Tac Toe player
has completed a line if it has a row or a column or a diagonal, one has to use
three theorems as in:

(<= (1line o) (row o))
(<= (1ine o) (column o))
(<= (line o) (diagonal o))

These elements are theorically sufficient to describe a game: every game
status can be described with a set of properties in the base fact, every legal
move and the effects of joints moves in any given status can be described with
a theorem. However, in interesting games, the number of possible status is too
big for this extensive description to be practical. The GDL description of a
game may include variables to generalize the theorems. For example, instead of
using three theorems to describe the completion by the X player of one of the
three columns of the board, one theorem with a variable can be used, as in:

(<= (column x)
(TRUE (cell 1 ?n x))
(TRUE (cell 2 7n x))
(TRUE (cell 3 ?n x)))

The underlying machine will try to unify the n variable with the every possible
value, and (column x) will be demontrated if for one of these values, the three
facts are verified.



The presence of variables make necessary the property DISTINCT, used to
verify that a variable does not has a given value. For example, stating that a
marked cell will keep its mark until the end of the match can be done with the
following theorem:

(<= (NEXT (cell ?7x 7y ?7status))
(TRUE (cell ?x ?y ?status))
(DISTINCT 7status empty))

(Empty cells cannot be propagated so simply, as the one selected by the active
player will not be empty in the next step.)

2.2 Limitations of GDL

The games described in GDL can not be infinite: this is practically realised by
adding a counter to the game description, that is incremented after each move.
When the counter attain a given value without reaching a terminal state, the
game is declared finished and scored.

The GDL is limited to first order logic, in contrast to the Prolog program-
ming language. The variables can not be bound to predicates, so it is impossible
to define arithmetic in GDL. This makes necessary do define arithmetic in the
game description, when necessary, with an explicit enumeration of the possible
values as in:

(<= (greater ?x ?y) (succ ?7x 7y))

(<= (greater 7x 7y) (succ 7x 7z) (greater 7z 7y))
(succ 2 1)

(succ 3 2)

2.3 Examples of game descriptions in the GDL

Turn taking games are described with the GDL elements, for example with the
following excerpt:

(ROLE white)

(ROLE black)

(INIT (control white))

(<= (NEXT (control white)) (TRUE (control black)))
(<= (NEXT (control black)) (TRUE (control white)))
(<= (LEGAL white noop) (TRUE (control black)))

(<= (LEGAL black noop) (TRUE (control white)))

The two ROLE properties enumerate the two player names and the control
predicate is used to indicate who is the active player on this step. The two NEXT
theorems ensure that the player in control will be swapped after each step. We
included the theorems stating that the (only) move of the player not in control
is a no operation.



With the help of an other property and variables, these four theorems can
be reduced to two, as in:

(other white black)

(other black white)

(<= (NEXT (control 7player)) (TRUE (control ?7x)) (other 7player ?7x))
(<= (LEGAL ?player noop) (TRUE (control 7x)) (other ?player 7x))

Instead of listing it extensively as in the preceding excerpt, the other prop-
erty can itself be deduced via a theorem, using DISTINCT:

(<= (other 7x 7y) (role 7x) (role ?7y) (DISTINCT ?x 7y))

2.4 Modifying game descriptions

Once one has the description of game in the GDL, is is easy to modify the
description to obtain a variant of this game.

Inverting the goals in a game is easy, but leads to a complete change in the
strategy. For example, replacing in the Tic Tac Toe description the lines:

(<= (goal 7player 100) (role ?player) (line 7player))
(<= (goal 7player 0) (other ?player 7x) (line 7x))

by:
(<= (goal 7player 0) (role 7player) (line ?player))

(<

one changes the game to a version were the goal is to not complete a line.

It is possible to have many boards of the same game and let the player choose
the board it will play on. In the simple snake single user game, the player pilots
a snake on a 5 x 5 board, the goal being to pass once and only once in every
cell of the board. The 2008 competition, included a variant of this game with
16 boards. The player has to choose one board and play on this board. This
way, while the structure of the game is identical to the one board version, the
branching factor is multiplied by 16 (figure 1).

The complete description of checkers in the GDL is about 500 lines of GDL
(plus 200 for defining the arithmetic for the move counter). By simply adding
the property

(goal 7player 100) (other 7player ?x) (line 7x))

(adjacent col8 coll)

one obtain a game of checkers on a cylindric board, which significantly modify
the strategy.

2.5 GDL extensions

Mickael Thielscher has recently proposed an extension to the GDL that allows
the description of games incoporating random elements (like backgammon) and
where the information is not completely shared between the players (like most
of card games, incuding poker) [6].



o OEEE

(L
(L
| -~ BEEEB
(up), (down) (up 1) --- (up 16)
(left) (right) (down 1) --- (down 16)
(right 1) --- (right 16)
(left 1) --- (left 16)

Figure 1: Instead of having to play a simple game of Snake, the player has to
choose one of the 16 boards where she will play the next move of the same Snake
game. The branching factor is multiplied by 16.

3 Ary, our GGP program

In this section, we present Ary, our GGP program.

3.1 Using Prolog for interpreting GDL

Ary translates the rules of the game from the GDL into Prolog, and transmits
them to a Prolog interpreter. This interpreter is then used as a inference engine
for

e generating legal moves

e applying moves

detecting end of game

determining the score for each player

3.2 Exploration: Monte Carlo, UCT

In the 2007 qualifications, Ary used a simple Monte-Carlo method to explore
the game tree. The program excutes random playouts by playing random legal
moves until the end of the game. At the end of the thinking time, the move
with the best mean reward is played.

This simple method was direct to implement and gave good results in the
2007 qualification where Ary was classed fourth.

Since the final phase of 2007, Ary uses an extension of Monte Carlo named
Monte-Carlo Tree Search (MCTS). The program builds a tree of explored status,
adding one node for each playout. It uses the results of the previous playouts
to select a branch to explore and updates the value in the nodes of the tree
according to the result of the playout. Ary uses UCT, a method that balances
between deepening the search in promising branches and scouting underexplored
subtrees [4].



1 413 5 9|12 6
5 211 6|3 8
9 3 8§ 7 2 1 5
7 6 5 3 9 2 1
8 119 716 5
2 4 9 1 8§ 7 3
6 2 7T 8 1 4 9
1 81595 4 17 2
5 712 9 3|1 8

Figure 2: The player has to fill this easy sudoku grid.

CadiaPlayer, winner of the 2007 and 2008 GGP competition, also uses MCTS
[1]. Most competitors since the 2009 GGP competition also use some variant of
MCTS.

4 Some games of the 2009 competition

In this section, we present some of the games played in the 2009 competition.
All these games were new ones, designed by Jim Clune, author of ClunePlayer,
the winner of 2005 competition [2].

4.1 A one player game: sudoku

The goal is to Complete a simple Sudoku grid (see figure 2). The reward is
proportional to the number of structures (rows, columuns, boxes) containing all
digits. The problem to solve looks easy, but the branching factor is huge if one
does not detect that the order of moves is irrelevant. The best program scored
54 points (of 100 possible) on this game.

4.2 Two players, turn taking

The game Capture the king was a variant of chess (no castling, no en passant,
no promotion). The goal is to capture the adverse king.

The Pawn whopping is played on an chess board, with only the pawns at
their usual place. The goal is to be the first to promote one of its pawns.

4.3 Many players, Simultaneous play

The Four Way Battle is played on a rectangular board. Each player owns two
kings (moving like a king in chess) and four pawns (moving only orthogonally.

At each step, every player has the choice between moving or defending one
of its pieces. When a player try to capture a defended piece, the attacker
disappears. When two players move a piece on the same square, both disappear.



ol
@b

L Jp 4P

Figure 3: The starting position for ttcc4 with three players

When one capture another (adverse) piece, 10 points are gained. The game stops
when one of the players has gained 100 points of after a fixed number of steps.
The smallest is a variant of mediocrity: five players name a figure between 1
and 10. The one naming the smallest unique figure wins ten points. This step
is repeated until one of the players has gained 100 points. The organisation
provided a random player as the fifth player, that won all its matches.

4.4 A game of the 2008 qualifications : TTCC4

The game named Ttcc4 was conceived by Eric Schkufza for the 2008 qualifica-
tions, by mixing together Chess, Checkers, Connect 4 and Tic tac toe.

The game is played on a 5 x 5 board (see figure 3). Each player has three
pieces. One of the pieces moves like a king of checkers, moving diagonally and
capturing opponent pieces bu jumping over them. The other one moves and
capture like a knight of Chess. The third one is reminiscent of the pawn of
Chess, moving orthogonally and capturing diagonally. On its turn, each player
choose between moving one of his pieces and dropping a token on a colunm
that descend into that column until encoutering an obstacle, as in Connect 4
; it then stays in that position until captured. When a piece is captured, it is
actually resent to its starting position. The goal of the game is to align three of
its pieces en the central 3 x 3 square, like in Tic Tac Toe.

5 Conclusion

We have presented the context of the General Game Playing, and the Game
Description Language that is used to describe the games. We have sketched
the structure of our program Ary that won the 2009 and 2010 competition, and
presented examples of games used in these competitions.



References

1]

Yngvi Bjérnsson and Hilmar Finnsson. Cadiaplayer: A simulation-based
general game player. IEEE Transactions on Computational Intelligence and
Al in Games, 1(1):4-15, 2009.

James Clune. Heuristic evaluation functions for general game playing. In
AAAI pages 1134-1139, 2007.

Michael R. Genesereth, Nathaniel Love, and Barney Pell. General game
playing: Overview of the AAAI competition. Al Magazine, 26(2):62-72,
2005.

L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In ECML,
volume 4212 of Lecture Notes in Computer Science, pages 282—-293. Springer,
2006.

N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General
game playing: Game description language specification. Technical report,
Stanford University, 2006.

Michael Thielscher. A general game description language for incomplete
information games. In AAAI 2010.



